1
|
Morris JL, Letson HL, McEwen PC, Dobson GP. Adenosine, lidocaine, and magnesium therapy augments joint tissue healing following experimental anterior cruciate ligament rupture and reconstruction. Bone Joint Res 2024; 13:279-293. [PMID: 38843878 PMCID: PMC11156504 DOI: 10.1302/2046-3758.136.bjr-2023-0360.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
Aims Adenosine, lidocaine, and Mg2+ (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery. Methods Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed. Results Despite comparable knee function, ALM-treated males had reduced systemic inflammation, synovial fluid angiogenic and pro-inflammatory mediators, synovitis, and fat pad fibrotic changes, compared to controls. Within the ACL graft, ALM-treated males had increased expression of tissue repair markers, decreased inflammation, increased collagen organization, and improved graft-bone healing. In contrast to males, females had no evidence of persistent systemic inflammation. Compared to controls, ALM-treated females had improved knee extension, gait biomechanics, and elevated synovial macrophage inflammatory protein-1 alpha (MIP-1α). Within the ACL graft, ALM-treated females had decreased inflammation, increased collagen organization, and improved graft-bone healing. In articular cartilage of ALM-treated animals, matrix metalloproteinase (MMP)-13 expression was blunted in males, while in females repair markers were increased. Conclusion At 28 days, ALM therapy reduces inflammation, augments tissue repair patterns, and improves joint function in a sex-specific manner. The study supports transition to human safety trials.
Collapse
Affiliation(s)
- Jodie L. Morris
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Hayley L. Letson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Peter C. McEwen
- Orthopaedic Research Institute of Queensland, Townsville, Australia
| | - Geoffrey P. Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| |
Collapse
|
2
|
Chin AF, Han J, Clement CC, Choi Y, Zhang H, Browne M, Jeon OH, Elisseeff JH. Senolytic treatment reduces oxidative protein stress in an aging male murine model of post-traumatic osteoarthritis. Aging Cell 2023; 22:e13979. [PMID: 37749958 PMCID: PMC10652304 DOI: 10.1111/acel.13979] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/27/2023] Open
Abstract
Senolytic drugs are designed to selectively clear senescent cells (SnCs) that accumulate with injury or aging. In a mouse model of osteoarthritis (OA), senolysis yields a pro-regenerative response, but the therapeutic benefit is reduced in aged mice. Increased oxidative stress is a hallmark of advanced age. Therefore, here we investigate whether senolytic treatment differentially affects joint oxidative load in young and aged animals. We find that senolysis by a p53/MDM2 interaction inhibitor, UBX0101, reduces protein oxidative modification in the aged arthritic knee joint. Mass spectrometry coupled with protein interaction network analysis and biophysical stability prediction of extracted joint proteins revealed divergent responses to senolysis between young and aged animals, broadly suggesting that knee regeneration and cellular stress programs are contrarily poised to respond as a function of age. These opposing responses include differing signatures of protein-by-protein oxidative modification and abundance change, disparate quantitative trends in modified protein network centrality, and contrasting patterns of oxidation-induced folding free energy perturbation between young and old. We develop a composite sensitivity score to identify specific key proteins in the proteomes of aged osteoarthritic joints, thereby nominating prospective therapeutic targets to complement senolytics.
Collapse
Affiliation(s)
- Alexander F. Chin
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Cristina C. Clement
- Department of Radiation OncologyEnglander Institute for Precision Medicine, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Younghwan Choi
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hong Zhang
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Maria Browne
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ok Hee Jeon
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical SciencesKorea University College of MedicineSeoulRepublic of Korea
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Bloomberg‐Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
3
|
Liu W, Feng M, Xu P. From regeneration to osteoarthritis in the knee joint: The role shift of cartilage-derived progenitor cells. Front Cell Dev Biol 2022; 10:1010818. [PMID: 36340024 PMCID: PMC9630655 DOI: 10.3389/fcell.2022.1010818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
A mount of growing evidence has proven that cartilage-derived progenitor cells (CPCs) harbor strong proliferation, migration, andmultiple differentiation potentials over the past 2 decades. CPCs in the stage of immature tissue play an important role in cartilage development process and injured cartilage repair in the young and active people. However, during maturation and aging, cartilage defects cannot be completely repaired by CPCs in vivo. Recently, tissue engineering has revealed that repaired cartilage defects with sufficient stem cell resources under good condition and bioactive scaffolds in vitro and in vivo. Chronic inflammation in the knee joint limit the proliferation and chondrogenesis abilities of CPCs, which further hampered cartilage healing and regeneration. Neocartilage formation was observed in the varus deformity of osteoarthritis (OA) patients treated with offloading technologies, which raises the possibility that organisms could rebuild cartilage structures spontaneously. In addition, nutritionmetabolismdysregulation, including glucose and free fatty acid dysregulation, could influence both chondrogenesis and cartilage formation. There are a few reviews about the advantages of CPCs for cartilage repair, but few focused on the reasons why CPCs could not repair the cartilage as they do in immature status. A wide spectrum of CPCs was generated by different techniques and exhibited substantial differences. We recently reported that CPCs maybe are as internal inflammation sources during cartilage inflammaging. In this review, we further streamlined the changes of CPCs from immature development to maturation and from healthy status to OA advancement. The key words including “cartilage derived stem cells”, “cartilage progenitor cells”, “chondroprogenitor cells”, “chondroprogenitors” were set for latest literature searching in PubMed and Web of Science. The articles were then screened through titles, abstracts, and the full texts in sequence. The internal environment including long-term inflammation, extendedmechanical loading, and nutritional elements intake and external deleterious factors were summarized. Taken together, these results provide a comprehensive understanding of the underlying mechanism of CPC proliferation and differentiation during development, maturation, aging, injury, and cartilage regeneration in vivo.
Collapse
Affiliation(s)
- Wenguang Liu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Meng Feng
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Peng Xu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Peng Xu,
| |
Collapse
|
4
|
Roles of Cartilage-Resident Stem/Progenitor Cells in Cartilage Physiology, Development, Repair and Osteoarthritis. Cells 2022; 11:cells11152305. [PMID: 35892602 PMCID: PMC9332847 DOI: 10.3390/cells11152305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that causes irreversible destruction of articular cartilage for which there is no effective treatment at present. Although articular cartilage lacks intrinsic reparative capacity, numerous studies have confirmed the existence of cartilage-resident stem/progenitor cells (CSPCs) in the superficial zone (SFZ) of articular cartilage. CSPCs are characterized by the expression of mesenchymal stromal cell (MSC)-related surface markers, multilineage differentiation ability, colony formation ability, and migration ability in response to injury. In contrast to MSCs and chondrocytes, CSPCs exhibit extensive proliferative and chondrogenic potential with no signs of hypertrophic differentiation, highlighting them as suitable cell sources for cartilage repair. In this review, we focus on the organizational distribution, markers, cytological features and roles of CSPCs in cartilage development, homeostasis and repair, and the application potential of CSPCs in cartilage repair and OA therapies.
Collapse
|
5
|
Quantification of cell contractile behavior based on non-destructive macroscopic measurement of tension forces on bioprinted hydrogel. J Mech Behav Biomed Mater 2022; 134:105365. [PMID: 35863297 DOI: 10.1016/j.jmbbm.2022.105365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 11/24/2022]
Abstract
Contraction assay based on surface measurement have been widely used to evaluate cell contractility in 3D models. This method is straightforward and requires no specific equipment, but it does not provide quantitative data about contraction forces generated by cells. We expanded this method with a new biomechanical model, based on the work-energy theorem, to provide non-destructive longitudinal monitoring of contraction forces generated by cells in 3D. We applied this method on hydrogels seeded with either fibroblasts or osteoblasts. Hydrogel mechanical characteristics were modulated to enhance (condition HCAHigh: hydrogel contraction assay high contraction) or limit (condition HCALow: hydrogel contraction assay low contraction) cell contractile behaviors. Macroscopic measures were further correlated with cell contractile behavior and descriptive analysis of their physiology in response to different mechanical environments. Fibroblasts and osteoblasts contracted their matrix up to 47% and 77% respectively. Contraction stress peaked at day 5 with 1.1 10-14 Pa for fibroblasts and 3.5 10-14 Pa for osteoblasts, which correlated with cell attachment and spreading. Negligible contraction was seen in HCALow. Both fibroblasts and osteoblasts expressed α-SMA contractile fibers in HCAHigh and HCALow. Failure to contract HCALow was attributed to increased cross-linking and resistance to proteolytic degradation of the hydrogel.
Collapse
|
6
|
Articular Chondrocyte Phenotype Regulation through the Cytoskeleton and the Signaling Processes That Originate from or Converge on the Cytoskeleton: Towards a Novel Understanding of the Intersection between Actin Dynamics and Chondrogenic Function. Int J Mol Sci 2021; 22:ijms22063279. [PMID: 33807043 PMCID: PMC8004672 DOI: 10.3390/ijms22063279] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous studies have assembled a complex picture, in which extracellular stimuli and intracellular signaling pathways modulate the chondrocyte phenotype. Because many diseases are mechanobiology-related, this review asked to what extent phenotype regulators control chondrocyte function through the cytoskeleton and cytoskeleton-regulating signaling processes. Such information would generate leverage for advanced articular cartilage repair. Serial passaging, pro-inflammatory cytokine signaling (TNF-α, IL-1α, IL-1β, IL-6, and IL-8), growth factors (TGF-α), and osteoarthritis not only induce dedifferentiation but also converge on RhoA/ROCK/Rac1/mDia1/mDia2/Cdc42 to promote actin polymerization/crosslinking for stress fiber (SF) formation. SF formation takes center stage in phenotype control, as both SF formation and SOX9 phosphorylation for COL2 expression are ROCK activity-dependent. Explaining how it is molecularly possible that dedifferentiation induces low COL2 expression but high SF formation, this review theorized that, in chondrocyte SOX9, phosphorylation by ROCK might effectively be sidelined in favor of other SF-promoting ROCK substrates, based on a differential ROCK affinity. In turn, actin depolymerization for redifferentiation would “free-up” ROCK to increase COL2 expression. Moreover, the actin cytoskeleton regulates COL1 expression, modulates COL2/aggrecan fragment generation, and mediates a fibrogenic/catabolic expression profile, highlighting that actin dynamics-regulating processes decisively control the chondrocyte phenotype. This suggests modulating the balance between actin polymerization/depolymerization for therapeutically controlling the chondrocyte phenotype.
Collapse
|
7
|
Varela-Eirín M, Carpintero-Fernández P, Sánchez-Temprano A, Varela-Vázquez A, Paíno CL, Casado-Díaz A, Continente AC, Mato V, Fonseca E, Kandouz M, Blanco A, Caeiro JR, Mayán MD. Senolytic activity of small molecular polyphenols from olive restores chondrocyte redifferentiation and promotes a pro-regenerative environment in osteoarthritis. Aging (Albany NY) 2020; 12:15882-15905. [PMID: 32745074 PMCID: PMC7485729 DOI: 10.18632/aging.103801] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Articular cartilage and synovial tissue from patients with osteoarthritis (OA) show an overactivity of connexin43 (Cx43) and accumulation of senescent cells associated with disrupted tissue regeneration and disease progression. The aim of this study was to determine the effect of oleuropein on Cx43 and cellular senescence for tissue engineering and regenerative medicine strategies for OA treatment. Oleuropein regulates Cx43 promoter activity and enhances the propensity of hMSCs to differentiate into chondrocytes and bone cells, reducing adipogenesis. This small molecule reduce Cx43 levels and decrease Twist-1 activity in osteoarthritic chondrocytes (OACs), leading to redifferentiation, restoring the synthesis of cartilage ECM components (Col2A1 and proteoglycans), and reducing the inflammatory and catabolic factors mediated by NF-kB (IL-1ß, IL-6, COX-2 and MMP-3), in addition to lowering cellular senescence in OACs, synovial and bone cells. Our in vitro results demonstrate the use of olive-derived polyphenols, such as oleuropein, as potentially effective therapeutic agents to improve chondrogenesis of hMSCs, to induce chondrocyte re-differentiation in OACs and clearing out senescent cells in joint tissues in order to prevent or stop the progression of the disease.
Collapse
Affiliation(s)
- Marta Varela-Eirín
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Paula Carpintero-Fernández
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Agustín Sánchez-Temprano
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Adrián Varela-Vázquez
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Carlos Luis Paíno
- Neurobiology-Research Service, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Antonio Casado-Díaz
- UGC Endocrinology and Nutrition, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Hospital Universitario Reina Sofía - CIBERFES, Universidad de Córdoba, Córdoba, Spain
| | - Alfonso Calañas Continente
- UGC Endocrinology and Nutrition, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Hospital Universitario Reina Sofía - CIBERFES, Universidad de Córdoba, Córdoba, Spain
| | - Virginia Mato
- Centre for Medical Informatics and Radiological Diagnosis, Universidade da Coruña, A Coruña, Spain
| | - Eduardo Fonseca
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Alfonso Blanco
- Flow Cytometry Core Technologies, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - José Ramón Caeiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Choupana s/n, Santiago de Compostela, Spain
| | - María D Mayán
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| |
Collapse
|
8
|
Rajappa R, Nazal MR, Stelzer JW, Hsu HP, Conaway WK, Rokkappanavar S, Niu W, Upadhyaya S, Alpaugh K, Spector M, Martin SD. Translational relevance of the goat as a preclinical model of the human labrum and chondrolabral junction-histological study. J Orthop Res 2020; 38:1070-1080. [PMID: 31788831 DOI: 10.1002/jor.24546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 11/24/2019] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to evaluate the histologic features of the caprine labrum, with emphasis on the chondrolabral junction, with the goal of informing the feasibility of the goat as an animal model. The left hip joint of six adolescent Spanish goats (Capra pyrenaica) was harvested and subjected to anatomical and histological assessments. Human acetabular and femoral head samples, collected during total hip arthroplasty, served as comparison samples. The caprine labrum was found to consist of mostly type I collagen with uniform crimp, with an average crimp length of 20.8 µm. Upon histological assessment, acetabular articular chondrocytes were found to express substance-P, especially near or in the chondrolabral junction. And the majority of nonvascular cells expressed α-smooth muscle actin (SMA), with no notable elastin and laminin expression. Human labrum demonstrated similar staining patterns. Overall, the goat hip was found to be homologous to the human hip, demonstrating potential as a useful animal model for future studies. This is the first report of a crimped collagen structure in the labrum. Crimped type I collagen at the chondrolabral junction imparts an extension-recovery property which allows for toleration of stress without permanent deformation, underlying the importance of its preservation during surgery. The high expression of substance-P reflects the degree to which the labrum is innervated. Finally, the expression of α-SMA with contractile characteristics could indicate the potential for chondrocyte (i.e., myochondrocytes) modeling of the extracellular matrix. Statement of Clinical Significance: Establishment of a large animal model and deeper knowledge of the histological composition of the hip joint will enhance our study of the acetabular labrum, including repair techniques. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1070-1080, 2020.
Collapse
Affiliation(s)
- Ravikumar Rajappa
- Tissue Engineering Laboratories, VA Boston Healthcare System, 150S Huntington Avenue, Boston, Massachusetts, 02130.,Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115
| | - Mark R Nazal
- Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Partners Heath System, Boston, Massachusetts, 02114
| | - John W Stelzer
- Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Partners Heath System, Boston, Massachusetts, 02114
| | - Hu Ping Hsu
- Tissue Engineering Laboratories, VA Boston Healthcare System, 150S Huntington Avenue, Boston, Massachusetts, 02130.,Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115
| | - William K Conaway
- Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Partners Heath System, Boston, Massachusetts, 02114
| | - Swetha Rokkappanavar
- Tissue Engineering Laboratories, VA Boston Healthcare System, 150S Huntington Avenue, Boston, Massachusetts, 02130.,Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115
| | - Wanting Niu
- Tissue Engineering Laboratories, VA Boston Healthcare System, 150S Huntington Avenue, Boston, Massachusetts, 02130.,Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115
| | - Shivam Upadhyaya
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115
| | - Kyle Alpaugh
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115
| | - Myron Spector
- Tissue Engineering Laboratories, VA Boston Healthcare System, 150S Huntington Avenue, Boston, Massachusetts, 02130.,Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Scott D Martin
- Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Partners Heath System, Boston, Massachusetts, 02114
| |
Collapse
|
9
|
Varela-Eirin M, Loureiro J, Fonseca E, Corrochano S, Caeiro JR, Collado M, Mayan MD. Cartilage regeneration and ageing: Targeting cellular plasticity in osteoarthritis. Ageing Res Rev 2018; 42:56-71. [PMID: 29258883 DOI: 10.1016/j.arr.2017.12.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/20/2017] [Accepted: 12/15/2017] [Indexed: 01/15/2023]
Abstract
Ageing processes play a major contributing role for the development of Osteoarthritis (OA). This prototypic degenerative condition of ageing is the most common form of arthritis and is accompanied by a general decline, chronic pain and mobility deficits. The disease is primarily characterized by articular cartilage degradation, followed by subchondral bone thickening, osteophyte formation, synovial inflammation and joint degeneration. In the early stages, osteoarthritic chondrocytes undergo phenotypic changes that increase cell proliferation and cluster formation and enhance the production of matrix-remodelling enzymes. In fact, chondrocytes exhibit differentiation plasticity and undergo phenotypic changes during the healing process. Current studies are focusing on unravelling whether OA is a consequence of an abnormal wound healing response. Recent investigations suggest that alterations in different proteins, such as TGF-ß/BMPs, NF-Kß, Wnt, and Cx43, or SASP factors involved in signalling pathways in wound healing response, could be directly implicated in the initiation of OA. Several findings suggest that osteoarthritic chondrocytes remain in an immature state expressing stemness-associated cell surface markers. In fact, the efficacy of new disease-modifying OA drugs that promote chondrogenic differentiation in animal models indicates that this may be a drug-sensible state. In this review, we highlight the current knowledge regarding cellular plasticity in chondrocytes and OA. A better comprehension of the mechanisms involved in these processes may enable us to understand the molecular pathways that promote abnormal repair and cartilage degradation in OA. This understanding would be advantageous in identifying novel targets and designing therapies to promote effective cartilage repair and successful joint ageing by preventing functional limitations and disability.
Collapse
Affiliation(s)
- Marta Varela-Eirin
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Jesus Loureiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Eduardo Fonseca
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | | | - Jose R Caeiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Manuel Collado
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Maria D Mayan
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, 84, 15006 A Coruña, Spain.
| |
Collapse
|
10
|
McGonagle D, Baboolal TG, Jones E. Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nat Rev Rheumatol 2017; 13:719-730. [DOI: 10.1038/nrrheum.2017.182] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Maruyama T, Hatakeyama S, Miwa T, Nishimori K. Human Smooth Muscle α-Actin Promoter Drives Cre Recombinase Expression in the Cranial Suture in Addition to Smooth Muscle Cell. Biosci Biotechnol Biochem 2014; 71:1103-6. [PMID: 17420573 DOI: 10.1271/bbb.70043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tissue-specific gene deletion by the Cre-loxp system is a powerful tool to investigate the roles of specific genes. To determine the specificity and efficiency of the Cre-mediated recombination under the control of the human smooth muscle alpha-actin promoter, we mated SMalphaA-Cre mice and R26R reporter mice. Cre-mediated recombination was observed in visceral and vascular smooth muscle cells. Partial recombination was also found in heart and musculoskeletal connective tissues. Highly efficient recombination was found in cranial sutures. Hence, we propose that SMalphaA-Cre mice are good tool for conditionally deleting gene function in the cranial suture in addition to smooth muscle cells.
Collapse
Affiliation(s)
- Takamitsu Maruyama
- Department of Molecular Biology, Graduate School of Agriculture, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
12
|
Aicher WK, Rolauffs B. The spatial organisation of joint surface chondrocytes: review of its potential roles in tissue functioning, disease and early, preclinical diagnosis of osteoarthritis. Ann Rheum Dis 2013; 73:645-53. [PMID: 24363359 DOI: 10.1136/annrheumdis-2013-204308] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chondrocytes display within the articular cartilage depth-dependent variations of their many properties that are comparable to the depth-dependent changes of the properties of the surrounding extracellular matrix. However, not much is known about the spatial organisation of the chondrocytes throughout the tissue. Recent studies revealed that human chondrocytes display distinct spatial patterns of organisation within the articular surface, and each joint surface is dominated in a typical way by one of four basic spatial patterns. The resulting complex spatial organisations correlate with the specific diarthrodial joint type, suggesting an association of the chondrocyte organisation within the joint surface with the occurring biomechanical forces. In response to focal osteoarthritis (OA), the superficial chondrocytes experience a destruction of their spatial organisation within the OA lesion, but they also undergo a defined remodelling process distant from the OA lesion in the remaining, intact cartilage surface. One of the biological insights that can be derived from this spatial remodelling process is that the chondrocytes are able to respond in a generalised and coordinated fashion to distant focal OA. The spatial characteristics of this process are tremendously different from the cellular aggregations typical for OA lesions, suggesting differences in the underlying mechanisms. Here we summarise the available information on the spatial organisation of chondrocytes and its potential roles in cartilage functioning. The spatial organisation could be used to diagnose early OA onset before manifest OA results in tissue destruction and clinical symptoms. With further development, this concept may become clinically suitable for the diagnosis of preclinical OA.
Collapse
Affiliation(s)
- Wilhelm K Aicher
- KFO273, Department of Urology, Eberhard Karls University, , Tuebingen, Germany
| | | |
Collapse
|
13
|
Hypoxia enhances chondrogenic differentiation of human adipose tissue-derived stromal cells in scaffold-free and scaffold systems. Cell Tissue Res 2013; 355:89-102. [PMID: 24178804 DOI: 10.1007/s00441-013-1732-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/05/2013] [Indexed: 02/05/2023]
Abstract
Human adipose-derived stromal cells (hASCs) possess the potential for chondrogenic differentiation. Recent studies imply that this differentiation process may be enhanced by culturing the cells in low oxygen tension in combination with three-dimensional (3D) scaffolds. We report the evaluation of the chondrogenic potential of hASC pellets in 5 and 21% O2 and as cell-scaffold constructs using a collagen I/III scaffold with chemical induction using TGF-β3. hASCs from four human donors were cultured both in a micromass pellet system and in 3D collagen I/III scaffolds in either 5 or 21% O2. Chondrogenesis was evaluated by quantitative gene expression analysis of aggrecan, SOX9, collagen I, II and X and histological evaluation with H&E and toluidine blue staining. Induced pellets cultured in 5% O2 showed increased peripheral cellularity and matrix deposition compared with 21% O2. Induced pellets cultured in 5% O2 had increased control-adjusted gene expression of aggrecan, SOX9 and collagen I and decreased collagen X compared with 21% O2 cultures. Induced pellets had higher gene expression of aggrecan, SOX9, collagen I, II and X and increased ratios of collagen II/I and collagen II/X compared with controls. As for pellets, scaffold cultures showed cellularity and matrix deposition organized in a zonal manner as a function of the oxygen tension, with a cartilage-like morphology and matrix deposition peripherally in the 5% O2 group and a more centrally located matrix in the 21% O2 group. There were no differences in histology and gene expressions between pellet and scaffold cultures. Five percent O2 in combination with chondrogenic culture medium stimulated chondrogenic differentiation of hASCs in vitro. We observed similar patterns of differentiation and matrix disposition in pellet and scaffold cultures.
Collapse
|
14
|
Grogan SP, Duffy SF, Pauli C, Koziol JA, Su AI, D'Lima DD, Lotz MK. Zone-specific gene expression patterns in articular cartilage. ACTA ACUST UNITED AC 2013; 65:418-28. [PMID: 23124445 DOI: 10.1002/art.37760] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/16/2012] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To identify novel genes and pathways specific to the superficial zone (SZ), middle zone (MZ), and deep zone (DZ) of normal articular cartilage. METHODS Articular cartilage was obtained from the knees of 4 normal human donors. The cartilage zones were dissected on a microtome. RNA was analyzed on human genome arrays. The zone-specific DNA array data obtained from human tissue were compared to array data obtained from bovine cartilage. Genes differentially expressed between zones were evaluated using direct annotation for structural or functional features, and by enrichment analysis for integrated pathways or functions. RESULTS The greatest differences in genome-wide RNA expression data were between the SZ and DZ in both human and bovine cartilage. The MZ, being a transitional zone between the SZ and DZ, thereby shared some of the same pathways as well as structural/functional features of the adjacent zones. Cellular functions and biologic processes that were enriched in the SZ relative to the DZ included, most prominently, extracellular matrix-receptor interactions, cell adhesion molecule functions, regulation of actin cytoskeleton, ribosome-related functions, and signaling aspects such as the IFN, IL4, Cdc42/Rac, and JAK/STAT signaling pathways. Two pathways were enriched in the DZ relative to the SZ, including PPARG and EGFR/SMRTE. CONCLUSION These differences in cartilage zonal gene expression identify new markers and pathways that govern the unique differentiation status of chondrocyte subpopulations.
Collapse
Affiliation(s)
- Shawn P Grogan
- The Scripps Research Institute and Shiley Center for Orthopaedic Research and Education, Scripps Clinic, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Loeser RF, Olex AL, McNulty MA, Carlson CS, Callahan MF, Ferguson CM, Chou J, Leng X, Fetrow JS. Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice. ACTA ACUST UNITED AC 2012; 64:705-17. [PMID: 21972019 DOI: 10.1002/art.33388] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To better understand the contribution of age to the development of osteoarthritis (OA). METHODS Surgical destabilization of the medial meniscus (DMM) was used to model OA in 12-week-old and 12-month-old male C57BL/6 mice. OA severity was evaluated histologically. RNA used for microarray and real-time polymerase chain reaction analysis was isolated from joint tissue collected from the medial side of the joint, including cartilage, meniscus, subchondral bone, and the joint capsule with synovium. Computational analysis was used to identify patterns of gene expression, and immunohistochemistry was used to evaluate tissue distribution of selected proteins. RESULTS OA was more severe in older mice than in young mice. Only 55 genes showed a similar expression with DMM-induced OA in the 2 age groups, while 493 genes showed differential expression, the majority having increased expression in older mice. Functional categories for similarly expressed genes included extracellular matrix- and cell adhesion-related genes; differentially expressed genes included those related to muscle structure and development and immune response genes. Comparison of expression in sham-operated control joints revealed an age-related decrease in matrix gene expression and an increase in immune and defense response gene expression. Interleukin-33 was present in multiple joint tissue cells, while CCL21 was more localized to chondrocytes and meniscal cells. Periostin was found in the extracellular matrix of cartilage and meniscus. CONCLUSION Age affects both the basal pattern of gene expression in joint tissues and the response to surgically induced OA. Examining tissue from the joint beyond only cartilage revealed novel genes and proteins that would be important to consider in OA.
Collapse
Affiliation(s)
- Richard F Loeser
- Molecular Medicine, Wake Forest University, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li J, Gorski DJ, Anemaet W, Velasco J, Takeuchi J, Sandy JD, Plaas A. Hyaluronan injection in murine osteoarthritis prevents TGFbeta 1-induced synovial neovascularization and fibrosis and maintains articular cartilage integrity by a CD44-dependent mechanism. Arthritis Res Ther 2012; 14:R151. [PMID: 22721434 PMCID: PMC3446537 DOI: 10.1186/ar3887] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/22/2012] [Accepted: 06/21/2012] [Indexed: 12/12/2022] Open
Abstract
Introduction The mechanism by which intra-articular injection of hyaluronan (HA) ameliorates joint pathology is unknown. Animal studies have shown that HA can reduce synovial activation, periarticular fibrosis and cartilage erosion; however, its specific effects on the different cell types involved remain unclear. We have used the TTR (TGFbeta1 injection and Treadmill Running) model of murine osteoarthritis (OA), which exhibits many OA-like changes, including synovial activation, to examine in vivo tissue-specific effects of intra-articular HA. Methods The kinetics of clearance of fluorotagged HA from joints was examined with whole-body imaging. Naïve and treated knee joints were examined macroscopically for cartilage erosion, meniscal damage and fibrosis. Quantitative histopathology was done with Safranin O for cartilage and with Hematoxylin & Eosin for synovium. Gene expression in joint tissues for Acan, Col1a1, Col2a1, Col3a1, Col5a1, Col10a1, Adamts5 and Mmp13 was done by quantitative PCR. The abundance and distribution of aggrecan, collagen types I, II, III, V and X, ADAMTS5 and MMP13 were examined by immunohistochemistry. Results Injected HA showed a half-life of less than 2 h in the murine knee joint. At the tissue level, HA protected against neovascularization and fibrosis of the meniscus/synovium and maintained articular cartilage integrity in wild-type but not in Cd44 knockout mice. HA injection enhanced the expression of chondrogenic genes and proteins and blocked that of fibrogenic/degradative genes and proteins in cartilage/subchondral bone, whereas it blocked activation of both groups in meniscus/synovium. In all locations it reduced the expression/protein for Mmp13 and blocked Adamts5 expression but not its protein abundance in the synovial lining. Conclusions The injection of HA, 24 h after TGFbeta1 injection, inhibited the cascade of OA-like joint changes seen after treadmill use in the TTR model of OA. In terms of mechanism, tissue protection by HA injection was abrogated by Cd44 ablation, suggesting that interaction of the injected HA with CD44 is central to its protective effects on joint tissue remodeling and degeneration in OA progression.
Collapse
Affiliation(s)
- Jun Li
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, 1611 West Harrison Street Suite 510, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Ganguly K, McRury ID, Goodwin PM, Morgan RE, Augé WK. Targeted In Situ Biosynthetic Transcriptional Activation in Native Surface-Level Human Articular Chondrocytes during Lesion Stabilization. Cartilage 2012; 3:141-55. [PMID: 26069627 PMCID: PMC4297128 DOI: 10.1177/1947603511426881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Safe articular cartilage lesion stabilization is an important early surgical intervention advance toward mitigating articular cartilage disease burden. While short-term chondrocyte viability and chondrosupportive matrix modification have been demonstrated within tissue contiguous to targeted removal of damaged articular cartilage, longer term tissue responses require evaluation to further clarify treatment efficacy. The purpose of this study was to examine surface chondrocyte responses within contiguous tissue after lesion stabilization. METHODS Nonablation radiofrequency lesion stabilization of human cartilage explants obtained during knee replacement was performed for surface fibrillation. Time-dependent chondrocyte viability, nuclear morphology and cell distribution, and temporal response kinetics of matrix and chaperone gene transcription indicative of differentiated chondrocyte function were evaluated in samples at intervals to 96 hours after treatment. RESULTS Subadjacent surface articular cartilage chondrocytes demonstrated continued viability for 96 hours after treatment, a lack of increased nuclear fragmentation or condensation, persistent nucleic acid production during incubation reflecting cellular assembly behavior, and transcriptional up-regulation of matrix and chaperone genes indicative of retained biosynthetic differentiated cell function. CONCLUSIONS The results of this study provide further evidence of treatment efficacy and suggest the possibility to manipulate or induce cellular function, thereby recruiting local chondrocytes to aid lesion recovery. Early surgical intervention may be viewed as a tissue rescue, allowing articular cartilage to continue displaying biological responses appropriate to its function rather than converting to a tissue ultimately governed by the degenerative material property responses of matrix failure. Early intervention may positively impact the late changes and reduce disease burden of damaged articular cartilage.
Collapse
Affiliation(s)
| | | | | | | | - Wayne K. Augé
- NuOrtho Surgical Inc., Fall River, MA, USA,Center for Orthopaedic and Sports Performance Research Inc., Santa Fe, NM, USA
| |
Collapse
|
18
|
Plaas A, Velasco J, Gorski DJ, Li J, Cole A, Christopherson K, Sandy JD. The relationship between fibrogenic TGFβ1 signaling in the joint and cartilage degradation in post-injury osteoarthritis. Osteoarthritis Cartilage 2011; 19:1081-90. [PMID: 21624477 DOI: 10.1016/j.joca.2011.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/05/2011] [Accepted: 05/07/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To review the literature on modulation of chondrocyte activities in the osteoarthritic joint, and to discuss these changes in relation to established hard and soft tissue repair paradigms, with an emphasis on transforming growth factor beta (TGFβ1)-mediated signaling which can promote either a chondrogenic or fibrogenic phenotype. METHODS Papers addressing the close relationship between repair in general, and the specific post-injury response of joint tissues are summarized. Different interpretations of the role of TGFβ1 in the emergence of an "osteoarthritic" chondrocyte are compared and the phenotypic plasticity of "reparative" progenitor cells is examined. Lastly, emerging data on a central role for A-Disintegrin-And-Metalloproteinase-with-Thrombospondin-like-Sequences-5 (ADAMTS5) activity in modulating TGFβ1 signaling through activin receptor-like kinase 1 (ALK1) and activin receptor-like kinase 5 (ALK5) pathways is discussed. RESULTS The review illustrates how a transition from ALK5-mediated fibrogenic signaling to ALK1-mediated chondrogenic signaling in joint cells represents the critical transition from a non-reparative to a reparative cell phenotype. Data from cell and in vivo studies illustrates the mechanism by which ablation of ADAMTS5 activity allows the transition to reparative chondrogenesis. Multiple large gene expression studies of normal and osteoarthritis (OA) human cartilages (CAs) also support an important role for TGFβ1-mediated pro-fibrogenic activities during disease progression. CONCLUSIONS We conclude that progressive articular CA damage in post-injury OA results primarily from biomechanical, cell biologic and mediator changes that promote a fibroblastic phenotype in joint cells. Since ADAMTS5 and TGFβ1 appear to control this process, agents which interfere with their activities may not only enhance endogenous CA repair in vivo, but also improve the properties of tissue-engineered CA for implantation.
Collapse
Affiliation(s)
- A Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Lotz MK, Otsuki S, Grogan SP, Sah R, Terkeltaub R, D'Lima D. Cartilage cell clusters. ACTA ACUST UNITED AC 2010; 62:2206-18. [PMID: 20506158 DOI: 10.1002/art.27528] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Martin K Lotz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Vickers SM, Gotterbarm T, Spector M. Cross-linking affects cellular condensation and chondrogenesis in type II collagen-GAG scaffolds seeded with bone marrow-derived mesenchymal stem cells. J Orthop Res 2010; 28:1184-92. [PMID: 20225321 DOI: 10.1002/jor.21113] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The formation of cartilaginous tissue by chondroprogenitor cells, whether in vivo or in vitro, appears to require a critical initial stage of "condensation" in which intercellular space is reduced through an aggregation of cells, leading to development of cell-to-cell junctions followed by chondrocytic differentiation. The objective of this study was to investigate the association of aggregation (condensation) of mesenchymal stem cell (MSCs) and chondrogenesis in vitro. Previous work with chondrocytes indicated that the cross-link density and related cell-mediated contraction of collagen scaffolds significantly affects cartilaginous tissue formation within the cell-seeded construct. Based on this finding, we hypothesized that the cell-aggregating effect of the contraction of MSC-seeded collagen scaffolds of lower cross-link density favors chondrogenesis; scaffolds of higher cross-link density, which resist cell-mediated contraction, would demonstrate a lower cell number density (i.e., subcritical packing density) and less cartilage formation. Type II collagen-GAG scaffolds, chemically cross-linked to achieve a range of cross-link densities, were seeded with caprine MSCs and cultured for 4 weeks. Constructs with low cross-link densities experienced cell-mediated contraction, increased cell number densities, and a greater degree of chondrogenesis (indicated by the chondrocytic morphology of cells, and synthesis of GAG and type II collagen) compared to more highly cross-linked scaffolds that resisted cellular contraction. These results provide a foundation for further investigation of the mechanisms by which condensation of mesenchymal cells induces chondrogenesis in this in vitro model, and may inform cross-linking protocols for collagen scaffolds for use in cartilage tissue engineering.
Collapse
Affiliation(s)
- Scott M Vickers
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
21
|
Funakoshi T, Spector M. Chondrogenic differentiation and lubricin expression of caprine infraspinatus tendon cells. J Orthop Res 2010; 28:716-25. [PMID: 20058273 DOI: 10.1002/jor.21053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Reparative strategies for the treatment of injuries to tendons, including those of the rotator cuff of the shoulder, need to address the formation of the cartilage which serves as the attachment apparatus to bone and which forms at regions undergoing compressive loading. Moreover, recent work indicates that cells employed for rotator cuff repair may need to synthesize a lubricating glycoprotein, lubricin, which has recently been found to play a role in tendon tribology. The objective of the present study was to investigate the chondrogenic differentiation and lubricin expression of caprine infraspinatus tendon cells in monolayer and three-dimensional culture, and to compare the behavior with bone marrow-derived mesenchymal stem cells (MSCs). The results demonstrated that while tendon cells in various media, including chondrogenic medium, expressed lubricin, virtually none of the MSCs synthesized this important lubricating molecule. Also of interest was that the cartilage formation capacity of the tendon cells grown in pellet culture in chondrogenic medium was comparable with MSCs. These data inform the use of tendon cells for rotator cuff repair, including for fibrocartilaginous zones.
Collapse
Affiliation(s)
- Tadanao Funakoshi
- Tissue Engineering, VA Boston Healthcare System, Boston, Massachusetts 02130, USA
| | | |
Collapse
|
22
|
Zhang L, Spector M. Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering. Biomed Mater 2009; 4:045012. [PMID: 19636108 DOI: 10.1088/1748-6041/4/4/045012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The objective of this study was to compare the chondrogenesis in type I and II collagen scaffolds seeded with chondrocytes from three types of cartilage, after four weeks of culture: auricular (AU), articular (AR) and meniscal (ME). Related aims were to investigate the expression of a contractile muscle actin isoform, alpha-smooth muscle actin (SMA), in the cells in the scaffold and to determine the presence of a lubricating glycoprotein, lubricin, in the constructs. Adult goat AU, AR and ME chondrocytes were seeded into two types of collagen scaffolds: type II collagen and type I/III collagen. After four weeks of culture, the constructs were prepared for histochemical and immunohistochemical analysis of the distribution of glycosaminoglycan (GAG), types I and II collagen, elastin, SM and lubricin. AU constructs contained substantially more tissue than the AR and ME samples. The AU constructs exhibited neocartilage, but no elastin. There were no notable differences between the type I and II collagen scaffolds. Novel findings were the expression of SMA by the AU cells in the scaffolds and the presence of lubricin in the AR and AU constructs. AU cells have the capability to produce cartilage in collagen scaffolds under conditions in which there is little histogenesis by AR and ME cells.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Tissue Engineering Center, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | | |
Collapse
|
23
|
Distribution of chondrocytes containing alpha-smooth muscle actin in human normal, osteoarthrotic, and transplanted articular cartilage. Pathol Res Pract 2008; 204:883-90. [PMID: 18926643 DOI: 10.1016/j.prp.2008.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 05/01/2008] [Accepted: 05/14/2008] [Indexed: 11/20/2022]
Abstract
The aim of our study was to evaluate the occurrence of chondrocytes containing alpha-smooth muscle actin in human normal and diseased cartilage. Immunohistochemistry using monoclonal antibodies for alpha-smooth actin, muscle-specific actin, S-100 protein, CD 34, and desmin was performed on samples of human articular cartilage obtained at autopsy following sudden death, during total hip and knee replacement for osteoarthritis, or after femoral neck fracture in patients without symptoms of osteoarthritis. Moreover, the layers of residual cartilage from chondral posttraumatic defects obtained during preoperative arthroscopy and of newly formed cartilage after autologous-chondrocyte transplantation (Hyalograft C) obtained during second-look arthroscopy were also examined by immunohistochemistry and RT PCR. Our study showed that a significant percentage of articular chondrocytes express alpha-smooth muscle actin in healthy, diseased, and regenerated articular cartilage. Alpha-actin positive chondrocytes (18%) were observed predominantly in the upper zone of normal articular cartilage. By contrast, only approximately 10% of cartilage cells in the deep region stained for this contractile actin isoform. Actin-positive chondrocytes (myochondrocytes) are formed predominantly in response to injury to the osteoarthrotic cartilage, at sites of defective healing, and in newly formed cartilage after autologous chondrocyte transplantation. Fibrocartilage is present in some of these conditions, and it is known that this tissue contains chondrocytes with actin. The presence of myochondrocytes in the surface layer of normal articular cartilage indicates that this region probably plays an important role in maintaining cartilage integrity. Myochondrocytes may utilize the contractile actin isoform in manipulating the extracellular matrix of articular cartilage. It is also possible that actin-containing chondrocytes have a higher potential for regeneration in contrast to chondrocytes that do not contain this contractile material in their cytoplasm.
Collapse
|
24
|
Pontikoglou C, Delorme B, Charbord P. Human bone marrow native mesenchymal stem cells. Regen Med 2008; 3:731-41. [DOI: 10.2217/17460751.3.5.731] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
25
|
Rolauffs B, Williams JM, Grodzinsky AJ, Kuettner KE, Cole AA. Distinct horizontal patterns in the spatial organization of superficial zone chondrocytes of human joints. J Struct Biol 2008; 162:335-44. [PMID: 18325787 DOI: 10.1016/j.jsb.2008.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 01/24/2008] [Accepted: 01/26/2008] [Indexed: 11/19/2022]
Abstract
A better understanding of the unique cellular and functional properties of the superficial zone of articular cartilage may aid current strategies in tissue engineering which attempts a layered design for the repair of cartilage lesions to avert or postpone the onset of osteoarthritis. However, data pertaining to the cellular organization of non-degenerated superficial zone of articular cartilage is not available for most human joints. The present study analyzed the arrangement of chondrocytes of non-degenerated human joints (shoulder, elbow, knee, and ankle) by using fluorescence microscopy of the superficial zone in a top-down view. The resulting horizontal chondrocyte arrangements were tested for randomness, homogeneity or a significant grouping via point pattern analysis and were correlated with the joint type in which they occurred. The present study demonstrated that human superficial chondrocytes occurred in four distinct patterns of strings, clusters, pairs or single chondrocytes. Those patterns represented a significant grouping (p < 0.0001) with horizontal alignment. Each articular joint surface was dominated by only one of these four patterns (p < 0.001). Specific patterns correlated with specific diarthrodial joint types (p < 0.001). Further studies need to establish whether these organizational patterns are a consequence of their surrounding environment or whether they are linked to a functional purpose.
Collapse
Affiliation(s)
- Bernd Rolauffs
- Massachusetts Institute of Technology, Center for Biomedical Engineering, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
26
|
Liang HT, Feng XC, Ma TH. WATER CHANNEL ACTIVITY OF PLASMA MEMBRANE AFFECTS CHONDROCYTE MIGRATION AND ADHESION. Clin Exp Pharmacol Physiol 2008; 35:7-10. [DOI: 10.1111/j.1440-1681.2007.04808.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Ross JM, Sherwin AF, Poole CA. In vitro culture of enzymatically isolated chondrons: a possible model for the initiation of osteoarthritis. J Anat 2007; 209:793-806. [PMID: 17118066 PMCID: PMC2049000 DOI: 10.1111/j.1469-7580.2006.00651.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The aim of this study was to assess whether enzymatically isolated chondrons from normal adult articular cartilage could be used as a model for the onset of osteoarthritis, by comparison with mechanically extracted chondrons from osteoarthritic cartilage. Enzymatically isolated chondrons (EC) were cultured for 4 weeks in alginate beads and agarose gel constructs. Samples were collected at days 1 and 2, and weekly thereafter. Samples were immunolabelled for types II and VI collagen, keratan sulphate and fibronectin and imaged using confocal microscopy. Mechanically extracted chondrons (MC) were isolated, immunohistochemically stained for type VI collagen and examined by confocal microscopy. In culture, EC showed the following characteristics: swelling of the chondron capsule, cell division within the capsule and remodelling of the pericellular microenvironment. This was followed by chondrocyte migration through gaps in the chondron capsule. Four types of cell clusters formed over time in both alginate beads and agarose constructs. Cells within clusters exhibited quite distinct morphologies and also differed in their patterns of matrix deposition. These differences in behaviour may be due to the origin of the chondrocytes in the intact tissue. The behaviour of EC in culture paralleled the range of morphologies observed in MC, which presented as single and double chondrons and large chondron clusters. This preliminary study indicates that EC in culture share similar structural characteristics with MC isolated from osteoarthritic cartilage, confirming that some processes that occur in osteoarthritis, such as pericellular remodelling, take place in EC cultures. The study of EC in culture may therefore provide an additional tool to investigate the mechanisms operating during the initial stages of osteoarthritis. Further investigation of specific osteoarthritic phenotype markers will, however, be required in order to validate the value of this model.
Collapse
Affiliation(s)
- J M Ross
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.
| | | | | |
Collapse
|
28
|
Zhang D, Johnson LJ, Hsu HP, Spector M. Cartilaginous deposits in subchondral bone in regions of exposed bone in osteoarthritis of the human knee: histomorphometric study of PRG4 distribution in osteoarthritic cartilage. J Orthop Res 2007; 25:873-83. [PMID: 17343281 DOI: 10.1002/jor.20344] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The objective of this study was to identify and characterize cartilaginous deposits aggregates in the subchondral bone in areas of the human osteoarthritic knee with exposed bone. A specific aim was to determine the distribution of the joint lubrication molecule, lubricin/superficial zone protein [referred to by its gene, proteoglycan4 (PRG4)], in these cartilaginous deposits and in osteoarthritic cartilage. This work was carried out in the context of assessing the potential contribution of these chondrocyte aggregates for joint resurfacing in certain cartilage repair procedures. The discarded bone cuts of femoral condyles and tibial plateaus were collected from 11 patients with advanced osteoarthritis (OA) of the knee during total knee arthroplasty; 9 women and 2 men with a mean age of 68 years. Sections of paraffin-embedded tissue were stained with Safranin-O, and with antibodies to type II collagen, alpha-smooth muscle actin (SMA), and PRG4. Chondrocyte aggregates were found in the subchondral bone of regions of exposed bone in sections from five individuals. The average diameter of cartilaginous aggregates was 152 microm, and the average depth of the aggregates below the surface was about 475 microm. Most aggregates were fibrocartilaginous and stained positive for type II collagen. Of interest was the finding that the cartilaginous deposits and osteoarthritic cartilage contained PRG4. Only a small percentage of chondrocytes stained positive for SMA. Cartilaginous deposits containing chondrocyte aggregates exist in subchondral bone in regions of exposed bone in some patients with advanced OA of the knee. These cells may be able to contribute to the resurfacing of the joint in certain cartilage repair procedures.
Collapse
Affiliation(s)
- Dong Zhang
- Tissue Engineering, VA Boston Healthcare System, Orthopaedic Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02130, USA
| | | | | | | |
Collapse
|
29
|
Hung SC, Kuo PY, Chang CF, Chen TH, Ho LLT. Alpha-smooth muscle actin expression and structure integrity in chondrogenesis of human mesenchymal stem cells. Cell Tissue Res 2006; 324:457-66. [PMID: 16505995 DOI: 10.1007/s00441-006-0156-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
The expression of alpha-smooth muscle actin (SMA) by human mesenchymal stem cells (hMSCs) during chondrogenesis was investigated by the use of pellet culture. Undifferentiated hMSCs expressed low but detectable amounts of SMA and the addition of transforming growth factor beta1 (TGF-beta1) to the culture medium increased SMA expression in a dose-dependent manner. Differentiation in pellet culture was rapidly induced in the presence of TGF-beta1 and was accompanied by the development of annular layers at the surface of the pellet. These peripheral layers lacked expression of glycosaminoglycan and type II collagen during early differentiation. Progress in differentiation increased the synthesis of glycosaminoglycan and type II collagen and the expression of SMA in these layers. Double-staining for type II collagen and SMA by immunofluorescence demonstrated the differentiation of hMSCs into cells positive for these two proteins. The addition of cytochalasin D, a potent inhibitor of the polymerization of actin microfilaments, caused damage to the structural integrity and surface smoothness of the chondrogenic pellets. The SMA-positive cells in the peripheral layers of the chondrogenic pellets mimic those within the superficial layer of articular cartilage and are speculated to play a major role in cartilage development and maintenance.
Collapse
Affiliation(s)
- Shih-Chieh Hung
- Department of Orthopaedics and Traumatology, Veterans General Hospital-Taipei, 201 Sec. 2, Shih-Pai Road, 11217 Taipei, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
30
|
Romeo S, Eyden B, Prins FA, Briaire-de Bruijn IH, Taminiau AHM, Hogendoorn PCW. TGF-beta1 drives partial myofibroblastic differentiation in chondromyxoid fibroma of bone. J Pathol 2006; 208:26-34. [PMID: 16278817 DOI: 10.1002/path.1887] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 07/11/2005] [Indexed: 12/27/2022]
Abstract
Chondromyxoid fibroma (CMF) is a rare benign cartilaginous bone tumour with a lobular architecture containing stellate and myofibroblast-like spindle cells. The aim of this study was to investigate the presence, spatial distribution, and extent of myoid differentiation in CMF and to evaluate a possible causative role for TGF-beta1 signalling, which is known to promote smooth muscle actin (SMA) expression. Twenty cases were studied for immunoreactivity for muscle-specific actin (MSA), SMA, desmin, h-caldesmon, calponin, TGF-beta1, and plasminogen activator inhibitor type 1 (PAI-1). The extent of myofibroblastic differentiation was further investigated ultrastructurally, including immuno-electron microscopy using antibodies against MSA and SMA, focusing upon the different cell types in CMF. The expression of potential genes driving this process was quantified by Q-RT-PCR (TGF-beta1, fibronectin, its EDA splice variant, and PAI-1). Tumour cells, especially those with a spindled morphology, showed diffuse immunoreactivity for MSA, SMA, TGF-beta1, and PAI-1, while desmin, h-caldesmon, and calponin were absent. Ultrastructurally, neoplastic cells showed the presence of myofilaments and rare dense bodies, which were more prominent in spindle cells and less so in chondroblast-like cells. Immuno-electron microscopy confirmed the actin nature of these myofilaments. No fibronexus was identified. The functional activity of TGF-beta1 was demonstrated by the identification of PAI-1, a related downstream molecule both immunohistochemically as well as by Q-RT-PCR. There was a linear correlation between TGF-beta1 and PAI-1 expression. Fibronectin-EDA levels were low. We have therefore substantiated the presence of morphological, immunohistochemical, and immuno-electron microscopic partial myofibroblastic differentiation in CMF, driven by TGF-beta1 signalling.
Collapse
Affiliation(s)
- Salvatore Romeo
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Hastreiter D, Chao J, Wang Q, Ozuna RM, Spector M. Alpha-smooth muscle actin in pathological human disc nucleus pulposus cells in vivo and in vitro. Wound Repair Regen 2004; 12:430-8. [PMID: 15260808 DOI: 10.1111/j.1067-1927.2004.12408.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
That a contractile actin isoform has been found in cells of other cartilage tissues in healing and disease states prompted this investigation of the presence of alpha-smooth muscle actin (alpha-SMA) in pathological human intervertebral disc tissue. The presence of this isoform has been reported in human intervertebral disc specimens obtained at autopsy from subjects for whom there were no reported symptoms. An objective of this study was to evaluate the cell density and percentage of alpha-SMA-containing cells in pathological nucleus pulposus tissue obtained from lumbar disc surgery from 17 patients. Additionally, explants of nucleus pulposus material were cultured to determine how alpha-SMA expression changed with time in vitro. Seventy-six 5-mm diameter explants (approximately 2 mm thick) pooled from six lumbar surgeries were cultured for 1, 2, 4, or 6 weeks. Microtomed sections of paraffin-embedded specimens were stained with hematoxylin and eosin or a monoclonal antibody to alpha-SMA. Histologically, cells were categorized as to alpha-SMA phenotype (positive or negative), and the areal cell density was determined. The evaluation of the cultured nucleus pulposus explants also included documentation of the percentage of cells that were round or elongated and the percentage of the cells that were part of a group (group: >/= 2 cells). Every nucleus pulposus section exhibited the presence of alpha-SMA-containing cells, which accounted for approximately 24 percent of the cells in vivo. In vivo, the cell density was significantly higher in older individuals (p = 0.02). The average time for cell outgrowth from the explants was 8.6 days. Approximately 10-15 percent of the cells in the explants stained positive for alpha-SMA. The time in culture had no significant effect on any of the outcome measures except the percentage of alpha-SMA-containing cells that were round (p = 0.008), with values decreasing through 4 weeks and then slightly rising at 6 weeks. The role of alpha-SMA in intervertebral disc pathology warrants further investigation.
Collapse
Affiliation(s)
- Dawn Hastreiter
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
33
|
Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 2004; 84:649-98. [PMID: 15044685 DOI: 10.1152/physrev.00031.2003] [Citation(s) in RCA: 962] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The extracellular matrix (ECM), and especially the connective tissue with its collagen, links tissues of the body together and plays an important role in the force transmission and tissue structure maintenance especially in tendons, ligaments, bone, and muscle. The ECM turnover is influenced by physical activity, and both collagen synthesis and degrading metalloprotease enzymes increase with mechanical loading. Both transcription and posttranslational modifications, as well as local and systemic release of growth factors, are enhanced following exercise. For tendons, metabolic activity, circulatory responses, and collagen turnover are demonstrated to be more pronounced in humans than hitherto thought. Conversely, inactivity markedly decreases collagen turnover in both tendon and muscle. Chronic loading in the form of physical training leads both to increased collagen turnover as well as, dependent on the type of collagen in question, some degree of net collagen synthesis. These changes will modify the mechanical properties and the viscoelastic characteristics of the tissue, decrease its stress, and likely make it more load resistant. Cross-linking in connective tissue involves an intimate, enzymatical interplay between collagen synthesis and ECM proteoglycan components during growth and maturation and influences the collagen-derived functional properties of the tissue. With aging, glycation contributes to additional cross-linking which modifies tissue stiffness. Physiological signaling pathways from mechanical loading to changes in ECM most likely involve feedback signaling that results in rapid alterations in the mechanical properties of the ECM. In developing skeletal muscle, an important interplay between muscle cells and the ECM is present, and some evidence from adult human muscle suggests common signaling pathways to stimulate contractile and ECM components. Unaccostumed overloading responses suggest an important role of ECM in the adaptation of myofibrillar structures in adult muscle. Development of overuse injury in tendons involve morphological and biochemical changes including altered collagen typing and fibril size, hypervascularization zones, accumulation of nociceptive substances, and impaired collagen degradation activity. Counteracting these phenomena requires adjusted loading rather than absence of loading in the form of immobilization. Full understanding of these physiological processes will provide the physiological basis for understanding of tissue overloading and injury seen in both tendons and muscle with repetitive work and leisure time physical activity.
Collapse
Affiliation(s)
- Michael Kjaer
- Sports Medicine Research Unit, Department of Rheumatology, Copenhagen University Hospital at Bispebjerg, 23 Bispebjerg Bakke, DK-2400 Copenhagen NV, Denmark.
| |
Collapse
|
34
|
Zaleskas JM, Kinner B, Freyman TM, Yannas IV, Gibson LJ, Spector M. Contractile forces generated by articular chondrocytes in collagen-glycosaminoglycan matrices. Biomaterials 2004; 25:1299-308. [PMID: 14643604 DOI: 10.1016/j.biomaterials.2003.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective of the study was to directly measure the force of contraction of adult articular chondrocytes and to examine their contractile behavior in collagen-glycosaminoglycan analogs of extracellular matrix by live cell imaging in vitro. The contractile forces generated by passages 2 and 3 adult canine articular chondrocytes were measured using a cell force monitor. The contractile behavior of the cells was also directly imaged as they were cultured in collagen-glycosaminoglycan scaffolds. Passage 2 cells seeded in a collagen-glycosaminoglycan scaffold were capable of generating a force of 0.3 nN/cell. Chondrocytes subcultured through a third passage generated a force twice that level, paralleling the increase in the alpha-smooth muscle actin (SMA) content of the cells as demonstrated by Western blot analysis. Treatment of passage 3 cells with staurosporine reduced the force of contraction by approximately one-half, reflecting the effects of this agent in reducing the SMA content of the cells and disrupting the microfilaments. These values compare with 1 nN previously reported for lapine dermal fibroblasts of passage 5-7, using the same apparatus. Direct live cell imaging documented the contractile behavior of the articular chondrocytes in the collagen-glycosaminoglycan matrix in the time frame in which the force was directly measured in the cell force monitor. This imaging demonstrated how the cells acted individually and in unison to buckle the collagen struts making up the matrix. Adult articular chondrocytes are capable of generating a SMA-enabled force of contraction sufficient to model extracellular matrix molecules.
Collapse
Affiliation(s)
- Janice M Zaleskas
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
35
|
Hildebrand KA, Zhang M, van Snellenberg W, King GJW, Hart DA. Myofibroblast numbers are elevated in human elbow capsules after trauma. Clin Orthop Relat Res 2004:189-97. [PMID: 15021153 PMCID: PMC2950171 DOI: 10.1097/00003086-200402000-00031] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Elbow contractures, a frequent problem after injury, can be treated by excision of the joint capsule. However, the underlying changes in the joint capsule are poorly understood. Based on skin healing work, we examined the hypotheses that myofibroblast numbers and expression of a myofibroblast marker alpha-smooth muscle actin, are elevated in patients with posttraumatic joint contractures. Anterior capsules were obtained from six patients who had operative release of posttraumatic contractures greater than 5 months after injury and six elbows of organ donors free of contractures. Immunohistochemical studies revealed that myofibroblast numbers and percentage of total cells that were myofibroblasts were significantly elevated in the joint capsules from patients with contractures (326 +/- 61 cells per field, 36% +/- 4% total cells) when compared with similar tissues of the organ donors (69 +/- 41 cells per field, 9% +/- 4% total cells). Western blot analysis showed that protein levels of alpha-smooth muscle actin were significantly elevated in patients with posttraumatic joint contractures. However, analysis with reverse transcription-polymerase chain reaction determined that messenger ribonucleic acid levels for smooth muscle actin normalized to the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase were not significantly different between the two groups. An association between increased numbers of myofibroblasts and posttraumatic joint contractures has been established in the human elbow capsule. Additional work is required to determine whether myofibroblast regulators may be targets for adjuvant therapies of posttraumatic contractures.
Collapse
Affiliation(s)
- Kevin A Hildebrand
- McCaig Centre for Joint Injury and Arthritis Research, University of Calgary, Canada.
| | | | | | | | | |
Collapse
|
36
|
Chang C, Lauffenburger DA, Morales TI. Motile chondrocytes from newborn calf: migration properties and synthesis of collagen II. Osteoarthritis Cartilage 2003; 11:603-12. [PMID: 12880583 DOI: 10.1016/s1063-4584(03)00087-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine whether differentiated chondrocytes are motile. DESIGN Calf articular chondrocytes isolated from six animals were cultured in spinner flasks and removed on days 3 and 7. Boyden chamber assays and time-lapse videomicroscopy were performed to monitor and quantify cell migration. A novel method for selectively harvesting and metabolically labeling the migrated cells was developed, based on cell movement to the underside of the Boyden chamber membranes. The 3H-collagen synthesized by these cells was purified and analyzed by SDS-PAGE and autoradiography either before or after cyanogen bromide cleavage. RESULTS In Boyden chambers, locomotion of day 3 chondrocytes on fibronectin-coated membranes was approximately 3-fold higher than on bovine serum albumin-coated controls (39+/-15 vs 12+/-8 cells/mm(2), respectively (P=0.005)). Insulin-like growth factor-I (IGF-I, 10 ng/ml) was chemotactic, increasing motility to 87+/-16 cells/mm(-) (difference from fibronectin alone: P=0.0003). A similar response was observed for day 7 cells, but IGF-I activation was not as pronounced (P=0.055). The collagen patterns produced by the migrated cells closely resembled those of standard collagen type II, without any evidence of collagen I production. In videotracking experiments, motile cells attached on fibronectin exhibited typical lamellipodia and filopodia, and approximately 30% of attached cells were motile (speed >1 micro m/h and directional persistence >1h). Typical cell path lengths were 30-50 micro m, substantially greater than a full cell length displacement. CONCLUSION A population of well-differentiated chondrocytes capable of matrix (COL II) synthesis are motile in vitro. This original finding opens new avenues to study the potential of motile cells for cartilage repair.
Collapse
Affiliation(s)
- C Chang
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02114, USA.
| | | | | |
Collapse
|
37
|
Lee CR, Grodzinsky AJ, Spector M. Modulation of the contractile and biosynthetic activity of chondrocytes seeded in collagen-glycosaminoglycan matrices. TISSUE ENGINEERING 2003; 9:27-36. [PMID: 12625951 DOI: 10.1089/107632703762687500] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Studies have demonstrated that articular chondrocytes can express the gene for alpha-smooth muscle actin (SMA) and can contract porous polymeric matrices employed for tissue engineering, thereby altering the pore structure and distorting the shape of the scaffold. The objectives of this study were to determine whether an agent known to disrupt microfilament organization in chondrocytes could reduce this contractility and to assess whether there was an association between the contractile behavior of chondrocytes and their biosynthetic activity. Staurosporine, an antibiotic known to inhibit protein kinase C and disrupt cytoskeletal structure, was used as the agent to modulate the chondrocytic phenotype and contractile and biosynthetic activity of serially passaged adult canine chondrocytes seeded in type 1 collagen-glycosaminoglycan scaffolds. Cells in monolayer culture treated with as little as 3 nM staurosporine for 4 days contained type II procollagen, whereas few cells in the untreated control cultures demonstrated type II procollagen synthesis. Treatment with staurosporine also led to a decrease in the amount of SMA synthesized by the cells. Consistent with this decreased expression of the contractile actin isoform, cells cultured in the collagen-glycosaminoglycan scaffolds and treated with 5 nM staurosporine contracted the scaffold significantly less than untreated cells (15% diameter contraction by treated cells, compared with more than 50% contraction by untreated cells). The staurosporine-treated cells were biosynthetically active, displaying higher rates of protein and glycosaminoglycan synthesis, as indicated by rates of incorporation of [(3)H]proline and [(35)S]sulfate, respectively, compared with untreated cells. The long-held notion that changes in cytoskeletal structure influence phenotypic characteristics of cultured chondrocytes may now be extended to relate expression of a specific muscle actin isoform to certain cell processes. Moreover, the finding that chondrocytes with a lower level of expression of SMA and reduced contractility display higher rates of biosynthesis warrants further study.
Collapse
Affiliation(s)
- C R Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
38
|
Kinner B, Zaleskas JM, Spector M. Regulation of smooth muscle actin expression and contraction in adult human mesenchymal stem cells. Exp Cell Res 2002; 278:72-83. [PMID: 12126959 DOI: 10.1006/excr.2002.5561] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prior studies have demonstrated the expression of a contractile actin isoform, alpha-smooth muscle actin, in bone marrow stromal cells. One objective of the current study was to correlate contractility with alpha-smooth muscle actin expression in human bone marrow stroma-derived mesenchymal stem cells. A second objective was to determine the effects of transforming growth factor-beta1, platelet derived growth factor-BB, and a microfilament-modifying agent on alpha-smooth muscle actin expression and alpha-smooth muscle actin-enabled contraction. Adult human bone marrow stromal cells were passaged in monolayer and their inducibility to chondrocytic, osteoblastic, and adipogenic phenotypes was demonstrated. Western blot analysis was employed along with densitometry to quantify the alpha-smooth muscle actin content of the cells and their contractility was evaluated by their contraction of a type I collagen-glycosaminoglycan sponge-like matrix into which they were seeded. Transforming growth factor-beta1 (1 ng/ml) significantly increased and platelet-derived growth factor-BB (10 ng/ml) decreased alpha-smooth muscle actin expression and the contractility of the cells. Cytochalasin D also blocked cell contraction. There was a notably high correlation of cell-mediated contraction normalized to the DNA content of the matrices with alpha-smooth muscle actin content of the cells by linear regression analysis (R(2) = 0.88). These findings lay the groundwork for considering the role of alpha-smooth muscle actin-enabled contraction in mesenchymal stem cells and in their connective tissue cell progeny.
Collapse
Affiliation(s)
- B Kinner
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
39
|
Spector M. Novel cell-scaffold interactions encountered in tissue engineering: contractile behavior of musculoskeletal connective tissue cells. TISSUE ENGINEERING 2002; 8:351-7. [PMID: 12167222 DOI: 10.1089/107632702760184628] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Methods employed in the course of tissue engineering often offer unique opportunities to observe cell-matrix interactions that cannot otherwise be viewed. These observations may provide insights into cell behavior than can contribute important new knowledge about cell biology. One such set of observations led to the discoveries that musculoskeletal connective tissue cells express a contractile muscle actin isoform, alpha-smooth muscle actin, and can contract. This knowledge may help to explain how these cells generate forces required for certain physiological and pathological functions, and this information may inform future approaches to regulate this function to advance tissue engineering. Tissue engineering science is thus emerging as an importance force that can both contribute to cell and molecular biology and add to the fund of knowledge supporting the production of tissue in vitro or in vivo to improve the management of a wide variety of disorders.
Collapse
Affiliation(s)
- M Spector
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Kinner B, Gerstenfeld LC, Einhorn TA, Spector M. Expression of smooth muscle actin in connective tissue cells participating in fracture healing in a murine model. Bone 2002; 30:738-45. [PMID: 11996913 DOI: 10.1016/s8756-3282(02)00695-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of alpha-smooth muscle actin (SMA)-expressing fibroblasts in the contraction of skin wounds has been known for three decades. Recent studies have demonstrated that osteoblasts can also express the gene for this contractile muscle actin isoform and can contract a collagen-glycosaminoglycan analog of extracellular matrix in vitro. These findings provided rationale for the hypothesis that SMA-expressing cells contribute to fracture healing by drawing the bone ends together. To begin to test this hypothesis, immunohistochemistry was employed to evaluate the distribution of connective tissue cells expressing SMA in a mouse model of successful fracture healing. The results demonstrated that the majority of the cells comprising the mesenchymal tissue interposed between the fracture ends contained SMA after 7 and 21 days, supporting the working hypothesis. Most of the osteoblasts lining the surfaces of newly forming bone and the chondrocytes comprising the cartilaginous callus also expressed this contractile actin isoform. The maximal SMA expression extended from 7 to 21 days postfracture. The finding of high levels of SMA expression in connective tissue cells participating in fracture healing suggests that SMA-enabled contraction may be playing a role in the healing process. These results warrant further study of the specific SMA-dependent cell behavior.
Collapse
Affiliation(s)
- B Kinner
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
41
|
Abstract
It is well known that certain connective tissue cells (viz., dermal fibroblasts) can express the gene for a muscle actin--alpha-smooth muscle actin--and can contract. This process contributes to skin wound closure and is responsible for Dupuytren's contracture. The objective of this study was to determine if human osteoblasts can also express the gene for alpha-smooth muscle actin. Immunohistochemistry using a monoclonal antibody for alpha-smooth muscle actin was performed on human cancellous bone samples obtained from 20 individuals at the time of total joint arthroplasty. The percentages of resting and active osteoblasts on the bone surfaces containing this muscle actin isoform were evaluated. Explants of human bone were also studied for the expression of alpha-smooth muscle actin in the tissue and in the outgrowing cells with time in culture. Western blot analysis was performed to quantify the alpha-smooth muscle actin content of the outgrowing cells relative to smooth muscle cell controls. Nine +/- 2% (mean +/- SEM; n = 20) of the cells classified as inactive osteoblasts and 69 +/- 3% (n = 19) of the cells identified as active osteoblasts on the bone surface contained alpha-smooth muscle actin. This difference was highly statistically significant (Student's t test, p < 0.0001). Similar profiles of alpha-smooth muscle actin-expressing cells were found in explants cultured for up to 12 weeks. Cells forming a layer on the surface of the explants and growing out from them in monolayer also contained alpha-smooth muscle actin by immunohistochemistry and Western blot analysis. Human osteoblasts can express the gene for alpha-smooth muscle actin. This expression should be considered a phenotypic characteristic of this cell type, conferred by its progenitor cells: bone marrow stromal-derived stem cells, and perhaps pericytes and smooth muscle cells.
Collapse
Affiliation(s)
- B Kinner
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
42
|
Ralphs JR, Waggett AD, Benjamin M. Actin stress fibres and cell-cell adhesion molecules in tendons: organisation in vivo and response to mechanical loading of tendon cells in vitro. Matrix Biol 2002; 21:67-74. [PMID: 11827794 DOI: 10.1016/s0945-053x(01)00179-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tendons consist of parallel longitudinal rows of cells separated by collagen fibres. The cells are in intimate contact longitudinally within rows, and laterally via sheet-like lateral cell processes between rows. At points of contact, they are linked by gap junctions. Since tendons stretch under load, such cell contacts require protection. Here we describe the organisation of the actin cytoskeleton and actin-based cell-cell interactions in vivo and examine the effect of cyclic tensile loading on tendon cells in vitro. Cells within longitudinal rows contained short longitudinally running actin stress fibres. Each fibre was aligned with similar fibres in the cells longitudinally on either side, and fibres appeared to be linked via adherens junctions. Overall, these formed long oriented rows of stress fibres running along the rows of tendon cells. In culture, junctional components n-cadherin and vinculin and the stress fibre component tropomyosin increased in strained cultures, whereas actin levels remained constant. These results suggest that: (1) cells are linked via actin-associated adherens junctions along the line of principal strain; and (2) under load, cells appear to attach themselves more strongly together, and assemble more of their cytoplasmic actin into stress fibres with tropomyosin. Taken together, this suggests that cell-cell contacts are protected during stretch, and also that the stress fibres, which are contractile, may provide an active mechanism for recovery from stretch. In addition, stress fibres are ideally oriented to monitor tensile load and thus may be important in mechanotransduction and the generation of signals passed via the gap junction network.
Collapse
Affiliation(s)
- J R Ralphs
- School of Biosciences, Cardiff University, Cardiff, UK.
| | | | | |
Collapse
|
43
|
Cai D, Marty-Roix R, Hsu HP, Spector M. Lapine and canine bone marrow stromal cells contain smooth muscle actin and contract a collagen-glycosaminoglycan matrix. TISSUE ENGINEERING 2001; 7:829-41. [PMID: 11749738 DOI: 10.1089/107632701753337762] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lapine and canine marrow stromal cells were found to contain a contractile actin isoform, alpha-smooth muscle actin (SMA), by immunohistochemistry and Western blot analysis. The SMA was found to be incorporated into stress fibers that were prominently displayed by the cells in monolayer culture. The cell content of this actin isoform increased with passage number. The contractility of SMA-expressing stromal cells was demonstrated by their contraction of collagen-glycosaminoglycan analogs of extracellular matrix into which they were seeded. The demonstration that marrow-derived stromal cells express the SMA gene may explain recent findings of this expression in musculoskeletal connective tissue cells including osteoblasts, chondrocytes, and fibrochondrocytes that may be derived from this mesenchymal stem cell. The implications of these findings for tissue engineering strategies employing marrow stromal cells are also discussed.
Collapse
Affiliation(s)
- D Cai
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
44
|
Lee CR, Grodzinsky AJ, Spector M. The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials 2001; 22:3145-54. [PMID: 11603587 DOI: 10.1016/s0142-9612(01)00067-9] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The healing of articular cartilage defects may be improved by the use of implantable three-dimensional matrices. The present study investigated the effects of four cross-linking methods on the compressive stiffness of collagen-glycosaminoglycan (CG) matrices and the interaction between adult canine articular chondrocytes and the matrix: dehydrothermal treatment (DHT), ultraviolet irradiation (UV), glutaraldehyde treatment (GTA), and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC). The degree and kinetics of chondrocyte-mediated contraction, chondrocyte proliferation, and protein and glycosaminoglycan synthesis were evaluated over a four-week period in vitro. Cell-mediated contraction of the matrices varied with cross-linking: the most compliant DHT and UV matrices contracted the most (60% reduction in matrix diameter) and stiffest EDAC matrices contracted the least (30% reduction in matrix diameter). All cross-linking protocols permitted cell proliferation and matrix synthesis as measured by DNA content and radiolabeled sulfate and proline incorporation, respectively. During the first week in culture, a lower level of proliferation was seen in the GTA matrices but over the four-week culture period, the GTA and EDAC matrices provided for the greatest cell proliferation. On day 2, there was a significantly lower rate of 3H-proline incorporation in the GTA matrices (p<0.003) although at later time points, the EDAC and GTA matrices exhibited the highest levels of matrix synthesis. With regard to cartilage-specific matrix molecule synthesis, immunohistochemistry revealed a greater amount of type II collagen in DHT and UV matrices at the early time points. These findings serve as a foundation for future studies of tissue engineering of articular cartilage and the association of chondrocyte contraction and the processes of mitosis and biosynthesis.
Collapse
Affiliation(s)
- C R Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | | | |
Collapse
|
45
|
Zaleskas JM, Kinner B, Freyman TM, Yannas IV, Gibson LJ, Spector M. Growth factor regulation of smooth muscle actin expression and contraction of human articular chondrocytes and meniscal cells in a collagen-GAG matrix. Exp Cell Res 2001; 270:21-31. [PMID: 11597124 DOI: 10.1006/excr.2001.5325] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent work has demonstrated that human articular chondrocytes and meniscus cells can express the gene for a contractile actin isoform, alpha-smooth muscle actin (SMA), in vivo. The objective of the present study was to evaluate the effects of two growth factors, transforming growth factor (TGF)-beta1 and platelet-derived growth factor (PDGF)-BB, on the SMA content of these cells and their contraction of a collagen-glycosaminoglycan (GAG) analog of extracellular matrix in vitro. TGF-beta1 was found to markedly increase SMA content of the cells and PDGF-BB decreased SMA expression, with both findings achieving statistical significance. A notable finding was the increased contraction of the collagen-GAG matrix induced by TGF-beta1 and the decrease in contraction resulting from PDGF-BB treatment, indicating a causal relationship between expression of SMA and the contractility of the cells. A novel cell force monitor, employed to estimate the force exerted per cell, demonstrated a higher force exerted by the TGF-beta1-treated cells. The findings demonstrate that the expression of SMA by articular chondrocytes and meniscal cells and their associated contractile behavior can be regulated by selected growth factors. This work provides a foundation for the rational investigation of the mechanisms underlying SMA-enabled contraction of these cell types and the control of this behavior in tissue engineering.
Collapse
Affiliation(s)
- J M Zaleskas
- Department of Orthopaedic Surgery, MRB 106, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
46
|
Ahluwalia S, Fehm M, Murray MM, Martin SD, Spector M. Distribution of smooth muscle actin-containing cells in the human meniscus. J Orthop Res 2001; 19:659-64. [PMID: 11518276 DOI: 10.1016/s0736-0266(00)00041-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This is the first report of a contractile actin isoform, a-smooth muscle actin (SMA), in the cells of the human meniscus that lacked meniscal tears based on gross anatomical appearance. Approximately 25% of the cells in the tissue contained SMA by immunohistochemistry. Most of the SMA-positive cells were chondrocytic in morphology.
Collapse
Affiliation(s)
- S Ahluwalia
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
47
|
Kinner B, Spector M. Smooth muscle actin expression by human articular chondrocytes and their contraction of a collagen-glycosaminoglycan matrix in vitro. J Orthop Res 2001; 19:233-41. [PMID: 11347696 DOI: 10.1016/s0736-0266(00)00081-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent studies have demonstrated that human articular chondrocytes can express the gene for a contractile muscle actin, alpha-smooth muscle actin (SMA), in situ. One objective of this work was to evaluate the SMA-content of isolated human articular chondrocytes using Western blot analysis and to correlate the amount of SMA in the cells with passage number and the number of days in culture. A second objective was to determine if articular cartilage-derived cells expressing the gene for SMA in vitro also continue to express type II collagen. A final aim of the current study was to determine if SMA-containing cartilage-derived cells were capable of contracting a collagen glycosaminoglycan analog of extracellular matrix in vitro. Articular chondrocytes were isolated from 13 patients undergoing total joint arthroplasty. Cells were serially passaged through passage 7. Samples were allocated for Western blot analysis of SMA. Cells in monolayer culture were also stained immunohistochemically for SMA and type II collagen. Cells from passage 3 and 7 were seeded into a porous type I collagen-glycosaminoglycan matrix and the diameter of the scaffolds measured every other day for 21 days. Immunohistochemistry of the articular cartilage samples revealed SMA in the articular chondrocytes in situ with a greater percentage of cells staining positive in the superficial half (60 +/- 1.2%; mean +/- SEM) of the cartilage than in the basal half (28 +/- 1.3%). There was an increasing amount of SMA in the cells in monolayer culture with passage number and a meaningful correlation of the SMA content with the days in culture (linear regression analysis; R2 = 0.72). Double staining for SMA and type II collagen showed that type II collagen-expressing cells in monolayer could also express SMA. SMA-containing cells were found to contract the collagen glycosaminoglycan matrix, with the cells containing more SMA (passage 7 cells) displaying more matrix contraction than those with a lesser amount of SMA (passage 3 cells). The results indicate that control of the expression of SMA may be important when employing articular chondrocytes, expanded in monolayer culture, for implantation alone or in a cell-seeded matrix for cartilage repair procedures.
Collapse
Affiliation(s)
- B Kinner
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
48
|
Spector M. Musculoskeletal connective tissue cells with muscle: Expression of muscle actin in and contraction of fibroblasts, chondrocytes, and osteoblasts. Wound Repair Regen 2001; 9:11-8. [PMID: 11350635 DOI: 10.1046/j.1524-475x.2001.00011.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of the gene for a muscle actin in certain nonmuscle cells and the contraction of these connective tissue cells has been associated with several important physiological and pathological processes; the contraction of healing skin wounds and the contracture in Dupuytren's disease being two notable examples. Studies in recent years have shown that a much wider variety of connective tissue cells than previously considered, including cells in many of the musculoskeletal tissues, e.g., chondrocytes and osteoblasts, can express the gene for alpha-smooth muscle actin and can display contractile behavior. These findings suggest that muscle actin-enabled cell contraction may also be playing important roles in the other connective tissues comprising the musculoskeletal system, namely, tendon, ligament, meniscus, intervertebral disc, articular cartilage, and bone.
Collapse
Affiliation(s)
- M Spector
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
49
|
Qiu W, Murray MM, Shortkroff S, Lee CR, Martin SD, Spector M. Outgrowth of chondrocytes from human articular cartilage explants and expression of alpha-smooth muscle actin. Wound Repair Regen 2000; 8:383-91. [PMID: 11115150 DOI: 10.1111/j.1524-475x.2000.00383.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objectives of this study were to investigate the effect of various enzymatic treatments on the outgrowth of chondrocytes from explants of adult human articular cartilage and the expression of a specific contractile protein isoform, alpha-smooth muscle actin, known to facilitate wound closure in other connective tissues. Explants of articular cartilage were prepared from specimens obtained from patients undergoing total joint arthroplasty. The time to cell outgrowth in vitro was determined and the expression of alpha-smooth muscle actin shown by immunohistochemistry. Treatment of the explants with collagenase for 15 minutes reduced the time to outgrowth from more than 30 days to 3 days. Hyaluronidase, chondroitinase ABC, and trypsin applied for the 15-minute period had no effect on the time to cell outgrowth when compared with untreated controls. Pretreatment with hyaluronidase prior to collagenase reduced the time to outgrowth. A notable finding of this study was that the majority of chondrocytes in the adult human articular cartilage specimens and virtually all of the outgrowing cells contained alpha-smooth muscle actin. We conclude that human articular chondrocytes have the capability to migrate through enzymatically degraded matrix and express a contractile actin isoform. Collagenase treatment reduces the time required for cell outgrowth.
Collapse
Affiliation(s)
- W Qiu
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
50
|
Wang Q, Breinan HA, Hsu HP, Spector M. Healing of defects in canine articular cartilage: distribution of nonvascular alpha-smooth muscle actin-containing cells. Wound Repair Regen 2000; 8:145-58. [PMID: 10810041 DOI: 10.1046/j.1524-475x.2000.00145.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective of this study was to evaluate the types of tissue resulting from spontaneous healing of surgically created defects in adult canine articular cartilage up to 29 weeks postoperatively, with specific attention directed toward the presence and distribution of cells containing the contractile actin isoform, alpha-smooth muscle actin. Two 4-mm diameter defects were made in the trochlear groove to the depth of the tidemark in 20 adult mongrel dogs. The areal percentage of specific tissue types in the reparative material was determined histomorphometrically. Immunohistochemistry was employed to evaluate the percentage of alpha-smooth muscle actin-containing cells. The results showed that approximately 50% of the chondrocytes in the superficial zone of the uninvolved articular cartilage expressed alpha-smooth muscle actin. A significantly lower percentage of alpha-smooth muscle actin-positive chondrocytes appeared in the uninvolved deep zone. Notably, the deep zone adjacent to the defect contained a greater percentage of such cells than in the uninvolved deep zone. Also of interest was that a greater percentage of nonvascular cells in the hyaline cartilage and fibrocartilage of the reparative tissue contained alpha-smooth muscle actin-positive cells, compared to the fibrous tissue in the defects. The findings of this study revealed that canine articular cartilage has some potential for spontaneous regeneration, including integration with the calcified cartilage zone. By 29 weeks, up to 40% of an areal cross section of an untreated full-thickness chondral defect was found to fill with hyaline cartilage, with up to 19% judged histologically similar to articular cartilage. The results warrant further consideration of the role of alpha-smooth muscle actin in chondrocytes in normal articular cartilage and in reparative tissue.
Collapse
Affiliation(s)
- Q Wang
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|