1
|
Taylor V, Hicks J, Ferguson C, Willey J, Danelson K. Effects of tissue culture on the biomechanical properties of porcine meniscus explants. Clin Biomech (Bristol, Avon) 2019; 69:120-126. [PMID: 31330461 PMCID: PMC7303885 DOI: 10.1016/j.clinbiomech.2019.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/12/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The meniscus is critical for the normal functioning of the knee joint. The specific aim of this study was to validate an in vitro culture model of meniscus explants for testing the impact of culture conditions on meniscus biomechanical properties. We hypothesized that culturing menisci in the presence of intermediate and high concentration of serum would have a positive effect on the compressive stiffness of the meniscus. METHODS Unconstrained microindentation testing was performed on porcine meniscus explants cultured with varying concentrations 1%, 5%, or 10% of fetal bovine serum media. Meniscus explants that were not cultured were used as a control. These tests quantified the Young's Modulus of the listed groups of cultured and uncultured explant tissues. FINDINGS The Young's modulus for 10% cultured explants were significantly higher compared to the control, 1%, and 5% cultured meniscus explants. There was no statistical significance when the Young's modulus between control, 1%, and 5% cultured explants were compared. INTERPRETATION These results suggest that low concentrations of serum do not impart an anabolic effect on meniscus tissue explant biomechanical properties.
Collapse
Affiliation(s)
- Victor Taylor
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, 2300 I St NW, Washington, D.C. 20052
| | - Justin Hicks
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157,Department of Orthopaedic Surgery, Washington University, 660 S Euclid, St. Louis, MO 63110
| | - Cristin Ferguson
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157
| | - Jeffrey Willey
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157,Department of Radiation Oncology, Wake Forest School of Medicine, Medical Center Boulevard, WinstonSalem, NC 27157
| | - Kerry Danelson
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157
| |
Collapse
|
2
|
Wang Q, Tan Q, Xu W, Kuang L, Zhang B, Wang Z, Ni Z, Su N, Jin M, Li C, Jiang W, Huang J, Li F, Zhu Y, Chen H, Du X, Chen D, Deng C, Qi H, Xie Y, Chen L. Postnatal deletion of Alk5 gene in meniscal cartilage accelerates age-dependent meniscal degeneration in mice. J Cell Physiol 2018; 234:595-605. [PMID: 30078186 DOI: 10.1002/jcp.26802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
Abstract
Activation of transforming growth factor-β (TGF-β) signaling has been used to enhance healing of meniscal degeneration in several models. However, the exact role and molecular mechanism of TGF-β signaling in meniscus maintenance and degeneration are still not understood due to the absence of in vivo evidence. In this study, we found that the expression of activin receptor-like kinases 5 (ALK5) in the meniscus was decreased with the progression of age and/or osteoarthritis induced meniscal degeneration. Col2α1 positive cells were found to be specifically distributed in the superficial and inner zones of the anterior horn, as well as the inner zone of the posterior horn in mice, indicating that Col2α1-CreERT2 mice can be a used for studying gene function in menisci. Furthermore, we deleted Alk5 in Col2α1 positive cells in meniscus by administering tamoxifen. Alterations in the menisci structure were evaluated histologically. The expression levels of genes and proteins associated with meniscus homeostasis and TGF-β signaling were analyzed by quantitative real-time PCR analysis (qRT-PCR) and immunohistochemistry (IHC). Our results revealed severe and progressive meniscal degeneration phenotype in 3- and 6-month-old Alk5 cKO mice compared with Cre-negative control, including aberrantly increased hypertrophic meniscal cells, severe fibrillation, and structure disruption of meniscus. qRT-PCR and IHC results showed that disruption of anabolic and catabolic homeostasis of chondrocytes may contribute to the meniscal degeneration phenotype observed in Alk5 cKO mice. Thus, TGF-β/ALK5 signaling plays a chondro-protective role in menisci homeostasis, in part, by inhibiting matrix degradation and maintaining extracellular matrix proteins levels in meniscal tissues.
Collapse
Affiliation(s)
- Quan Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Liang Kuang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Bin Zhang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zuqiang Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Nan Su
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Min Jin
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Can Li
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wanling Jiang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Junlan Huang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Fangfang Li
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ying Zhu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hangang Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaolan Du
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Huabing Qi
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yangli Xie
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
3
|
Cucchiarini M, Schmidt K, Frisch J, Kohn D, Madry H. Overexpression of TGF-β via rAAV-Mediated Gene Transfer Promotes the Healing of Human Meniscal Lesions Ex Vivo on Explanted Menisci. Am J Sports Med 2015; 43:1197-205. [PMID: 25646364 DOI: 10.1177/0363546514567063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Direct application of therapeutic gene vectors derived from the adeno-associated virus (AAV) might be beneficial to improve the healing of meniscal tears. PURPOSE To test the ability of recombinant AAV (rAAV) to overexpress the potent transforming growth factor-β (TGF-β) in primary cultures of human meniscal fibrochondrocytes, in human meniscal explants, and in experimental human meniscal lesions as a new tool to enhance meniscal repair. STUDY DESIGN Controlled laboratory study. METHODS The effects of the candidate treatment on the proliferative and metabolic activities of meniscal cells were monitored in vitro for up to 21 days and in situ in intact and injured human menisci for up to 15 days using biochemical, immunohistochemical, histological, and histomorphometric analyses. RESULTS Efficient production of TGF-β via rAAV was achieved in vitro and in situ, both in the intact and injured meniscus. Application of the rAAV TGF-β vector stimulated the levels of cell proliferation and matrix synthesis (type I collagen) compared with control gene transfer in all systems tested, especially in situ in regions of poor healing capacity and in sites of meniscal injury. No adverse effects of the candidate treatment were observed at the level of osseous differentiation, as tested by immunodetection of type X collagen. Most remarkably, a significant reduction of the amplitude of meniscal tears was noted after TGF-β treatment, an effect that was associated with increased expression levels of the α-smooth muscle actin contractile marker. CONCLUSION Overexpression of TGF-β via rAAV gene transfer is capable of modulating the reparative activities of human meniscal cells, allowing for the healing of meniscal lesions by convenient injection in sites of injury. CLINICAL RELEVANCE Direct gene-based approaches using rAAV have strong potential to develop new therapeutic options that aim at treating human meniscal defects.
Collapse
Affiliation(s)
- Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Katharina Schmidt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Janina Frisch
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Dieter Kohn
- Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
4
|
Role of insulin-transferrin-selenium in auricular chondrocyte proliferation and engineered cartilage formation in vitro. Int J Mol Sci 2014; 15:1525-37. [PMID: 24451136 PMCID: PMC3907884 DOI: 10.3390/ijms15011525] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/28/2022] Open
Abstract
The goal of this study is to determine the effects of Insulin-Transferrin-Selenium (ITS) on proliferation of auricular chondrocytes and formation of engineered cartilage in vitro. Pig auricular monolayer chondrocytes and chondrocyte pellets were cultured in media containing 1% ITS at different concentrations of fetal bovine serum (FBS, 10%, 6%, 2%, 0%), or 10% FBS alone as a control for four weeks. Parameters including cell proliferation in monolayer, wet weight, collagen type I/II/X (Col I, II, X) and glycosaminoglycan (GAG) expression, GAG content of pellets and gene expression associated with cartilage formation/dedifferentiation (lost cartilage phenotype)/hypertrophy within the chondrocyte pellets were assessed. The results showed that chondrocytes proliferation rates increased when FBS concentrations increased (2%, 6%, 10% FBS) in ITS supplemented groups. In addition, 1% ITS plus 10% FBS significantly promoted cell proliferation than 10% FBS alone. No chondrocytes grew in ITS alone medium. 1% ITS plus 10% FBS enhanced cartilage formation in terms of size, wet weight, cartilage specific matrices, and homogeneity, compared to 10% FBS alone group. Furthermore, ITS prevented engineered cartilage from dedifferentiation (i.e., higher index of Col II/Col I mRNA expression and expression of aggrecan) and hypertrophy (i.e., lower mRNA expression of Col X and MMP13). In conclusion, our results indicated that ITS efficiently enhanced auricular chondrocytes proliferation, retained chondrogenic phenotypes, and promoted engineered cartilage formation when combined with FBS, which is potentially used as key supplementation in auricular chondrocytes and engineered cartilage culture.
Collapse
|
5
|
Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human meniscus tissue. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4777-85. [PMID: 24094187 DOI: 10.1016/j.msec.2013.07.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 11/21/2022]
Abstract
Meniscus lesions are frequently occurring injuries with poor ability to heal. Typical treatment procedure includes removal of damaged regions, which can lead to sub-optimal knee biomechanics and early onset of osteoarthritis. Some of the drawbacks of current treatment approach present an opportunity for a tissue engineering solution. In this study, gelatin (G)/chitosan (Cs) scaffolds were synthesized via gel casting method and cross-linked with naturally derived cross-linker, genipin, through scaffold cross-linking method. Based on the characteristics of native meniscus tissue microstructure and function, three different layers were chosen to design the macroporous multilayered scaffolds. The multi-layered scaffolds were investigated for their ability to support human-derived meniscus cells by evaluating their morphology and proliferation using MTT assay at various time points. Based on structural, mechanical and cell compatibility considerations, laminated scaffolds composed of G60/Cs40, G80/Cs20 and G40/Cs60 samples, for the first, second and third layers, respectively, could be an appropriate combination for meniscus tissue engineering applications.
Collapse
|
6
|
Sanchez-Adams J, Athanasiou KA. Regional effects of enzymatic digestion on knee meniscus cell yield and phenotype for tissue engineering. Tissue Eng Part C Methods 2011; 18:235-43. [PMID: 22029490 DOI: 10.1089/ten.tec.2011.0383] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An abundant cell source is the cornerstone of most tissue engineering strategies, but extracting cells from the knee meniscus is hindered by its dense fibrocartilaginous matrix. Identifying a method to efficiently isolate meniscus cells is important, as it can reduce the cost and effort required to perform meniscus engineering research. In this study, six enzymatic digestion regimens used for cartilaginous cell isolation were used to isolate cells from the outer, middle, and inner regions of the bovine knee meniscus. Each regimen in each region was assessed in terms of cell yield, impact on cell phenotype, and cytotoxicity. All digestion regimens caused an overall upregulation of cartilage-specific genes Sox9, collagen type I (Col 1), collagen type II (Col 2), cartilage oligomeric matrix protein, and aggrecan (AGC) in cells from all meniscus regions, but was highest for cells isolated using 1075 U/mL of collagenase for 3 h (high collagenase). In response to isolation, outer meniscus cells showed highest upregulation of Sox9 and Col 1 genes, whereas greatest upregulation for middle meniscus cells was seen in Col 1 expression, and Col 2 expression for inner cells. Cell yield was highest in all regions when subjected to 45 min of 61 U/mL pronase followed by 3 h of 1075 U/mL collagenase (pronase/collagenase [P/C]) digestion regimen (outer: 6.57±0.37, middle: 12.77±1.41, inner: 22.17±1.47×10(6) cells/g tissue). The second highest cell yield was achieved using the low collagenase (LC) digestion regimen that applied 433 U/mL of collagenase for 18 h (outer: 1.95±0.54, middle: 3.3±4.4, inner: 6.06±2.44×10(6) cells/g tissue). Cytotoxicity analysis showed higher cell death in the LC group compared with the P/C group. Self-assembled constructs formed from LC-isolated cells were less dense than constructs formed from P/C-isolated cells, and P/C constructs showed higher glycosaminoglycan content and compressive moduli than LC constructs. All isolation methods tested resulted in similar phenotypic changes in meniscus cells from each region. These results indicate that, compared with other common isolation protocols, the P/C isolation method is able to more efficiently isolate meniscus cells from all regions that can produce tissue engineered constructs.
Collapse
|
7
|
Cucchiarini M, Schetting S, Terwilliger EF, Kohn D, Madry H. rAAV-mediated overexpression of FGF-2 promotes cell proliferation, survival, and alpha-SMA expression in human meniscal lesions. Gene Ther 2009; 16:1363-72. [PMID: 19641531 DOI: 10.1038/gt.2009.91] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Meniscal tears are a common problem in sports medicine. Direct application of therapeutic vectors derived from the adeno-associated virus might be beneficial to enhance meniscal repair. We tested the hypothesis that overexpression of fibroblast growth factor 2 (FGF-2) through recombinant adeno-associated virus (rAAV) vectors leads to detectable metabolic changes in human meniscal fibrochondrocytes and in human meniscal defects. rAAV-mediated gene transfer was investigated for its ability to promote FGF-2 secretion in human meniscal fibrochondrocytes in vitro, in intact human meniscal explants in situ, and in experimentally created human meniscal lesions. Effects of the treatment on cell proliferation and survival, extracellular matrix synthesis, and expression of the alpha-smooth muscle actin (alpha-SMA) contractile marker were monitored using biochemical, immunohistochemical, histological, and histomorphometric analyses. Efficient production of FGF-2 through rAAV could be achieved in vitro and in situ, both in the intact and injured meniscus. Application of the candidate FGF-2 vector allowed for enhanced cell proliferation and survival compared with control transduction, in particular in areas with poor healing capacity and in sites of injury, consistent with the mitogenic activities of the growth factor. Remarkably, a significant reduction of the amplitude of meniscal tears was noted after FGF-2 treatment, with increased levels of alpha-SMA expression. In contrast, there was no significant stimulation of synthesis of the major extracellular matrix components when the candidate vector was applied and instead, a decrease in the matrix/DNA contents was reported, in good agreement with the properties of FGF-2. Such a direct gene-based approach may have value in options aiming at treating human meniscal defects.
Collapse
Affiliation(s)
- M Cucchiarini
- Department of Orthopaedic Surgery, Laboratory for Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany.
| | | | | | | | | |
Collapse
|
8
|
Tumia NS, Johnstone AJ. Platelet derived growth factor-AB enhances knee meniscal cell activity in vitro. Knee 2009; 16:73-6. [PMID: 18976925 DOI: 10.1016/j.knee.2008.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 08/26/2008] [Accepted: 08/28/2008] [Indexed: 02/02/2023]
Abstract
Meniscal healing especially in the inner avascular region has always been a major challenge. In this study we investigated the potential for platelet derived growth factor-AB (PDGF-AB) to promote meniscal tissue regeneration in the inner (avascular), middle, and outer (vascular) zones of the meniscus. Various concentrations of PDGF-AB were tested on sheep meniscal cell cultures. We used the radioactive thymidine uptake assay to assess cell proliferation, and the radioactive sulphur and proline uptake assays and Blyscan assay to assess matrix formation. In general, PDGF-AB stimulated both cell proliferation and matrix formation by cells from all meniscal zones. PDGF-AB at a concentration of 100 ng/ml increased cell proliferation and matrix formation by eight and four fold respectively, by fibrochondrocytes cultured from all meniscal zones (p<0.001). These results indicate that fibrochondrocytes present within the avascular region of the meniscus have the ability to proliferate and form new matrix when exposed to anabolic cytokines such as PDGF-AB.
Collapse
Affiliation(s)
- Nezar S Tumia
- Department of Orthopaedic Surgery, Queen Elizabeth Hospital, Gateshead, NE 9 6SX, UK.
| | | |
Collapse
|
9
|
Kelly TAN, Fisher MB, Oswald ES, Tai T, Mauck RL, Ateshian GA, Hung CT. Low-serum media and dynamic deformational loading in tissue engineering of articular cartilage. Ann Biomed Eng 2008; 36:769-79. [PMID: 18299986 DOI: 10.1007/s10439-008-9476-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Accepted: 02/15/2008] [Indexed: 11/28/2022]
Abstract
High-serum media have been shown to produce significant improvement in the properties of tissue-engineered articular cartilage when applied in combination with dynamic deformational loading. To mitigate concerns regarding the culture variability introduced by serum, we examined the interplay between low-serum/ITS-supplemented media and dynamic deformational loading. Our results show that low serum/ITS supplementation does not support the same level of tissue formation as compared to high serum controls. In free-swelling culture, using a combination of ITS with concentrations of FBS above 2% negated the beneficial effects of ITS. Although there were beneficial effects with loading and 0.2%FBS + ITS, these constructs significantly underperformed relative to 20%FBS constructs. At 2%FBS + ITS, the free-swelling construct stiffness and composition approached or exceeded that of 20%FBS constructs. With dynamic loading, the properties of 2%FBS + ITS constructs were significantly lower than free-swelling controls and 20%FBS constructs by day 42. By priming the chondrocytes in 20%FBS prior to exposure to low-serum/ITS media, we observed that low-serum/ITS media produced significant enhancement in tissue properties compared to constructs grown continuously in 20%FBS.
Collapse
Affiliation(s)
- Terri-Ann N Kelly
- Cellular Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Johns DE, Athanasiou KA. Improving culture conditions for temporomandibular joint disc tissue engineering. Cells Tissues Organs 2007; 185:246-57. [PMID: 17587799 DOI: 10.1159/000102173] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The temporomandibular joint (TMJ) is extremely important for activities like eating and talking, which can become painful and difficult for patients with TMJ dysfunction. Tissue engineering is a potential alternative to current surgical interventions through replacement of diseased or injured tissue with a functional construct. Since research with TMJ disc cells began relatively recently, optimal culturing conditions must be determined. METHODS Metabolic additives, L-glutamine, L-alanyl-L-glutamine, sodium pyruvate, and insulin, were examined for their effects on TMJ disc cells in monolayer. Effects of L-proline were examined in three-dimensional (3-D) culture at concentrations of 0, 25 and 100 mg/l. RESULTS The combination of L-glutamine, sodium pyruvate, and insulin improved cell proliferation rates without affecting collagen production or gene expression. No differences were observed in mechanical properties of the engineered constructs; however, collagen and glycosaminoglycan quantities normalized to cell number decreased at the highest concentration of L-proline. CONCLUSION This work identified supplements for 2-D monolayer expansion. Other supplements or culture conditions still need to be investigated for 3-D tissue production. This work improves upon porcine TMJ disc cell culturing conditions, taking us closer to being able to engineer the TMJ disc.
Collapse
Affiliation(s)
- D E Johns
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
| | | |
Collapse
|
11
|
Stewart K, Pabbruwe M, Dickinson S, Sims T, Hollander AP, Chaudhuri JB. The effect of growth factor treatment on meniscal chondrocyte proliferation and differentiation on polyglycolic acid scaffolds. ACTA ACUST UNITED AC 2007; 13:271-80. [PMID: 17504061 DOI: 10.1089/ten.2006.0242] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this investigation was to determine the effect of growth factor treatment on ovine meniscal chondrocyte (OMC) proliferation in vitro and on the production of matrix proteins by OMCs grown within a polyglycolic acid (PGA) scaffold. Analysis of 72-h monolayer cultures using the mean transit time (MTT) assay revealed a greater increase in OMC numbers in the presence of platelet-derived growth factor (PDGF)-AB, PDGF-BB, insulin-like growth factor (IGF)-I, transforming growth factor-beta1 (TGF-beta1) and basic fibroblast growth factor (bFGF) than in untreated controls. In contrast, IGF-II and bone morphogenetic protein-2 had no effect on OMC proliferation at the concentrations tested. The growth factors that elicited the greatest proliferative response (PDGF-AB, PDGF-BB, TGF-beta1, and IGF-I) were subsequently tested for their ability to enhance OMC proliferation and differentiation within PGA scaffolds. Biochemical analysis revealed less glycosaminoglycan (GAG) production in the presence of all growth factors tested compared to untreated control samples. In contrast, all of the growth factors increased collagen type I production by OMCs within the scaffolds at day 20, and all except PDGF-BB resulted in an increase at day 39, when compared to appropriate control samples. With the exception of IGF-I, none of the growth factors tested had any significant effect on collagen type II production. Histological staining of sections from OMC-PGA scaffolds did not reveal any difference in GAG or collagen production between the treatment groups. However, immunohistochemical analysis demonstrated an increase in collagen type I expression and a decrease in collagen type II at day 39 in all growth factortreated constructs, concomitant with a high infiltration of cells. This suggests that PDGF-AB, PDGF-BB, TGF-beta1, and IGF-1 may be useful in future tissue engineering studies for promoting meniscal cell proliferation and differentiation within scaffolds.
Collapse
Affiliation(s)
- K Stewart
- Faculty of Applied Sciences, University of West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1Q, United Kingdom
| | | | | | | | | | | |
Collapse
|
12
|
Giannoni P, Cancedda R. Articular chondrocyte culturing for cell-based cartilage repair: needs and perspectives. Cells Tissues Organs 2007; 184:1-15. [PMID: 17190975 DOI: 10.1159/000096946] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2006] [Indexed: 01/13/2023] Open
Abstract
Articular cartilage displays a limited capacity of self-regeneration after injury. Thus, the biology of this tissue and its cellular components - the chondrocytes - has become the focus of several investigations, driven by tissue engineering and the basic and clinical research fields, aiming to ameliorate the present clinical approaches to cartilage repair. In this work, we present a brief recapitulation of the events that lead to cartilage development during the skeletal embryonal growth. The intrinsic phenotypic plasticity of the mesenchymal precursors and the adult chondrocytes is evaluated, dependent on the cell source, its physiopathological state, and as a function of the donor's age. The phenotypic changes induced by the basic culturing techniques are also taken into account, thus highlighting the phenotypic plasticity of the chondrocyte as the main property which could couple the differentiation process to the repair process. Chondrocyte proliferation and the contemporary maintenance of the chondrogenic differentiation potential are regarded as the two primary goals to be achieved in order to fulfill the quantitative needs of the clinical applications and the qualitative requirements of a properly repaired tissue. In this light, the effects of several growth factors and medium supplements are investigated. Finally, the latest improvements in culturing conditions and their possible clinical applications are presented as well.
Collapse
|
13
|
Abstract
Injuries to the knee meniscus, particularly those in the avascular region, pose a complex problem and a possible solution is tissue engineering of a replacement tissue. Tissue engineering of the meniscus involves scaffold selection, addition of cells, and stimulation of the construct to synthesize, maintain, or enhance matrix production. An acellular collagen implant is currently in clinical trials and there are promising results with other scaffolds, composed of both polymeric and natural materials. The addition of cells to these constructs may promote good matrix production in vitro, but has been studied in a limited manner in animal studies. Cell sources ranging from fibroblasts to stem cells could be used to overcome challenges in cell procurement, expansion, and synthetic capacity currently encountered in studies with fibrochondrocytes. Manipulation of construct culture with exogenous growth factors and mechanical stimulation will also likely play a role in these strategies.
Collapse
Affiliation(s)
- Gwendolyn M Hoben
- Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | | |
Collapse
|
14
|
Martinek V, Ueblacker P, Bräun K, Nitschke S, Mannhardt R, Specht K, Gansbacher B, Imhoff AB. Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg 2006; 126:228-34. [PMID: 16215722 DOI: 10.1007/s00402-005-0025-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Indexed: 02/09/2023]
Abstract
INTRODUCTION The options available after meniscus loss offer only limited chances for a long-term success. In the following experimental study, we investigated the effect of meniscus tissue engineering on properties of the collagen meniscus implant (CMI). METHODS Autologous fibrochondrocytes, obtained per biopsy from adult Merino sheep (n=25), were released from the matrix, cultured in-vitro and seeded into CMI scaffolds (n=10, group 1). Following a 3-week in-vitro culture, the tissue engineered menisci were used for autologous transplantation. Macroscopical and histological evaluation were performed in comparison with non-seeded CMI controls (n=10, group 2) and with meniscus-resected controls (n=5, group 3) after 3 weeks (each 1 animal group 1 and 2) and 3 months. RESULTS The lameness score did not show any difference between the groups. Meniscus tissue was found in seven knee joints (group 1), in five knee joints (group 2) and in two knee joints (group 3). The size of the transplants reduced from 25.9+/-4.5 to 20.1+/-10.8 mm (group 1) and from 25.9+/-1.5 to 14.4+/-12.5 mm (group 2). Histologically, enhanced vascularisation, accelerated scaffold re-modelling, higher content of extra-cellular matrix and lower cell number were noted in the pre-seeded menisci in comparison with non-seeded controls. Dense high-cellular fibrous scar tissue was found in two of five cases in the resection control group. CONCLUSION Tissue engineering of meniscus with autologous fibrochondrocytes demonstrates a macroscopic and histological improvement of the transplants. However, further development of the methods, especially of the scaffold and of the cell-seeding procedure must prove the feasibility of this procedure for human applications.
Collapse
Affiliation(s)
- V Martinek
- Department of Orthopaedic Sports Medicine, Technical University Munich, Connollystr. 32, 80809 München, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Meniscus lesions are among the most frequent injuries in orthopaedic practice and they will inevitably lead to degeneration of the knee articular cartilage. The fibro-cartilage-like tissue of the meniscus is notorious for its limited regenerative capacity. Tissue engineering could offer new treatment modalities for repair of meniscus tears and eventually will enable the replacement of a whole meniscus by a tissue-engineered construct. Many questions remain to be answered before the final goal, a tissue-engineered meniscus is available for clinical implementation. These questions are related to the selection of an optimal cell type, the source of the cells, the need to use growth factor(s) and the type of scaffold that can be used for stimulation of differentiation of cells into tissues with optimal phenotypes. Particularly in a loaded, highly complex environment of the knee, optimal mechanical properties of such a scaffold seem to be of utmost importance. With respect to cells, autologous meniscus cells seems the optimal cell source for tissue engineering of meniscus tissue, but their availability is limited. Therefore research should be stimulated to investigate the suitability of other cell sources for the creation of meniscus tissue. Bone marrow stroma cells could be useful since it is well known that they can differentiate into bone and cartilage cells. With respect to growth factors, TGF-beta could be a suitable growth factor to stimulate cells into a fibroblastic phenotype but the problems of TGF-beta introduced into a joint environment should then be solved. Polyurethane scaffolds with optimal mechanical properties and with optimal interconnective macro-porosity have been shown to facilitate ingrowth and differentiation of tissue into fibro-cartilage. However, even these materials cannot prevent cartilage degeneration in animal models. Surface modification and/or seeding of cells into the scaffolds before implantation may offer a solution for this problem in the future.This review focuses on a number of specific questions; what is the status of the development of procedures for lesion healing and how far are we from replacing the entire meniscus by a (tissue-engineered) prosthesis. Subquestions related to the type of scaffold used are: is the degree of tissue ingrowth and differentiation related to the initial mechanical properties and if so, what is the influence of those properties on the subsequent remodelling of the tissue into fibro-cartilage; what is the ideal pore geometry and what is the optimal degradation period to allow biological remodelling of the tissue in the scaffold. Finally, we will finish with our latest results of the effect of tear reconstruction and the insertion of prostheses on articular cartilage degradation.
Collapse
Affiliation(s)
- P Buma
- Orthopaedic Research Laboratory, Department of Orthopaedics, University Medical Centre Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
16
|
Lee YC, Tang YC, Chen YH, Wong CM, Tsou AP. Selenite-induced survival of HuH7 hepatoma cells involves activation of focal adhesion kinase-phosphatidylinositol 3-kinase-Akt pathway and Rac1. J Biol Chem 2003; 278:39615-24. [PMID: 12896980 DOI: 10.1074/jbc.m304095200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selenium has been shown to sustain the growth of selected human hepatocellular carcinoma cell lines under serum-free conditions, but the detailed mechanism remained undetermined. In the present study, the molecular mechanism(s) involving sodium selenite (Na2SO3, Se) as a survival agent were determined. Selenite not only protects HuH7 cells from serum deprivation-induced apoptosis, it also supports its long-term growth in sodium selenite (10(-7)m) supplemented serum-free medium. The anti-apoptotic effect correlates with activation of focal adhesion kinase and the phosphatidylinositol 3-kinase (PI3K)-Akt kinase pathway. Using HuH7 cells stably transfected with a constitutively active Akt kinase and PI3K inhibitor LY294002, selenite-induced cell survival was shown to be PI3K-Akt-dependent. Parallel changes included a significant reduction in the intracellular reactive oxygen species content, the reversal of DNA fragmentation, and the suppression of caspase and apoptosis signal-regulating kinase 1 activities. HuH7 cells stably expressing a Rac1 mutant N17 (Rac1N17-HuH7) are refractory to selenite treatment. In these cells selenite supplement neither triggers Akt activation nor supports cell proliferation. Participation of Rac1 activation in this event is supported by the fact that selenite treatment drastically enhanced activation of Rac1. The exact link between selenite treatment, Rac1 activation, and activation of the focal adhesion kinase-PI 3-kinase, however, remains to be characterized. The mitogenic signaling mediated by selenite may involve unconventional growth stimuli including higher glutathione peroxidase 1 activity and higher transcription levels of selenoprotein P. The selenium-HuH7 system we have established thus provides a unique tool that will allow the biological role of selenite in growth regulation of hepatocytes to be studied in detail.
Collapse
Affiliation(s)
- Yu-Chi Lee
- Institute of Genetics, School of Life Sciences, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
17
|
Lonergan DM, Mikulec AA, Hanasono MM, Kita M, Koch RJ. Growth factor profile of irradiated human dermal fibroblasts using a serum-free method. Plast Reconstr Surg 2003; 111:1960-8. [PMID: 12711958 DOI: 10.1097/01.prs.0000055065.41599.75] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Radiation therapy for cancer permanently damages tissue in the line of treatment. This study sought to establish a serum-free protocol to evaluate the growth of irradiated fibroblasts and to analyze the levels of basic fibroblast growth factor (bFGF) and transforming growth factor-beta (TGF-beta) compared with normal fibroblasts. One irradiated cell line of human dermal fibroblasts was established from an intraoperative specimen obtained from a patient who had undergone radiation therapy for head and neck cancer. Irradiated and normal fibroblasts were then plated in UltraCULTURE (serum and growth factor free), modified Webber's medium (bFGF 50 ng/ml, insulin-like growth factor 100 ng/ml), and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum (serum with undefined basal growth factors). Irradiated cells were also seeded in UltraCULTURE with 50 and 100 ng/ml of bFGF. Cell counts were performed at 0, 1, 3, 5, and 7 days, and cell supernatants were assayed for bFGF and TGF-beta. Irradiated and normal fibroblasts exhibited stronger growth in modified Webber's medium than in Dulbecco's Modified Eagle Medium with 10% fetal bovine serum. Growth of irradiated fibroblasts under bFGF modulation was similar to their growth in Webber's medium. Furthermore, irradiated fibroblasts remained viable in a serum-free and growth factor-free environment for at least 7 days; however, their growth and autocrine growth factor production was less than that of normal cells. This confirms the results of previous studies suggesting that cells from irradiated tissue undergo cellular changes. This study provides an effective model for the first-line evaluation of agents to improve wound healing, and it helps to establish standard levels of bFGF and TGF-beta production for irradiated fibroblasts.
Collapse
Affiliation(s)
- Devin M Lonergan
- Would Healing and Tissue Engineering Laboratory, Division of Otolaryngology/Head and Neck Surgery, Stanford University Medical Center, Stanford, California 94305-5328, USA
| | | | | | | | | |
Collapse
|
18
|
Shinjo H, Nakata K, Shino K, Hamada M, Nakamura N, Mae T, Miyama T, Horibe S, Yoshikawa H, Ochi T. Effect of irrigation solutions for arthroscopic surgery on intraarticular tissue: comparison in human meniscus-derived primary cell culture between lactate Ringer's solution and saline solution. J Orthop Res 2002; 20:1305-10. [PMID: 12472244 DOI: 10.1016/s0736-0266(02)00062-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In order to determine whether there is a difference in effect on cell morphology and function between two common arthroscopic irrigation solutions, primary cultures of cells derived from the surgically excised human menisci were incubated for 3 or 6 h in lactated Ringer's solution, isotonic sodium chloride solution, or serum-free cell culture medium (negative-control condition). Cell integrity was blindly evaluated by three independent examiners scoring photomicrographs of the cell cultures on a battery of five-point scales for abnormality of cell shape, irregularity of cell membrane, change of cell size and cell density. Cell cultures were also quantitatively assayed by semi-quantitative reverse-transcription-polymerase-chain-reaction for mRNA of alpha1 (I) procollagen, alpha1 (II) procollagen, aggrecan and heat-shock protein 70 to assess functional consequences of exposure to the solutions. There was a statistically significant difference in cell integrity scores between either lactated Ringer's solution or serum-free cell-culture medium and isotonic sodium chloride solution with greater damage to cells displayed. Scores for lactated Ringer's solution did not differ from those for serum-free cell-culture medium. There were no significant differences in mRNA expression level among the treatment conditions. It was concluded that the lactated Ringer's solution better maintained human meniscus cell integrity than the isotonic saline.
Collapse
Affiliation(s)
- Hirotaka Shinjo
- Department of Orthopaedic Surgery, Osaka University Medical School, 2-2 Yamada-oka, Suita City, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
This review details current efforts to tissue engineer the knee meniscus successfully. The meniscus is a fibrocartilaginous tissue found within the knee joint that is responsible for shock absorption, load transmission, and stability within the knee joint. If this tissue is damaged, either through tears or degenerative processes, then deterioration of the articular cartilage can occur. Unfortunately, there is a dearth in the amount of work done to tissue engineer the meniscus when compared to other musculoskeletal tissues, such as bone. This review gives a brief overview of meniscal anatomy, biochemical properties, biomechanical properties, and wound repair techniques. The discussion centers primarily on the different components of attempting to tissue engineer the meniscus, such as scaffold materials, growth factors, animal models, and culturing conditions. Our approach for tissue engineering the meniscus is also discussed.
Collapse
Affiliation(s)
- M A Sweigart
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
| | | |
Collapse
|
20
|
Kasemkijwattana C, Menetrey J, Goto H, Niyibizi C, Fu FH, Huard J. The use of growth factors, gene therapy and tissue engineering to improve meniscal healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2000. [DOI: 10.1016/s0928-4931(00)00172-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Goto H, Shuler FD, Lamsam C, Moller HD, Niyibizi C, Fu FH, Robbins PD, Evans CH. Transfer of lacZ marker gene to the meniscus. J Bone Joint Surg Am 1999; 81:918-25. [PMID: 10428122 DOI: 10.2106/00004623-199907000-00003] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Lesions in the avascular two-thirds of the meniscus do not heal well and are of concern clinically. Various growth factors promote the synthesis of matrix by meniscal cells and thus have the potential to augment healing. However, their clinical application is severely hindered by problems with delivery. An attractive approach to overcoming such problems is to transfer genes that encode the growth factors in question to the site of the injury. As a prelude to this, we evaluated methods for delivering genes to the meniscus. METHODS Gene transfer was evaluated in vitro and in vivo with a lacZ marker gene, which expresses the enzyme beta-galactosidase. Two types of vectors were tested: an adenovirus and a retrovirus. Monolayers of lapine, canine, and human meniscal cells, as well as intact lapine and human menisci, were used for the in vitro studies. Lesions were created in the menisci of rabbits and dogs for the in vivo studies. Gene transfer to the sites of the experimental meniscal lesions in vivo was accomplished in two ways. In the lapine model, a suspension of adenovirus carrying the lacZ marker gene was mixed with whole blood and the clot was inserted into the lesion. In the canine model, retrovirally transduced allogenic meniscal cells carrying the lacZ marker gene were embedded in collagen gels and transferred to the defects. The animals were killed at various time-points, and gene expression was evaluated by histological examination of sections stained with 5-bromo-4-chloro-indolyl-beta-D-galactose (X-gal), from which a blue chromagen is released in the presence of beta-galactosidase. RESULTS Monolayer cultures of lapine, canine, and human meniscal cells were susceptible to genetic transduction by both adenoviral and retroviral vectors. In vitro gene transfer to intact human and lapine menisci proved possible both by direct, adenoviral, delivery and indirect, retroviral, delivery. Gene expression persisted for at least twenty weeks under in vitro conditions. With regard to the in vivo studies, gene expression persisted within the clot and in some of the adjacent meniscal cells for at least three weeks in the lapine defect model. In the canine defect model, gene expression persisted within the transplanted, transduced meniscal cells for at least six weeks. CONCLUSIONS It is possible to transfer genes to sites of meniscal damage and to express them locally within the lesion for several weeks.
Collapse
Affiliation(s)
- H Goto
- Ferguson Laboratory, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Verbruggen G, Malfait AM, Dewulf M, Broddelez C, Veys EM. Standardization of nutrient media for isolated human articular chondrocytes in gelified agarose suspension culture. Osteoarthritis Cartilage 1995; 3:249-59. [PMID: 8689460 DOI: 10.1016/s1063-4584(05)80016-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Human articular cartilage cells were cultured in 1.5% agarose in Dulbecco's modified Eagle's medium (DMEM) with 10% fetal calf serum or in serum-free DMEM with 0.15% bovine serum albumin. 35S-aggrecan synthesis in serum-free DMEM was between 20% and 30% of the value observed in DMEM supplemented with 10% fetal calf serum. The extent to which different growth or differentiation factors were able to restore 35S incorporation in aggrecan in serum-free DMEM was determined: human serum transferrin had no effect on aggrecan synthesis levels; bovine pancreas insulin, insulin-like growth factor (IGF)-1 and IGF-2 restored 35S-aggrecan synthesis to 35-50% of the control levels. The effects were dose-dependent, to level off at 100 ng/mL for the three factors. No cumulative or synergistic activities were observed when these factors were combined. Transforming growth factor (TGF)-beta, at concentrations ranging from 10-50 ng/mL stimulated aggrecan synthesis to approximately 50% of the control values in the chondrocytes obtained from two out of four donors, while the cells of the other two maintained within the range of the control levels. In th presence of insulin (100 ng/mL) 10 ng/mL of TGF-beta stimulated aggrecan synthesis to more than 90% of the control level in the chondrocytes of all donors.
Collapse
Affiliation(s)
- G Verbruggen
- Department of Rheumatology, Ghent University Hospital, Belgium
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Abstract
This article provides a review of the basic science and clinical information available to the orthopedist on which a systematic approach to meniscal surgery can be based. Attitudes toward the meniscus have changed dramatically in the last 50 years. Laboratory investigations show that the menisci participate in many important functions, including tibiofemoral load transmission, shock absorption, lubrication, and passive stabilization of the knee joint. Histologic/structural analyses reveal the menisci to be annular structures, with the ability to transmit and properly distribute load over the tibial plateau, primarily facilitated by the circumferential collagen fibers in the peripheral third of the meniscus, in conjunction with their strong bony attachments at the anterior and posterior horns. Biologic studies demonstrate that meniscal healing can occur through two pathways: an intrinsic ability of the meniscal fibrochondrocyte to migrate, proliferate, and synthesize matrix (provided they are given the proper environment), and extrinsic stimulation through neovascularization (when the meniscal injury occurs in the vascular periphery). This review makes it clear that the menisci are essential components of the normal knee, and that techniques intended to preserve the menisci are both possible and mandatory. As evidence has accumulated from both animal and clinical studies of the frequent development of degenerative changes following meniscectomy, surgeons have become increasingly aggressive in their efforts to conserve as much meniscal tissue as possible. Current approaches to treatment of meniscal tears are based on a thorough understanding of meniscal structure, biology, and function, as well as familiarity with the basic principles of meniscal repair and resection. To synthesize these principles, the article concludes with an algorithm intended to guide surgeons in decision making when faced with a variety of meniscal lesions in different clinical situations.
Collapse
Affiliation(s)
- A P Newman
- Division of Orthopedic Surgery, University of Utah School Of Medicine, Salt Lake City 94132
| | | | | |
Collapse
|
26
|
Rosselot G, Reginato AM, Leach RM. Development of a serum-free system to study the effect of growth hormone and insulinlike growth factor-I on cultured postembryonic growth plate chondrocytes. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1992; 28A:235-44. [PMID: 1583002 DOI: 10.1007/bf02634239] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have developed a serum-free system to culture postembryonic growth plate chondrocytes while maintaining some important phenotypic characteristics of their tissue of origin. This serum-free medium was as effective as medium containing 10% newborn bovine serum (NBS) for recovering the cells from enzymatic isolation. Surface secretory activity of chondrocytes cultured in monolayer, assessed through scanning electron microscopy, was also comparable to cells grown in medium containing serum. The effects of growth hormone (GH) and insulinlike growth factor-I (IGF-I) were also studied using the serum-free medium. GH had no effect on cell density and morphology of the cells compared to the control without the hormone. In contrast, chondrocytes grown in medium containing IGF-I had a marked increase in cell density after 3 days and presented similar morphologic characteristics to cells grown in the presence of NBS. The growth factors required for proliferation of chondrocytes cultured in the serum-free medium are IGF-I and fibroblast growth factor (100 ng/ml, respectively). Addition of ascorbic acid to the serum-free medium (0 to 50 micrograms/ml) produced a dose-dependent decrease in cell proliferation. This medium should provide a useful tool for studying the effects of different growth factors/hormones in the regulation of longitudinal bone growth and their interactions.
Collapse
Affiliation(s)
- G Rosselot
- Department of Poultry Science, Pennsylvania State University, University Park 16802
| | | | | |
Collapse
|
27
|
Use of porous biodegradable polymer implants in meniscus reconstruction. 2) Biological evaluation of porous biodegradable polymer implants in menisci. Colloid Polym Sci 1990. [DOI: 10.1007/bf01410673] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Webber RJ, York JL, Vanderschilden JL, Hough AJ. An organ culture model for assaying wound repair of the fibrocartilaginous knee joint meniscus. Am J Sports Med 1989; 17:393-400. [PMID: 2729490 DOI: 10.1177/036354658901700314] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We describe an in vitro organ culture system that can be used to test the effect of various substances and compounds on the wound healing process in the fibrocartilaginous substance of the knee joint meniscus. Using culture medium containing either 10% fetal bovine serum (FBS) or our recently developed serum-free, defined culture medium (DM), we have demonstrated the ability of meniscal fibrochondrocytes from intact rabbit menisci to extricate themselves from their surrounding matrix and migrate into an exogenous, purified fibrin clot in vitro. After 4 weeks of culture in FBS-containing medium, the cells which had invaded the clot had initiated the early aspects of a typical reparative response; the same response did not occur in DM alone. Morphologically, the cells on the surface of the clot resembled the original superficial fibrochondrocytes, whereas those cells within the substance of the clot more closely resembled the original deep fibrochondrocytes. After 10 weeks, the reparative response had progressed only to a certain point and then failed to progress further under these culture conditions. However, use of this culture system should now make it possible to rapidly identify and quantitate those factors which would most likely be useful in continuing the reparative response and in affecting meniscal wound repair. Elucidation of the mechanisms and requirements for meniscal healing will eventually allow the practicing orthopaedic surgeon to effect in situ meniscal repair and obviate the need for meniscectomy and its morbid sequelae.
Collapse
Affiliation(s)
- R J Webber
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock 72205
| | | | | | | |
Collapse
|