1
|
Which traumatic spinal injury creates which degree of instability? A systematic quantitative review. Spine J 2022; 22:136-156. [PMID: 34116217 DOI: 10.1016/j.spinee.2021.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Traumatic spinal injuries often require surgical fixation. Specific three-dimensional degrees of instability after spinal injury, which represent criteria for optimum treatment concepts, however, are still not well investigated. PURPOSE The aim of this review therefore was to summarize and quantify multiplanar instability increases due to spinal injury from experimental studies. STUDY DESIGN/SETTING Systematic review. METHODS A systematic review of the literature was performed using keyword-based search on PubMed and Web of Science databases in order to detect all in vitro studies investigating the destabilizing effect of simulated and provoked traumatic injury in human spine specimens. Together with the experimental designs, the instability parameters range of motion, neutral zone and translation were extracted from the studies and evaluated regarding type and level of injury. RESULTS A total of 59 studies was included in this review, of which 43 studies investigated the effect of cervical spine injury. Range of motion increase, which was reported in 58 studies, was generally lower compared to the neutral zone increase, given in 37 studies, despite of injury type and level. Instability increases were highest in flexion/extension for most injury types, while axial rotation was predominantly affected after cervical unilateral dislocation injury and lateral bending solely after odontoid fracture. Whiplash injuries and wedge fractures were found to increase instability equally in all motion planes. CONCLUSIONS Specific traumatic spinal injuries produce characteristic but complex three-dimensional degrees of instability, which depend on the type, level, and morphology of the injury. Future studies should expand research on the cervicothoracic, thoracic, and lumbosacral spine and should additionally investigate the destabilizing effects of the injury morphology as well as concomitant rib cage injuries in case of thoracic spinal injuries. Moreover, neutral zone and translation should be measured in addition to the range of motion, while mechanical injury simulation should be preferred to resection or transection of structures to ensure high comparability with the clinical situation.
Collapse
|
2
|
Influence of different postures under vertical impact load on thoracolumbar burst fracture. Med Biol Eng Comput 2020; 58:2725-2736. [PMID: 32880092 DOI: 10.1007/s11517-020-02254-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/23/2020] [Indexed: 10/23/2022]
Abstract
Clinical studies have extensively shown that burst fractures can cause severe and long-term neurological deficits. However, the mechanism of burst fracture is not clear, and the influence of different spinal postures on burst fracture is still unidentified. The study aimed at investigating the influence of different postures under vertical impact load on thoracolumbar burst fracture. A detailed nonlinear finite element model of T12-L2 segment was developed to investigate these problems. In this work, a rigid ball was used to vertically impact the finite element spinal segment, which emulated the process of burst fracture as in experimental condition. During the process, amounting to 9 different postures (normal, flexion, extension, right/left lateral bending of 8°, right/left axial rotation of 4° and 8°) were studied. Totally five failure modes were observed. Six different parameters, including vertebral height, vertebral bulge, interpedicular widening, vertebral kyphotic angle, posterior vertebral body angle, and joint facet contact force, were observed to evaluate the corresponding severity of burst fracture. Burst fracture in extension was the severest, and the loss of vertebral height in flexion was the most. The different postures in these simulations changed the morphology of intervertebral disc and facet joints force, resulting in different types of fracture.
Collapse
|
3
|
Germaneau A, Vendeuvre T, Saget M, Doumalin P, Dupré JC, Brémand F, Hesser F, Brèque C, Maxy P, Roulaud M, Monlezun O, Rigoard P. Development of an experimental model of burst fracture with damage characterization of the vertebral bodies under dynamic conditions. Clin Biomech (Bristol, Avon) 2017; 49:139-144. [PMID: 28938147 DOI: 10.1016/j.clinbiomech.2017.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Burst fractures represent a significant proportion of fractures of the thoracolumbar junction. The recent advent of minimally invasive techniques has revolutionized the surgical treatment of this type of fracture. However mechanical behaviour and primary stability offered by these solutions have to be proved from experimental validation tests on cadaveric specimens. Therefore, the aim of this study was to develop an original and reproducible model of burst fracture under dynamic impact. METHODS Experimental tests were performed on 24 cadaveric spine segments (T11-L3). A system of dynamic loading was developed using a modified Charpy pendulum. The mechanical response of the segments (strain measurement on vertebrae and discs) was obtained during the impact by using an optical method with a high-speed camera. The production of burst fracture was validated by an analysis of the segments by X-ray tomography. FINDINGS Burst fracture was systematically produced on L1 for each specimen. Strain analysis during impact highlighted the large deformation of L1 due to the fracture and small strains in adjacent vertebrae. The mean reduction of the vertebral body of L1 assessed for all the specimens was around 15%. No damage was observed in adjacent discs or vertebrae. INTERPRETATION With this new, reliable and replicable procedure for production and biomechanical analysis of burst fractures, comparison of different types of stabilization systems can be envisaged. The loading system was designed so as to be able to produce loads leading to other types of fractures and to provide data to validate finite element modelling.
Collapse
Affiliation(s)
- A Germaneau
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France.
| | - T Vendeuvre
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France; Department of Orthopaedic Surgery and Traumatology, CHU, Poitiers, France
| | - M Saget
- Department of Orthopaedic Surgery and Traumatology, CHU, Poitiers, France
| | - P Doumalin
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France
| | - J C Dupré
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France
| | - F Brémand
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France
| | - F Hesser
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France
| | - C Brèque
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France; ABS Lab, Université de Poitiers, France
| | - P Maxy
- Medtronic International Trading Sarl, Tolochenaz, Switzerland
| | - M Roulaud
- Department of Neurosurgery, Prismatics Lab, CHU, Poitiers, France
| | - O Monlezun
- Department of Neurosurgery, Prismatics Lab, CHU, Poitiers, France
| | - P Rigoard
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France; Department of Neurosurgery, Prismatics Lab, CHU, Poitiers, France
| |
Collapse
|
4
|
Abstract
Synopsis Head and spinal injuries commonly occur during motor vehicle crashes (MVCs). The goal of this clinical commentary is to discuss real-life versus simulated MVCs and to present clinical, biomechanical, and epidemiological evidence of MVC-related injury mechanisms. It will also address how this knowledge may guide and inform the design of injury mitigation devices and assist in clinical decision making. Evidence indicates that there exists no universal injury tolerance applicable to the entire population of the occupants of MVCs. Injuries sustained by occupants depend on a number of factors, including occupant characteristics (age, height, weight, sex, bone mineral density, and pre-existing medical and musculoskeletal conditions), pre-MVC factors (awareness of the impending crash, occupant position, usage of and position of the seatbelt and head restraint, and vehicle specifications), and MVC-related factors (crash orientation, vehicle dynamics, type of active or passive safety systems, and occupant kinematic response). Injuries resulting from an MVC occur due to blunt impact and/or inertial loading. An S-shaped curvature of the cervical spine and associated injurious strains have been documented during rear-, frontal-, and side-impact MVCs. Data on the injury mechanism and the quantification of spinal instability guide and inform the emergent and subsequent conservative or surgical care. Such care may require determining optimal patient positioning during transport, which injuries may be treated conservatively, whether reduction should be performed, optimal patient positioning intraoperatively, and whether bracing should be worn prior to and/or following surgery. The continued improvement of traditional injury mitigation systems, such as seats, seatbelts, airbags, and head restraints, together with research of newer collision-avoidance technologies, will lead to safer motor vehicles and ultimately more effective injury management strategies. J Orthop Sports Phys Ther 2016;46(10):826-833. Epub 3 Sep 2016. doi:10.2519/jospt.2016.6716.
Collapse
|
5
|
Oxland TR. Fundamental biomechanics of the spine--What we have learned in the past 25 years and future directions. J Biomech 2015; 49:817-832. [PMID: 26706717 DOI: 10.1016/j.jbiomech.2015.10.035] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/10/2015] [Accepted: 10/23/2015] [Indexed: 12/20/2022]
Abstract
Since the publication of the 2nd edition of White and Panjabi׳s textbook, Clinical Biomechanics of the Spine in 1990, there has been considerable research on the biomechanics of the spine. The focus of this manuscript will be to review what we have learned in regards to the fundamentals of spine biomechanics. Topics addressed include the whole spine, the functional spinal unit, and the individual components of the spine (e.g. vertebra, intervertebral disc, spinal ligaments). In these broad categories, our understanding in 1990 is reviewed and the important knowledge or understanding gained through the subsequent 25 years of research is highlighted. Areas where our knowledge is lacking helps to identify promising topics for future research. In this manuscript, as in the White and Panjabi textbook, the emphasis is on experimental research using human material, either in vivo or in vitro. The insights gained from mathematical models and animal experimentation are included where other data are not available. This review is intended to celebrate the substantial gains that have been made in the field over these past 25 years and also to identify future research directions.
Collapse
Affiliation(s)
- Thomas R Oxland
- Departments of Orthopaedics and Mechanical Engineering, University of British Columbia, Canada; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Canada.
| |
Collapse
|
6
|
Biomechanics of thoracolumbar burst fractures: Methods of induction and treatments. J Clin Neurosci 2014; 21:2059-64. [DOI: 10.1016/j.jocn.2014.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/04/2014] [Indexed: 11/22/2022]
|
7
|
Kaufman RP, Ching RP, Willis MM, Mack CD, Gross JA, Bulger EM. Burst fractures of the lumbar spine in frontal crashes. ACCIDENT; ANALYSIS AND PREVENTION 2013; 59:153-163. [PMID: 23792614 DOI: 10.1016/j.aap.2013.05.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND In the United States, major compression and burst type fractures (>20% height loss) of the lumbar spine occur as a result of motor vehicle crashes, despite the improvements in restraint technologies. Lumbar burst fractures typically require an axial compressive load and have been known to occur during a non-horizontal crash event that involve high vertical components of loading. Recently these fracture patterns have also been observed in pure horizontal frontal crashes. This study sought to examine the contributing factors that would induce an axial compressive force to the lumbar spine in frontal motor vehicle crashes. METHODS We searched the National Automotive Sampling System (NASS, 1993-2011) and Crash Injury Research and Engineering Network (CIREN, 1996-2012) databases to identify all patients with major compression lumbar spine (MCLS) fractures and then specifically examined those involved in frontal crashes. National trends were assessed based on weighted NASS estimates. Using a case-control study design, NASS and CIREN cases were utilized and a conditional logistic regression was performed to assess driver and vehicle characteristics. CIREN case studies and biomechanical data were used to illustrate the kinematics and define the mechanism of injury. RESULTS During the study period 132 NASS cases involved major compression lumbar spine fractures for all crash directions. Nationally weighted, this accounted for 800 cases annually with 44% of these in horizontal frontal crashes. The proportion of frontal crashes resulting in MCLS fractures was 2.5 times greater in late model vehicles (since 2000) as compared to 1990s models. Belted occupants in frontal crashes had a 5 times greater odds of a MCLS fracture than those not belted, and an increase in age also greatly increased the odds. In CIREN, 19 cases were isolated as horizontal frontal crashes and 12 of these involved a major compression lumbar burst fracture primarily at L1. All were belted and almost all occurred in late model vehicles with belt pretensioners and buckets seats. CONCLUSION Major compression burst fractures of the lumbar spine in frontal crashes were induced via a dynamic axial force transmitted to the pelvis/buttocks into the seat cushion/pan involving belted occupants in late model vehicles with increasing age as a significant factor.
Collapse
Affiliation(s)
- Robert P Kaufman
- Harborview Injury Prevention and Research Center, University of Washington, P.O. Box 359960, 325 Ninth Avenue, Seattle, WA 98104, United States.
| | | | | | | | | | | |
Collapse
|
8
|
Kleipool RP, Blankevoort L. The relation between geometry and function of the ankle joint complex: a biomechanical review. Knee Surg Sports Traumatol Arthrosc 2010; 18:618-27. [PMID: 20300732 DOI: 10.1007/s00167-010-1088-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
This review deals with the relation between the anatomy and function of the ankle joint complex. The questions addressed are how high do the forces in the ankle joint get, where can the joints go (range of motion) and where do they go during walking and running. Finally the role of the ligaments and the articular surfaces is discussed, i.e. how does it happen. The magnitude of the loads on the ankle joint complex are primarily determined by muscle activity and can be as high as four times the body weight during walking. For the maximal range of motion, plantar and dorsiflexion occurs in the talocrural joint and marginally at the subtalar joint. In-eversion takes place at both levels. The functional range of motion is well within the limits of the maximal range of motion. The ligaments do not contribute to the forces for the functional range of motion but determine the maximal range of motion together with the articular surfaces. The geometry of the articular surfaces primarily determines the kinematics. Clinical studies must include these anatomical aspects to better understand the mechanism of injury, recovery, and interventions. Models can elucidate the mechanism by which the anatomy relates to the function. The relation between the anatomy and mechanical properties of the joint structures and joint function should be considered for diagnosis and treatment of ankle joint pathology.
Collapse
Affiliation(s)
- Roeland P Kleipool
- Department of Anatomy, Embryology and Physiology, Academical Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
9
|
Analysis of joint laxity after total ankle arthroplasty: cadaver study. Clin Biomech (Bristol, Avon) 2009; 24:655-60. [PMID: 19632017 DOI: 10.1016/j.clinbiomech.2009.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 04/09/2009] [Accepted: 06/09/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND Clinical results of total ankle arthroplasty with early designs were disappointing. Recently-developed ankle prostheses have good mid-term results; however, limited information is available regarding effects of total ankle arthroplasty on ankle laxity. METHODS Eight cadaveric lower extremities were tested with a custom device which enabled measurement of multi-axial forces, moments, and displacement during applied axial, shear, and rotational loading. Tests consisted of anterior-posterior and medial-lateral translation and internal-external rotation of the talus relative to the tibia during axial loads on the tibia simulating body weight (700 N) and an unloaded condition (5 N). Tests were performed in neutral, dorsiflexion, and plantarflexion. Laxity was determined for the intact ankle, and following insertion of an unconstrained total ankle implant, comparing load-displacement curve. FINDINGS Laxity after total ankle arthroplasty did not approximate the normal ankle in most conditions tested. Displacement was significantly greater for total ankle arthroplasty in both posterior and lateral translation, and internal rotation, with 5 N axial loading, and anterior-posterior, medial-lateral translation, and internal-external rotation for 700 N axial loading. For the 700 N axial load condition, in the neutral ankle position, total anterior-posterior translation averaged 0.4 mm (SD 0.2 mm), but 6.0 mm (SD 1.5 mm) after total ankle arthroplasty (P<0.01). This study demonstrated more laxity in the replaced ankle than normal ankle for both unloaded and 700 N axially loaded conditions. INTERPRETATION These data indicate the increased responsibility of the ligaments for ankle laxity after total ankle arthroplasty and suggest the importance of meticulous ligament reconstruction with total ankle arthroplasty operations.
Collapse
|
10
|
Dai LY, Wang XY, Wang CG, Jiang LS, Xu HZ. Bone mineral density of the thoracolumbar spine in relation to burst fractures: a quantitative computed tomography study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2006; 15:1817-22. [PMID: 16741742 DOI: 10.1007/s00586-006-0148-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 04/19/2006] [Accepted: 04/30/2006] [Indexed: 10/24/2022]
Abstract
The most common pattern among thoracolumbar burst fractures involves failure of the superior vertebra end-plate. There have been many biomechanical studies of thoracolumbar burst fractures, but the biomechanics related to the internal architecture of thoracolumbar vertebrae has been rarely documented. The objective of this study was to test the hypotheses that distribution of the bone mineral density (BMD) of the thoracolumbar spine is related to the stress concentration in this region and therefore, supports the pattern of burst fractures that occur most commonly. We measured spinal BMD of the first lumbar vertebra in 22 individuals using quantitative computed tomography (QCT) in three levels. At each level, the BMD for the trabecular compartment was determined from each of six sites and from one site within each pedicle. Thus the trabecular density was measured at a total of 20 sites for each person. The highest average QCT BMD was in the pedicle (sites 13 and 14), whereas the BMD was abruptly decreased at the posterior part of the vertebral body near the pedicles. The results of the study indicate that stress concentration of the spine related to the regional variation in vertebral bone density may be implicated in the biomechanical mechanism underlying thoracolumbar burst fractures. This finding may be correlated with the injury mechanism of thoracolumbar burst fractures and of clinical significance.
Collapse
Affiliation(s)
- Li-Yang Dai
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Hoshikawa T, Tanaka Y, Kokubun S, Lu WW, Luk KDK, Leong JCY. Flexion-distraction injuries in the thoracolumbar spine: an in vitro study of the relation between flexion angle and the motion axis of fracture. JOURNAL OF SPINAL DISORDERS & TECHNIQUES 2002; 15:139-43. [PMID: 11927823 DOI: 10.1097/00024720-200204000-00008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A new concept, the motion axis of fracture (MAF), which is defined as the transitional point from anterior compressive to posterior splitting failure on a lateral radiograph, has provided a true understanding of the mechanisms of flexion-distraction injuries in clinical cases. This study was designed to produce in vitro injuries that have MAFs and to clarify the relation between the flexion angle and the MAF location. Adolescent porcine thoracolumbar spines were exposed to a vertical compressive load to failure at three different flexion angles and then examined radiographically. The MAF location was recorded as the distance from the anterior border to the MAF expressed as a percentage of the anteroposterior diameter of the vertebral body. All specimens showed similar injuries, with MAFs consisting of anterior compression fractures in the vertebral bodies and posterior disruptions. A significant negative correlation emerged between the flexion angle and the MAF location (r = -0.890; p < 0.0001). These results suggest that even a vertical compressive load contributes to the production of a flexion-distraction injury with an MAF in the thoracolumbar spine. They also indicate that the flexion angle of the spine at which the vertical compressive load is applied is an important factor in determining the MAF location; that is, the larger the flexion angle, the more anterior the MAF.
Collapse
Affiliation(s)
- Takeshi Hoshikawa
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Aobaku, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Langrana NA, Harten RD RD, Lin DC, Reiter MF, Lee CK. Acute thoracolumbar burst fractures: a new view of loading mechanisms. Spine (Phila Pa 1976) 2002; 27:498-508. [PMID: 11880835 DOI: 10.1097/00007632-200203010-00010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An in vitro investigation of loading mechanisms in acute thoracolumbar burst fractures. OBJECTIVES To assess the validity of the authors' hypothesis that anterior shear forces transmitted by the facet joints are responsible for causing the severe canal compromise associated with acute thoracolumbar burst fractures. SUMMARY OF BACKGROUND DATA Thoracolumbar burst fractures created in the laboratory rarely match the severity of clinical cases. To date, no studies have examined in great detail the role of facet joint loading in the burst-fracture mechanism. An incomplete understanding of loading mechanisms may contribute to the controversies regarding management. METHODS Nine human cadaveric motion segments were instrumented with strain gages and subjected to axial compression or axial impact coupled with an extension moment. Failure loads, strain information, and radiographs were collected. RESULTS Fracture patterns characteristic of acute thoracolumbar burst fractures were observed in the three specimens tested with an extension moment. In this group, high strains were also recorded at the bases of the pedicles, indicating a probable site of fracture initiation. Specimens tested in a neutral orientation experienced crush fractures without an increase in interpedicular distance. Strain patterns were more uniform in this group. CONCLUSIONS The severity and clinical relevance of the injuries sustained by the specimens tested in extension suggest that facet joint loading plays a critical role in the acute thoracolumbar burst-fracture loading mechanism. Fracture patterns and strain concentrations are in agreement with clinical observations as well as past experimental studies.
Collapse
Affiliation(s)
- N A Langrana
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey, USA.
| | | | | | | | | |
Collapse
|
14
|
Abstract
This review presents considerations regarding major cervical spine injury, including some concepts that are presently undergoing evaluation and clarification. Correlation of certain biomechanical parameters and clinical factors associated with the causation and occurrence of traumatic cervical spine injuries assists in clarifying the pathogenesis and treatment of this diverse group of injuries. Instability of the cervical column based on clinical and mechanistic perspectives as well as the role of ligaments in determining instability is discussed. Patient variables such as pre-existing conditions (degenerative disease) and age that can influence the susceptibility or resistance to injury are reviewed. Radiological considerations of major injuries including dynamic films, CT and MRI are presented in the diagnosis and treatment of cervical trauma. Specific injury patterns of the cervical vertebral column are described including attention to the relative mechanisms of trauma. From a biomechanical perspective, quantification of injury tolerance is discussed in terms of external and human-related variables using laboratory-driven experimental models. This includes force vectors (type, magnitude, direction) responsible for injury causation, as well as potential influences of loading rate, gender, age, and type of injury.
Collapse
Affiliation(s)
- Joseph F Cusick
- Department of Neurosurgery, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
15
|
Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ, Goel VK. Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation. J Orthop Res 2001; 19:977-84. [PMID: 11562150 DOI: 10.1016/s0736-0266(01)00010-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cervical spine disorders such as spondylotic radiculopathy and myelopathy are often related to osteophyte formation. Bone remodeling experimental-analytical studies have correlated biomechanical responses such as stress and strain energy density to the formation of bony outgrowth. Using these responses of the spinal components, the present study was conducted to investigate the basis for the occurrence of disc-related pathological conditions. An anatomically accurate and validated intact finite element model of the C4-C5-C6 cervical spine was used to simulate progressive disc degeneration at the C5-C6 level. Slight degeneration included an alteration of material properties of the nucleus pulposus representing the dehydration process. Moderate degeneration included an alteration of fiber content and material properties of the anulus fibrosus representing the disintegrated nature of the anulus in addition to dehydrated nucleus. Severe degeneration included decrease in the intervertebral disc height with dehydrated nucleus and disintegrated anulus. The intact and three degenerated models were exercised under compression, and the overall force-displacement response, local segmental stiffness, anulus fiber strain, disc bulge, anulus stress, load shared by the disc and facet joints, pressure in the disc, facet and uncovertebral joints, and strain energy density and stress in the vertebral cortex were determined. The overall stiffness (C4-C6) increased with the severity of degeneration. The segmental stiffness at the degenerated level (C5-C6) increased with the severity of degeneration. Intervertebral disc bulge and anulus stress and strain decreased at the degenerated level. The strain energy density and stress in vertebral cortex increased adjacent to the degenerated disc. Specifically, the anterior region of the cortex responded with a higher increase in these responses. The increased strain energy density and stress in the vertebral cortex over time may induce the remodeling process according to Wolff's law, leading to the formation of osteophytes.
Collapse
Affiliation(s)
- S Kumaresan
- Department of Veterans Affairs, Medical College of Wisconsin, VA Medical Center Research, Milwaukee 53295, USA
| | | | | | | | | |
Collapse
|
16
|
Tsantrizos A, Baramki HG, Zeidman S, Steffen T. Segmental stability and compressive strength of posterior lumbar interbody fusion implants. Spine (Phila Pa 1976) 2000; 25:1899-907. [PMID: 10908932 DOI: 10.1097/00007632-200008010-00007] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Human cadaveric study on initial segmental stability and compressive strength of posterior lumbar interbody fusion implants. OBJECTIVES To compare the initial segmental stability and compressive strength of a posterior lumbar interbody fusion construct using a new cortical bone spacer machined from allograft to that of titanium threaded and nonthreaded posterior lumbar interbody fusion cages, tested as stand-alone and with supplemental pedicle screw fixation. SUMMARY OF BACKGROUND DATA Cages were introduced to overcome the limitations of conventional allografts. Radiodense cage materials impede radiographic assessment of the fusion, however, and may cause stress shielding of the graft. METHODS Multisegmental specimens were tested intact, with posterior lumbar interbody fusion implants inserted into the L4/L5 interbody space and with supplemental pedicle screw fixation. Three posterior lumbar interbody fusion implant constructs (Ray Threaded Fusion Cage, Contact Fusion Cage, and PLIF Allograft Spacer) were tested nondestructively in axial rotation, flexion-extension, and lateral bending. The implant-specimen constructs then were isolated and compressed to failure. Changes in the neutral zone, range of motion, yield strength, and ultimate compressive strength were analyzed. RESULTS None of the stand-alone implant constructs reduced the neutral zone. Supplemental pedicle screw fixation decreased the neutral zone in flexion-extension and lateral bending. Stand-alone implant constructs decreased the range of motion in flexion and lateral bending. Differences in the range of motion between stand-alone cage constructs were found in flexion and extension (marginally significant). Supplemental posterior fixation further decreased the range of motion in all loading directions with no differences between implant constructs. The Contact Fusion Cage and PLIF Allograft Spacer constructs had a higher ultimate compressive strength than the Ray Threaded Fusion Cage. CONCLUSIONS The biomechanical data did not suggest any implant construct to behave superiorly either as a stand-alone or with supplemental posterior fixation. The PLIF Allograph Spacer is biomechanically equivalent to titanium cages but is devoid of the deficiencies associated with other cage technologies. Therefore, the PLIF Allograft Spacer is a valid alternative to conventional cages.
Collapse
Affiliation(s)
- A Tsantrizos
- Orthopaedic Research Laboratory, Division of Orthopaedic Surgery, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
17
|
Windhagen H, Hipp JA, Hayes WC. Postfracture instability of vertebrae with simulated defects can be predicted from computed tomography data. Spine (Phila Pa 1976) 2000; 25:1775-81. [PMID: 10888945 DOI: 10.1097/00007632-200007150-00007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Structural properties of vertebrae with simulated defects were measured from computed tomography data. Relations between structural properties and postfracture stability were tested using linear regressions. OBJECTIVES To determine whether the postfracture stability of lumbar and thoracic vertebrae can be predicted from noninvasive, prefracture measurements of structural properties. SUMMARY OF BACKGROUND DATA Sensitive and specific guidelines are needed that can predict fracture risk and spinal stability after pathologic fractures. Such guidelines may help determine whether treatment is needed to prevent neurologic complications. Simple measurements made from computed tomography data can predict the load-bearing capacity of intact vertebrae and vertebrae with simulated and actual metastatic defects. It is not known whether these same measurements can also predict postfracture stability. METHOD Simulated metastatic defects were created in human three-vertebrae segments from the lumbar and thoracic spine. Axial rigidity was calculated from quantitative computed tomography data, and failure load and postfracture stability were measured. RESULTS Postfracture stability was linearly correlated with both failure load (r2 = 0.3-0.6) and axial rigidity (r2 = 0.3-0.6). CONCLUSIONS The postfracture stability of three-vertebrae segments with simulated defects was modestly related to noninvasively measured, prefracture structural properties.
Collapse
Affiliation(s)
- H Windhagen
- Department of Orthopedic Surgery, Hannover Medical School, Hannover Germany
| | | | | |
Collapse
|
18
|
Newton PO, Cardelia JM, Farnsworth CL, Baker KJ, Bronson DG. A biomechanical comparison of open and thoracoscopic anterior spinal release in a goat model. Spine (Phila Pa 1976) 1998; 23:530-5; discussion 536. [PMID: 9530783 DOI: 10.1097/00007632-199803010-00003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN A biomechanical assessment of anterior release and discectomy in the thoracic spine was performed on an animal model using thoracoscopic and open thoracotomy techniques. OBJECTIVES To compare the relative efficacy of these two techniques of release in achieving increased spinal mobility. BACKGROUND DATA The clinical use of video-assisted thoracoscopy in the correction of spinal deformity is increasing. The effectiveness of thoracoscopic anterior spinal release with discectomy has not been evaluated biomechanically. METHODS Anterior release with discectomy was performed on six midthoracic motion segments in five mature goats. The thoracoscopic technique was used for three levels on one side, and an open thoracotomy was used for the alternating three levels of the contralateral side. The duration of surgery for disc excision and the amount of blood loss for each technique were recorded. The intact cranial and caudal motion segments served as controls. The motion segments were individually subjected to nondestructive biomechanical testing. Torsional, sagittal, and coronal bending torques were applied, and the resulting angular displacement was measured. RESULTS The duration of surgery to remove a disc thoracoscopically decreased as experience was gained by the surgeon. The amount of intraoperative blood loss was comparable using the two methods. There was significantly increased flexibility in the released segments with both techniques, compared with the flexibility in the intact levels for all three loading directions. There was no difference in the motion obtained after release between the two techniques. CONCLUSION Open and thoracoscopic anterior release and discectomy have been demonstrated, through biomechanical in vitro testing, to increase the flexibility of the spine to a similar extent.
Collapse
Affiliation(s)
- P O Newton
- University of California San Diego, Department of Orthopedic Surgery, USA
| | | | | | | | | |
Collapse
|
19
|
Ching RP, Watson NA, Carter JW, Tencer AF. The effect of post-injury spinal position on canal occlusion in a cervical spine burst fracture model. Spine (Phila Pa 1976) 1997; 22:1710-5. [PMID: 9259780 DOI: 10.1097/00007632-199708010-00005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
STUDY DESIGN The canal space of burst-fractured, human cervical spine specimens was monitored to determine the extent to which spinal position affected post-injury occlusion. OBJECTIVE To test the null hypothesis that there is no difference in spinal canal occlusion as a function of spinal positioning for a burst-fractured cervical spine model. SUMMARY OF BACKGROUND DATA Although previous studies have documented the effect of spinal positioning on canal geometry in intact cadaver spines, to the authors' knowledge, none has examined this relationship specifically in a burst fracture model. METHODS Eight human cervical spine specimens (levels C1 to T3) were fractured by axial impact, and the resulting burst injuries were documented using post-injury radiographs and computed tomography scans. Canal occlusion was measured using a custom transducer in which water was circulated through a section of flexible tygon tubing that was passed through the spinal canal. Any impingement on the tubing produced a rise in fluid pressure that was monitored with a pressure transducer. Each spine was positioned in flexion, extension, lateral (and off-axis) bending, axial rotation, traction, and compression, while canal occlusion and angular position were monitored. Occlusion values for each position were compared with measurements taken with the spine in neutral position. RESULTS Compared with neutral position, compression, extension, and extension combined with lateral bending significantly increased canal occlusion, whereas flexion decreased the extent of occlusion. In extension, the observed mechanism of occlusion was ligamentum flavum bulge caused by ligament laxity resulting from reduced vertebral body height. CONCLUSIONS Increased compression of the spinal cord after injury may lead to more extensive neurologic loss. This study demonstrated that placing a burst-fractured cervical spine into either extension or compression significantly increased canal occlusion as compared with occlusion in a neutral position.
Collapse
Affiliation(s)
- R P Ching
- Harborview Biomechanics Laboratory, Department of Orthopaedics, University of Washington, Seattle, USA
| | | | | | | |
Collapse
|