1
|
Vorel J, Kmentová N, Hahn C, Bureš P, Kašný M. An insight into the functional genomics and species classification of Eudiplozoon nipponicum (Monogenea, Diplozoidae), a haematophagous parasite of the common carp Cyprinus carpio. BMC Genomics 2023; 24:363. [PMID: 37380941 DOI: 10.1186/s12864-023-09461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Monogenea (Platyhelminthes, Neodermata) are the most species-rich class within the Neodermata superclass of primarily fish parasites. Despite their economic and ecological importance, monogenean research tends to focus on their morphological, phylogenetic, and population characteristics, while comprehensive omics analyses aimed at describing functionally important molecules are few and far between. We present a molecular characterisation of monogenean representative Eudiplozoon nipponicum, an obligate haematophagous parasite infecting the gills of the common carp. We report its nuclear and mitochondrial genomes, present a functional annotation of protein molecules relevant to the molecular and biochemical aspect of physiological processes involved in interactions with the fish hosts, and re-examinate the taxonomic position of Eudiplozoon species within the Diplozoidae family. RESULTS We have generated 50.81 Gbp of raw sequencing data (Illumina and Oxford Nanopore reads), bioinformatically processed, and de novo assembled them into a genome draft 0.94 Gbp long, consisting of 21,044 contigs (N50 = 87 kbp). The final assembly represents 57% of the estimated total genome size (~ 1.64 Gbp), whereby repetitive and low-complexity regions account for ~ 64% of the assembled length. In total, 36,626 predicted genes encode 33,031 proteins and homology-based annotation of protein-coding genes (PCGs) and proteins characterises 14,785 (44.76%) molecules. We have detected significant representation of functional proteins and known molecular functions. The numbers of peptidases and inhibitors (579 proteins), characterised GO terms (16,016 unique assigned GO terms), and identified KEGG Orthology (4,315 proteins) acting in 378 KEGG pathways demonstrate the variety of mechanisms by which the parasite interacts with hosts on a macromolecular level (immunomodulation, feeding, and development). Comparison between the newly assembled E. nipponicum mitochondrial genome (length of 17,038 bp) and other diplozoid monogeneans confirms the existence of two distinct Eudiplozoon species infecting different fish hosts: Cyprinus carpio and Carassius spp. CONCLUSIONS Although the amount of sequencing data and characterised molecules of monogenean parasites has recently increased, a better insight into their molecular biology is needed. The E. nipponicum nuclear genome presented here, currently the largest described genome of any monogenean parasite, represents a milestone in the study of monogeneans and their molecules but further omics research is needed to understand these parasites' biological nature.
Collapse
Affiliation(s)
- Jiří Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic.
| | - Nikol Kmentová
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, Diepenbeek, B-3590, Belgium
| | - Christoph Hahn
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz, A-8010, Austria
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| |
Collapse
|
2
|
Osteoclast Formation within a Human Co-Culture System on Bone Material as an In Vitro Model for Bone Remodeling Processes. J Funct Morphol Kinesiol 2018. [DOI: 10.3390/jfmk3010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
3
|
Lemma S, Di Pompo G, Porporato PE, Sboarina M, Russell S, Gillies RJ, Baldini N, Sonveaux P, Avnet S. MDA-MB-231 breast cancer cells fuel osteoclast metabolism and activity: A new rationale for the pathogenesis of osteolytic bone metastases. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3254-3264. [PMID: 28866133 DOI: 10.1016/j.bbadis.2017.08.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022]
Abstract
Recent progress in dissecting the molecular paracrine circuits of cancer and stromal cells in bone metastases (BM) are offering new options to improve current merely palliative approach. The study of tumor-stroma metabolic interplay may further ameliorate this scenario. In this context, we demonstrated that highly glycolytic MDA-MB-231 cancer cells, that form osteolytic BM in vivo, release a large amount of lactate at a significantly higher level than MCF7 cells. Thus, we speculated that lactate released from carcinoma cells is uptaken and metabolically used by osteoclasts, the key players of osteolysis associated with BM. First, we demonstrated that the release of lactate at the bone site is mediated by monocarboxylate transporter 4 (MCT4), as revealed by immunostaining and MCT4 localization at the plasma membrane of tumor cells in mouse model of BM and in human tissue sections of BM. Then, we showed that in vitro lactate is uptaken by osteoclasts to be used as a fuel for the oxidative metabolism of osteoclasts, ultimately enhancing Type I collagen resorption. The passive transport of lactate into osteoclasts was mediated by MCT1: MCT1 expression is significantly upregulated during osteoclast differentiation and Type I collagen resorption is significantly impaired when osteoclasts are treated with 7-(N-benzyl-N-methylamino)-2-oxo-2H-chromene-3-carboxylic acid, an MCT-1 inhibitor. Together, these data demonstrate that lactate released by glycolytic breast carcinoma cells in the bone microenvironment promotes the formation of osteolytic lesions, and provide the rationale for further studies on the use of MCT1 targeting as a novel therapeutic approach in advanced cancer patients with BM.
Collapse
Affiliation(s)
- Silvia Lemma
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paolo E Porporato
- Pole of Pharmacology, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCL), Brussels, Belgium
| | - Martina Sboarina
- Pole of Pharmacology, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCL), Brussels, Belgium
| | - Shonagh Russell
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States
| | - Robert J Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCL), Brussels, Belgium
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
4
|
Lips KS, Yanko Ö, Kneffel M, Panzer I, Kauschke V, Madzharova M, Henss A, Schmitz P, Rohnke M, Bäuerle T, Liu Y, Kampschulte M, Langheinrich AC, Dürselen L, Ignatius A, Heiss C, Schnettler R, Kilian O. Small changes in bone structure of female α7 nicotinic acetylcholine receptor knockout mice. BMC Musculoskelet Disord 2015; 16:5. [PMID: 25636336 PMCID: PMC4328057 DOI: 10.1186/s12891-015-0459-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/12/2015] [Indexed: 12/21/2022] Open
Abstract
Background Recently, analysis of bone from knockout mice identified muscarinic acetylcholine receptor subtype M3 (mAChR M3) and nicotinic acetylcholine receptor (nAChR) subunit α2 as positive regulator of bone mass accrual whereas of male mice deficient for α7-nAChR (α7KO) did not reveal impact in regulation of bone remodeling. Since female sex hormones are involved in fair coordination of osteoblast bone formation and osteoclast bone degradation we assigned the current study to analyze bone strength, composition and microarchitecture of female α7KO compared to their corresponding wild-type mice (α7WT). Methods Vertebrae and long bones of female 16-week-old α7KO (n = 10) and α7WT (n = 8) were extracted and analyzed by means of histological, radiological, biomechanical, cell- and molecular methods as well as time of flight secondary ion mass spectrometry (ToF-SIMS) and transmission electron microscopy (TEM). Results Bone of female α7KO revealed a significant increase in bending stiffness (p < 0.05) and cortical thickness (p < 0.05) compared to α7WT, whereas gene expression of osteoclast marker cathepsin K was declined. ToF-SIMS analysis detected a decrease in trabecular calcium content and an increase in C4H6N+ (p < 0.05) and C4H8N+ (p < 0.001) collagen fragments whereas a loss of osteoid was found by means of TEM. Conclusions Our results on female α7KO bone identified differences in bone strength and composition. In addition, we could demonstrate that α7-nAChRs are involved in regulation of bone remodelling. In contrast to mAChR M3 and nAChR subunit α2 the α7-nAChR favours reduction of bone strength thereby showing similar effects as α7β2-nAChR in male mice. nAChR are able to form heteropentameric receptors containing α- and β-subunits as well as the subunits α7 can be arranged as homopentameric cation channel. The different effects of homopentameric and heteropentameric α7-nAChR on bone need to be analysed in future studies as well as gender effects of cholinergic receptors on bone homeostasis.
Collapse
Affiliation(s)
- Katrin S Lips
- Laboratory for Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstr. 9, 35394, Giessen, Germany.
| | - Özcan Yanko
- Laboratory for Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstr. 9, 35394, Giessen, Germany.
| | - Mathias Kneffel
- Laboratory for Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstr. 9, 35394, Giessen, Germany.
| | - Imke Panzer
- Laboratory for Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstr. 9, 35394, Giessen, Germany.
| | - Vivien Kauschke
- Laboratory for Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstr. 9, 35394, Giessen, Germany.
| | - Maria Madzharova
- Laboratory for Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstr. 9, 35394, Giessen, Germany.
| | - Anja Henss
- Institute for Physical Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392, Giessen, Germany.
| | - Peter Schmitz
- Institute for Physical Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392, Giessen, Germany.
| | - Marcus Rohnke
- Institute for Physical Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392, Giessen, Germany.
| | - Tobias Bäuerle
- Institute of Radiology, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Palmsanlage 5, 91054, Erlangen, Germany.
| | - Yifei Liu
- Department of Medical Physics in Radiology, German Cancer Research Center, INF 280, D-69120, Heidelberg, Germany.
| | - Marian Kampschulte
- Department of Radiology, Justus-Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany.
| | - Alexander C Langheinrich
- Department of Diagnostic and Interventional Radiology, BG Trauma Hospital, Friedberger Landstraße 430, 60389, Frankfurt/Main, Germany.
| | - Lutz Dürselen
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research University of Ulm, Ulm, Germany.
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research University of Ulm, Ulm, Germany.
| | - Christian Heiss
- Department of Trauma Surgery Giessen, University Hospital of Giessen-Marburg, Justus-Liebig University Giessen, Rudolf-Buchheim-Str. 7, 35392, Giessen, Germany.
| | - Reinhard Schnettler
- Laboratory for Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstr. 9, 35394, Giessen, Germany. .,Department of Trauma Surgery Giessen, University Hospital of Giessen-Marburg, Justus-Liebig University Giessen, Rudolf-Buchheim-Str. 7, 35392, Giessen, Germany.
| | - Olaf Kilian
- Laboratory for Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstr. 9, 35394, Giessen, Germany. .,Department of Orthopedics and Trauma, Zentralklinik Bad Berka, Robert-Koch-Allee 9, 99437, Bad Berka, Germany.
| |
Collapse
|
5
|
Pivetta E, Scapolan M, Wassermann B, Steffan A, Colombatti A, Spessotto P. Blood-derived human osteoclast resorption activity is impaired by Hyaluronan-CD44 engagement via a p38-dependent mechanism. J Cell Physiol 2011; 226:769-79. [PMID: 20799279 DOI: 10.1002/jcp.22398] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The control of bone resorption is crucial in osteolytic diseases. Once attached to bone, osteoclasts (OCs) initiate the resorption process through the activation of a complex cascade of morphological and biochemical changes. Hyaluronan (HA), an extracellular glycosaminoglycan long non-branching polysaccharide, is expressed in bone matrices. Here we demonstrate that HA counter-balances the erosion activity of human mature OCs by significantly reducing their degradative potential. HA treatment of fully differentiated OCs derived from human peripheral blood monocytes inhibited migration on collagen as well as bone resorption. HA-mediated effects were primarily due to TRAcP, MMP-9, and cathepsin K down-regulation and to the increased levels of TIMP-1, a natural MMP-9 inhibitor. Binding of HA to mature OCs was entirely mediated by CD44: function-blocking anti-CD44 antibodies fully abrogated HA effects, and the engagement of HA receptor caused a rapid de-phosphorylation of Ser325 in the CD44 cytoplasmic tail. The inhibitory action by HA was associated with a transient up-phosphorylation of Pyk2, a novel persistent phosphorylation of p38 and the down-regulation of NFATc1 transcription factor. Our results provide a direct evidence for the involvement of CD44 in the HA-dependent regulation of OC activity and suggest a signaling pathway that could be unique in OC function inhibition.
Collapse
Affiliation(s)
- Eliana Pivetta
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Morko J, Kiviranta R, Mulari MTK, Ivaska KK, Väänänen HK, Vuorio E, Laitala-Leinonen T. Overexpression of cathepsin K accelerates the resorption cycle and osteoblast differentiation in vitro. Bone 2009; 44:717-28. [PMID: 19118660 DOI: 10.1016/j.bone.2008.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 10/15/2008] [Accepted: 11/19/2008] [Indexed: 11/27/2022]
Abstract
Bone resorption is a multistep process including osteoclast attachment, cytoskeletal reorganization, formation of four distinct plasma membrane domains, and matrix demineralization and degradation followed by cell detachment. The present study describes the intracellular mechanisms by which overexpression of cathepsin K in osteoclasts results in enhanced bone resorption. Osteoclasts and bone marrow-derived osteoclast and osteoblast precursors were isolated from mice homozygous (UTU17(+/+)) and negative for the transgene locus. Cells cultured on bovine cortical bone slices were analyzed by fluorescence and confocal laser scanning microscopy, and bone resorption was studied by measurements of biochemical resorption markers, morphometry, and FESEM. Excessive cathepsin K protein and enzyme activity were microscopically observed in various intracellular vesicles and in the resorption lacunae of cathepsin K-overexpressing osteoclasts. The number of cathepsin K-containing vesicles in UTU17(+/+) osteoclasts was highly increased, and co-localization with markers for the biosynthetic and transcytotic pathways was observed throughout the cytoplasm. As a functional consequence of cathepsin K overexpression, biochemical resorption markers were increased in culture media of UTU17(+/+) osteoclasts. Detailed morphometrical analysis of the erosion in bone slices indicated that the increased biosynthesis of cathepsin K was sufficient to accelerate the osteoclastic bone resorption cycle. Cathepsin K overexpression also enhanced osteogenesis and induced the formation of exceptionally small, actively resorbing osteoclasts from their bone marrow precursors in vitro. The present study describes for the first time how enhancement in one phase of the osteoclastic resorption cycle also stimulates its other phases and further demonstrate that tight control and temporal coupling of mesenchymal and hematopoietic bone cells in this multistep process.
Collapse
Affiliation(s)
- Jukka Morko
- Department of Medical Biochemistry and Molecular Biology, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
7
|
Zini N, Avnet S, Ghisu S, Maraldi NM, Squarzoni S, Baldini N, Lattanzi G. Effects of prelamin A processing inhibitors on the differentiation and activity of human osteoclasts. J Cell Biochem 2008; 105:34-40. [DOI: 10.1002/jcb.21796] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Soares-Schanoski A, Gómez-Piña V, del Fresno C, Rodríguez-Rojas A, García F, Glaría A, Sánchez M, Vallejo-Cremades MT, Baos R, Fuentes-Prior P, Arnalich F, López-Collazo E. 6-Methylprednisolone down-regulates IRAK-M in human and murine osteoclasts and boosts bone-resorbing activity: a putative mechanism for corticoid-induced osteoporosis. J Leukoc Biol 2007; 82:700-9. [PMID: 17576820 DOI: 10.1189/jlb.1106673] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Osteoclasts are large, multinucleated cells, which originate from the fusion of macrophages. They play a central role in bone development and remodeling via the resorption of bone and are thus important mediators of bone loss, which leads to osteoporosis. IL-1R-associated kinase (IRAK)-M is a pseudokinase, which acts as a negative modulator of innate immune responses mediated by TLRs and IL-1R. Recently, it has been reported that IRAK-M also participates in the control of macrophage differentiation into osteoclasts. In addition, it was shown that IRAK-M knockout mice develop a strong osteoporosis phenotype, suggesting that down-regulation of this molecule activates osteoclast-mediated bone resorption. We studied the effect of the osteoporosis-inducing glucocorticoid, 6-methylprednisolone (6-MP), on IRAK-M expression in osteoclasts. Our results showed that osteoclasts, derived from THP-1 and RAW cells as well as human blood monocytes, differentiated into osteoclasts, express high levels of IRAK-M at mRNA and protein levels. In addition, 6-MP down-regulates IRAK-M expression, which correlates with an increased activation of bone resorption. These findings suggest a mechanism of corticosteroid-induced osteoporosis and open new avenues for treating this endemic disease of Western societies.
Collapse
|