1
|
Nie HY, Ge J, Liu KG, Yue Y, Li H, Lin HG, Yan HF, Zhang T, Sun HW, Yang JW, Zhou JL, Cui Y. The effects of microgravity on stem cells and the new insights it brings to tissue engineering and regenerative medicine. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:1-17. [PMID: 38670635 DOI: 10.1016/j.lssr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/06/2024] [Indexed: 04/28/2024]
Abstract
Conventional two-dimensional (2D) cell culture techniques may undergo modifications in the future, as life scientists have widely acknowledged the ability of three-dimensional (3D) in vitro culture systems to accurately simulate in vivo biology. In recent years, researchers have discovered that microgravity devices can address many challenges associated with 3D cell culture. Stem cells, being pluripotent cells, are regarded as a promising resource for regenerative medicine. Recent studies have demonstrated that 3D culture in microgravity devices can effectively guide stem cells towards differentiation and facilitate the formation of functional tissue, thereby exhibiting advantages within the field of tissue engineering and regenerative medicine. Furthermore, We delineate the impact of microgravity on the biological behavior of various types of stem cells, while elucidating the underlying mechanisms governing these alterations. These findings offer exciting prospects for diverse applications.
Collapse
Affiliation(s)
- Hong-Yun Nie
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jun Ge
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Kai-Ge Liu
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| | - Hai-Guan Lin
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| |
Collapse
|
2
|
Hashida A, Nakazato T, Uemura T, Liu L, Miyagawa S, Sawa Y, Kino-oka M. Effect of morphological change on the maturation of human induced pluripotent stem cell-derived cardiac tissue in rotating flow culture. Regen Ther 2023; 24:479-488. [PMID: 37767182 PMCID: PMC10520276 DOI: 10.1016/j.reth.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/06/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction Understanding the critical factors for the maturation of human induced pluripotent stem cell (hiPSC)-derived cardiac tissue is important for further development of culture techniques. Rotating flow culture, where the tissues float in the culture medium by balancing its gravitational settling and the medium flow generated in rotating disk-shaped culture vessels, is one of culture systems used for tissue engineering. It has previously been demonstrated that rotating flow culture leads to the formation of matured cardiac tissue with higher levels of function and structure than the other culture systems. However, the detailed mechanisms underlying the maturation of cardiac tissue remain unclear. This study investigated the maturation process of hiPSC-derived cardiac tissue in rotating flow culture with a focus on morphological changes in the tissue, which is a trigger for maturation. Methods The cardiac tissue, which consisted of cardiomyocytes derived from hiPSCs, was cultured on the 3D scaffold of poly (lactic-co-glycolic) acid (PLGA)-aligned nanofibers, in rotating flow culture for 5 days. During the culture, the time profile of projected area of tissue and formation of maturation marker proteins (β-myosin heavy chain and Connexin-43), tissue structure, and formation of nuclear lamina proteins (Lamin A/C) were compared with that in static suspension culture. Results The ratio of the projected area of tissue significantly decreased from Day 0 to Day 3 due to tissue shrinkage. In contrast, Western blot analysis revealed that maturation protein markers of cardiomyocytes significantly increased after Day 3. In addition, in rotating flow culture, flat-shaped nuclei and fiber-like cytoskeletal structures were distributed in the surface region of tissue where medium flow was continuously applied. Moreover, Lamin A/C, which are generally formed in differentiated cells owing to mechanical force across the cytoskeleton and critically affect the maturation of cardiomyocytes, were significantly formed in the tissue of rotating flow culture. Conclusions In this study, we found that spatial heterogeneity of tissue structure and tissue shrinkage occurred in rotating flow culture, which was not observed in static suspension culture. Moreover, from the quantitative analysis, it was also suggested that tissue shrinkage in rotating flow culture contributed its following tissue maturation. These findings showed one of the important characteristics of rotating flow culture which was not revealed in previous studies.
Collapse
Affiliation(s)
- Akihiro Hashida
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taro Nakazato
- Department of Surgery, Division of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, 2-15, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshimasa Uemura
- Department of Precise and Science Technology, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Cell Culture Marketing & Research Center, JTEC Corporation, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Li Liu
- Department of Surgery, Division of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, 2-15, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Surgery, Division of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, 2-15, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshiki Sawa
- Division of Health and Sciences, Graduate School of Medicine, Osaka University, 2-15, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Cui Y, Liu W, Zhao S, Zhao Y, Dai J. Advances in Microgravity Directed Tissue Engineering. Adv Healthc Mater 2023; 12:e2202768. [PMID: 36893386 DOI: 10.1002/adhm.202202768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/28/2023] [Indexed: 03/11/2023]
Abstract
Tissue engineering aims to generate functional biological substitutes to repair, sustain, improve, or replace tissue function affected by disease. With the rapid development of space science, the application of simulated microgravity has become an active topic in the field of tissue engineering. There is a growing body of evidence demonstrating that microgravity offers excellent advantages for tissue engineering by modulating cellular morphology, metabolism, secretion, proliferation, and stem cell differentiation. To date, there have been many achievements in constructing bioartificial spheroids, organoids, or tissue analogs with or without scaffolds in vitro under simulated microgravity conditions. Herein, the current status, recent advances, challenges, and prospects of microgravity related to tissue engineering are reviewed. Current simulated-microgravity devices and cutting-edge advances of microgravity for biomaterials-dependent or biomaterials-independent tissue engineering to offer a reference for guiding further exploration of simulated microgravity strategies to produce engineered tissues are summarized and discussed.
Collapse
Affiliation(s)
- Yi Cui
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China
| | - Weiyuan Liu
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Shuaijing Zhao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yannan Zhao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jianwu Dai
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| |
Collapse
|
4
|
Bednarczyk E. Chondrocytes In Vitro Systems Allowing Study of OA. Int J Mol Sci 2022; 23:ijms231810308. [PMID: 36142224 PMCID: PMC9499487 DOI: 10.3390/ijms231810308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is an extremely complex disease, as it combines both biological-chemical and mechanical aspects, and it also involves the entire joint consisting of various types of tissues, including cartilage and bone. This paper describes the methods of conducting cell cultures aimed at searching for the mechanical causes of OA development, therapeutic solutions, and methods of preventing the disease. It presents the systems for the cultivation of cartilage cells depending on the level of their structural complexity, and taking into account the most common solutions aimed at recreating the most important factors contributing to the development of OA, that is mechanical loads. In-vitro systems used in tissue engineering to investigate the phenomena associated with OA were specified depending on the complexity and purposefulness of conducting cell cultures.
Collapse
Affiliation(s)
- Ewa Bednarczyk
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
| |
Collapse
|
5
|
Zhang J, Wehrle E, Rubert M, Müller R. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. Int J Mol Sci 2021; 22:ijms22083971. [PMID: 33921417 PMCID: PMC8069718 DOI: 10.3390/ijms22083971] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
The field of tissue engineering has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes for regenerative medicine and pharmaceutical research. Conventional scaffold-based approaches are limited in their capacity to produce constructs with the functionality and complexity of native tissue. Three-dimensional (3D) bioprinting offers exciting prospects for scaffolds fabrication, as it allows precise placement of cells, biochemical factors, and biomaterials in a layer-by-layer process. Compared with traditional scaffold fabrication approaches, 3D bioprinting is better to mimic the complex microstructures of biological tissues and accurately control the distribution of cells. Here, we describe recent technological advances in bio-fabrication focusing on 3D bioprinting processes for tissue engineering from data processing to bioprinting, mainly inkjet, laser, and extrusion-based technique. We then review the associated bioink formulation for 3D bioprinting of human tissues, including biomaterials, cells, and growth factors selection. The key bioink properties for successful bioprinting of human tissue were summarized. After bioprinting, the cells are generally devoid of any exposure to fluid mechanical cues, such as fluid shear stress, tension, and compression, which are crucial for tissue development and function in health and disease. The bioreactor can serve as a simulator to aid in the development of engineering human tissues from in vitro maturation of 3D cell-laden scaffolds. We then describe some of the most common bioreactors found in the engineering of several functional tissues, such as bone, cartilage, and cardiovascular applications. In the end, we conclude with a brief insight into present limitations and future developments on the application of 3D bioprinting and bioreactor systems for engineering human tissue.
Collapse
|
6
|
Laurent A, Hirt-Burri N, Scaletta C, Michetti M, de Buys Roessingh AS, Raffoul W, Applegate LA. Holistic Approach of Swiss Fetal Progenitor Cell Banking: Optimizing Safe and Sustainable Substrates for Regenerative Medicine and Biotechnology. Front Bioeng Biotechnol 2020; 8:557758. [PMID: 33195124 PMCID: PMC7644790 DOI: 10.3389/fbioe.2020.557758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Safety, quality, and regulatory-driven iterative optimization of therapeutic cell source selection has constituted the core developmental bedrock for primary fetal progenitor cell (FPC) therapy in Switzerland throughout three decades. Customized Fetal Transplantation Programs were pragmatically devised as straightforward workflows for tissue procurement, traceability maximization, safety, consistency, and robustness of cultured progeny cellular materials. Whole-cell bioprocessing standardization has provided plethoric insights into the adequate conjugation of modern biotechnological advances with current restraining legislative, ethical, and regulatory frameworks. Pioneer translational advances in cutaneous and musculoskeletal regenerative medicine continuously demonstrate the therapeutic potential of FPCs. Extensive technical and clinical hindsight was gathered by managing pediatric burns and geriatric ulcers in Switzerland. Concomitant industrial transposition of dermal FPC banking, following good manufacturing practices, demonstrated the extensive potential of their therapeutic value. Furthermore, in extenso, exponential revalorization of Swiss FPC technology may be achieved via the renewal of integrative model frameworks. Consideration of both longitudinal and transversal aspects of simultaneous fetal tissue differential processing allows for a better understanding of the quasi-infinite expansion potential within multi-tiered primary FPC banking. Multiple fetal tissues (e.g., skin, cartilage, tendon, muscle, bone, lung) may be simultaneously harvested and processed for adherent cell cultures, establishing a unique model for sustainable therapeutic cellular material supply chains. Here, we integrated fundamental, preclinical, clinical, and industrial developments embodying the scientific advances supported by Swiss FPC banking and we focused on advances made to date for FPCs that may be derived from a single organ donation. A renewed model of single organ donation bioprocessing is proposed, achieving sustained standards and potential production of billions of affordable and efficient therapeutic doses. Thereby, the aim is to validate the core therapeutic value proposition, to increase awareness and use of standardized protocols for translational regenerative medicine, potentially impacting millions of patients suffering from cutaneous and musculoskeletal diseases. Alternative applications of FPC banking include biopharmaceutical therapeutic product manufacturing, thereby indirectly and synergistically enhancing the power of modern therapeutic armamentariums. It is hypothesized that a single qualifying fetal organ donation is sufficient to sustain decades of scientific, medical, and industrial developments, as technological optimization and standardization enable high efficiency.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Tec-Pharma SA, Bercher, Switzerland
- LAM Biotechnologies SA, Épalinges, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Anthony S. de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Wassim Raffoul
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Oxford Suzhou Center for Advanced Research, Science and Technology Co., Ltd., Oxford University, Suzhou, China
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Iseki T, Rothrauff BB, Kihara S, Sasaki H, Yoshiya S, Fu FH, Tuan RS, Gottardi R. Dynamic Compressive Loading Improves Cartilage Repair in an In Vitro Model of Microfracture: Comparison of 2 Mechanical Loading Regimens on Simulated Microfracture Based on Fibrin Gel Scaffolds Encapsulating Connective Tissue Progenitor Cells. Am J Sports Med 2019; 47:2188-2199. [PMID: 31307219 PMCID: PMC6637720 DOI: 10.1177/0363546519855645] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Microfracture of focal chondral defects often produces fibrocartilage, which inconsistently integrates with the surrounding native tissue and possesses inferior mechanical properties compared with hyaline cartilage. Mechanical loading modulates cartilage during development, but it remains unclear how loads produced in the course of postoperative rehabilitation affect the formation of the new fibrocartilaginous tissue. PURPOSE To assess the influence of different mechanical loading regimens, including dynamic compressive stress or rotational shear stress, on an in vitro model of microfracture repair based on fibrin gel scaffolds encapsulating connective tissue progenitor cells. STUDY DESIGN Controlled laboratory study. METHODS Cylindrical cores were made in bovine hyaline cartilage explants and filled with either (1) cartilage plug returned to original location (positive control), (2) fibrin gel (negative control), or (3) fibrin gel with encapsulated connective tissue progenitor cells (microfracture mimic). Constructs were then subjected to 1 of 3 loading regimens: (1) no loading (ie, unloaded), (2) dynamic compressive loading, or (3) rotational shear loading. On days 0, 7, 14, and 21, the integration strength between the outer chondral ring and the central insert was measured with an electroforce mechanical tester. The central core component, mimicking microfracture neotissue, was also analyzed for gene expression by real-time reverse-transcription polymerase chain reaction, glycosaminoglycan, and double-stranded DNA contents, and tissue morphology was analyzed histologically. RESULTS Integration strengths between the outer chondral ring and central neotissue of the cartilage plug and fibrin + cells groups significantly increased upon exposure to compressive loading compared with day 0 controls (P = .007). Compressive loading upregulated expression of chondrogenesis-associated genes (SRY-related HGMG box-containing gene 9 [SOX9], collagen type II α1 [COL2A1], and increased ratio of COL2A1 to collagen type I α1 [COL1A1], an indicator of more hyaline phenotype) in the neotissue of the fibrin + cells group compared with the unloaded group at day 21 (SOX9, P = .0032; COL2A1, P < .0001; COL2A1:COL1A1, P = .0308). Fibrin + cells constructs exposed to shear loading expressed higher levels of chondrogenic genes compared with the unloaded condition, but the levels were not as high as those for the compressive loading condition. Furthermore, catabolic markers (MMP3 and ADAMTS 5) were significantly upregulated by shear loading (P = .0234 and P < .0001, respectively) at day 21 compared with day 0. CONCLUSION Dynamic compressive loading enhanced neotissue chondrogenesis and maturation in a simulated in vitro model of microfracture, with generation of more hyaline-like cartilage and improved integration with the surrounding tissue. CLINICAL RELEVANCE Controlled loading after microfracture may be beneficial in promoting the formation of more hyaline-like cartilage repair tissue; however, the loading regimens applied in this in vitro model do not yet fully reproduce the complex loading patterns created during clinical rehabilitation. Further optimization of in vitro models of cartilage repair may ultimately inform rehabilitation protocols.
Collapse
Affiliation(s)
- Tomoya Iseki
- Center for Cellular and Molecular Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Hyogo College of Medicine, Nishinomiya, Hyōgo, Japan
| | - Benjamin B. Rothrauff
- Center for Cellular and Molecular Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shinsuke Kihara
- Center for Cellular and Molecular Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hiroshi Sasaki
- Center for Cellular and Molecular Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Freddie H. Fu
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- The Chinese University of Hong Kong, Hong Kong, China
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Fondazione Ri.MED, Palermo, Italy
| |
Collapse
|
8
|
Park IS, Jin RL, Oh HJ, Truong MD, Choi BH, Park SH, Park DY, Min BH. Sizable Scaffold-Free Tissue-Engineered Articular Cartilage Construct for Cartilage Defect Repair. Artif Organs 2018; 43:278-287. [PMID: 30374978 DOI: 10.1111/aor.13329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022]
Abstract
This study introduces an implantable scaffold-free cartilage tissue construct (SF) that is composed of chondrocytes and their self-produced extracellular matrix (ECM). Chondrocytes were grown in vitro for up to 5 weeks and subjected to various assays at different time points (1, 7, 21, and 35 days). For in vivo implantation, full-thickness defects (n = 5) were manually created on the trochlear groove of the both knees of rabbits (16-week old) and 3 week-cultured SF construct was implanted as an allograft for a month. The left knee defects were implanted with 1, 7, and 21 days in vitro cultured scaffold-free engineered cartilages. (group 2, 3, and 4, respectively). The maturity of the engineered cartilages was evaluated by histological, chemical and mechanical assays. The repair of damaged cartilages was also evaluated by gross images and histological observations at 4, 8, and 12 weeks postsurgery. Although defect of groups 1, 2, and 3 were repaired with fibrocartilage tissues, group 4 (21 days) showed hyaline cartilage in the histological observation. In particular, mature matrix and columnar organization of chondrocytes and highly expressed type II collagen were observed only in 21 days in vitro cultured SF cartilage (group 4) at 12 weeks. As a conclusion, cartilage repair with maturation was recapitulated when implanted the 21 day in vitro cultured scaffold-free engineered cartilage. When implanting tissue-engineered cartilage, the maturity of the cartilage tissue along with the cultivation period can affect the cartilage repair.
Collapse
Affiliation(s)
- In-Su Park
- Cell Therapy Center, Ajou University Medical center, Suwon, Korea
| | - Ri Long Jin
- Department of Orthopaedic Surgery, Ajou University, Suwon, Korea
| | - Hyun Ju Oh
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Minh-Dung Truong
- Cell Therapy Center, Ajou University Medical center, Suwon, Korea
| | - Byung Hyune Choi
- Division of Biomedical Sciences, Inha University, Incheon, Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan, Korea
| | - Do Young Park
- Cell Therapy Center, Ajou University Medical center, Suwon, Korea.,Department of Orthopaedic Surgery, Ajou University, Suwon, Korea
| | - Byoung-Hyun Min
- Cell Therapy Center, Ajou University Medical center, Suwon, Korea.,Department of Orthopaedic Surgery, Ajou University, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| |
Collapse
|
9
|
Pirosa A, Gottardi R, Alexander PG, Tuan RS. Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Res Ther 2018; 9:112. [PMID: 29678192 PMCID: PMC5910611 DOI: 10.1186/s13287-018-0847-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of veritable in-vitro models of bone tissue is essential to understand the biology of bone and its surrounding environment, to analyze the pathogenesis of bone diseases (e.g., osteoporosis, osteoarthritis, osteomyelitis, etc.), to develop effective therapeutic drug screening, and to test potential therapeutic strategies. Dysregulated interactions between vasculature and bone cells are often related to the aforementioned pathologies, underscoring the need for a bone model that contains engineered vasculature. Due to ethical restraints and limited prediction power of animal models, human stem cell-based tissue engineering has gained increasing relevance as a candidate approach to overcome the limitations of animals and to serve as preclinical models for drug testing. Since bone is a highly vascularized tissue, the concomitant development of vasculature and mineralized matrix requires a synergistic interaction between osteogenic and endothelial precursors. A number of experimental approaches have been used to achieve this goal, such as the combination of angiogenic factors and three-dimensional scaffolds, prevascularization strategies, and coculture systems. In this review, we present an overview of the current models and approaches to generate in-vitro stem cell-based vascularized bone, with emphasis on the main challenges of vasculature engineering. These challenges are related to the choice of biomaterials, scaffold fabrication techniques, and cells, as well as the type of culturing conditions required, and specifically the application of dynamic culture systems using bioreactors.
Collapse
Affiliation(s)
- Alessandro Pirosa
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
- Ri.MED Foundation, Via Bandiera 11, Palermo, 90133 Italy
| | - Peter G. Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| |
Collapse
|
10
|
Stannard JT, Edamura K, Stoker AM, O'Connell GD, Kuroki K, Hung CT, Choma TJ, Cook JL. Development of a whole organ culture model for intervertebral disc disease. J Orthop Translat 2015; 5:1-8. [PMID: 30035069 PMCID: PMC5987001 DOI: 10.1016/j.jot.2015.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/13/2015] [Accepted: 08/03/2015] [Indexed: 01/08/2023] Open
Abstract
Background/Objective Whole organ in vitro intervertebral disc models have been associated with poor maintenance of cell viability. No previous studies have used a rotating wall vessel bioreactor for intervertebral disc explants culture. The purpose of this study was to develop and validate an in vitro model for the assessment of biological and biomechanical measures of intervertebral disc health and disease. Methods To this end, endplate-intervertebral disc-endplate whole organ explants were harvested from the tails of rats. For the injured group, the annulus fibrosus was penetrated with a 20G needle to the nucleus pulposus and aspirated. Explants were cultured in a rotating wall vessel bioreactor for 14 days. Results Cell viability and histologic assessments were performed at Day 0, Day 1, Day 7, and Day 14. Compressive mechanical properties of the intervertebral disc were assessed at Day 0 and Day 14. In the annulus fibrosus and nucleus pulposus cells, the uninjured group maintained high viability through 14 days of culture, whereas cell viability in annulus fibrosus and nucleus pulposus of the injured intervertebral discs was markedly lower at Day 7 and Day 14. Histologically, the uninjured intervertebral discs maintained cell viability and tissue morphology and architecture through 14 days, whereas the injured intervertebral discs showed areas of cell death, loss of extracellular matrix integrity, and architecture by Day 14. Stiffness values for uninjured intervertebral discs were similar at Day 0 and Day 14, whereas the stiffness for the injured intervertebral discs was approximately 2.5 times greater at Day 14. Conclusion These results suggest that whole organ intervertebral discs explants can be successfully cultured in a rotating wall vessel bioreactor to maintain cell viability and tissue architecture in both annulus fibrosus and nucleus pulposus for at least 14 days. In addition, the injury used produced pathologic changes consistent with those seen in degenerative intervertebral disc disease in humans. This model will permit further study into potential future treatments and other mechanisms of addressing intervertebral disc disease.
Collapse
Affiliation(s)
- James T. Stannard
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
| | - Kazuya Edamura
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
- Laboratory of Veterinary Surgery, Nihon University, Fujisawa, Kanagawa, Japan
| | - Aaron M. Stoker
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
| | - Grace D. O'Connell
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Keiichi Kuroki
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
| | - Clark T. Hung
- Laboratory of Veterinary Surgery, Nihon University, Fujisawa, Kanagawa, Japan
| | - Theodore J. Choma
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| | - James L. Cook
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
- Corresponding author. Comparative Orthopaedic Laboratory, University of Missouri, 900 East Campus Drive, Columbia, MO 65211, USA.
| |
Collapse
|
11
|
Skardal A, Devarasetty M, Rodman C, Atala A, Soker S. Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro. Ann Biomed Eng 2015; 43:2361-73. [PMID: 25777294 DOI: 10.1007/s10439-015-1298-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/10/2015] [Indexed: 12/27/2022]
Abstract
Current in vitro models for tumor growth and metastasis are poor facsimiles of in vivo cancer physiology and thus, are not optimal for anti-cancer drug development. Three dimensional (3D) tissue organoid systems, which utilize human cells in a tailored microenvironment, have the potential to recapitulate in vivo conditions and address the drawbacks of current tissue culture dish 2D models. In this study, we created liver-based cell organoids in a rotating wall vessel bioreactor. The organoids were further inoculated with colon carcinoma cells in order to create liver-tumor organoids for in vitro modeling of liver metastasis. Immunofluorescent staining revealed notable phenotypic differences between tumor cells in 2D and inside the organoids. In 2D they displayed an epithelial phenotype, and only after transition to the organoids did the cells present with a mesenchymal phenotype. The cell surface marker expression results suggested that WNT pathway might be involved in the phenotypic changes observed between cells in 2D and organoid conditions, and may lead to changes in cell proliferation. Manipulating the WNT pathway with an agonist and antagonist showed significant changes in sensitivity to the anti-proliferative drug 5-fluoruracil. Collectively, the results show the potential of in vitro 3D liver-tumor organoids to serve as a model for metastasis growth and for testing the response of tumor cells to current and newly discovered drugs.
Collapse
Affiliation(s)
- Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Mahesh Devarasetty
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Christopher Rodman
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA.
| |
Collapse
|
12
|
Yoshioka T, Mishima H, Sakai S, Uemura T. Long-Term Results of Cartilage Repair after Allogeneic Transplantation of Cartilaginous Aggregates Formed from Bone Marrow-Derived Cells for Large Osteochondral Defects in Rabbit Knees. Cartilage 2013; 4:339-44. [PMID: 26069678 PMCID: PMC4297161 DOI: 10.1177/1947603513494003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells. METHODS Bone marrow cells were harvested from 12-day-old rabbits. The cells were subjected to a monolayer culture, and the spindle-shaped cells attached to the flask surface were defined as bone marrow-derived mesenchymal cells. After the monolayer culture, a 3-dimensional cartilaginous aggregate was formed using a bioreactor with chondrogenesis. We created osteochondral defects, measuring 5 mm in diameter and 4 mm in depth, at the femoral trochlea of 10-week-old rabbits. Two groups were established, the transplanted group in which the cartilaginous aggregate was transplanted into the defect, and the control group in which the defect was left untreated. Twenty-six and 52 weeks after surgery, the rabbits were sacrificed and their tissue repair status was evaluated macroscopically (International Cartilage Repair Society [ICRS] score) and histologically (O'Driscoll score). RESULTS The ICRS scores were as follows: at week 26, 7.2 ± 0.5 and 7.6 ± 0.8; at week 52, 7.6 ± 1.1 and 9.7 ± 0.7, for the transplanted and control groups, respectively. O'Driscoll scores were as follows: at week 26, 12.6 ± 1.9 and 10.1 ± 1.9; at week 52, 9.6 ± 3.0 and 14.0 ± 1.4, each for transplanted and control groups, respectively. No significant differences were observed between the groups. CONCLUSIONS This study demonstrates that allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells produces comparable long-term results based on macroscopic and histological outcome measures when compared with osteochondral defects that are left untreated.
Collapse
Affiliation(s)
- Tomokazu Yoshioka
- Department of Rehabilitation, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan,Department of Orthopaedics Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hajime Mishima
- Department of Orthopaedics Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinsuke Sakai
- Department of Orthopaedics Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan,Department of Orthopaedics Surgery, Ibaraki Medical Center, Tokyo Medical University, Inashiki, Ibaraki, Japan
| | - Toshimasa Uemura
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
Meng F, Rui Y, Xu L, Wan C, Jiang X, Li G. Aqp1 enhances migration of bone marrow mesenchymal stem cells through regulation of FAK and β-catenin. Stem Cells Dev 2013; 23:66-75. [PMID: 23962074 DOI: 10.1089/scd.2013.0185] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bone marrow mesenchymal stem cells (MSCs) have the potential to migrate to the site of injury and regulate the repair process. Aquaporin 1 (Aqp1) is a water channel molecule and a regulator of endothelial cell migration. To study the role of Apq1 in MSC migration, we manipulated the expression of the Aqp1 gene in MSCs and explored its effects on MSC migration both in vitro and in vivo. Overexpression of Aqp1 promoted MSC migration, while depletion of Aqp1 impaired MSC migration in vitro. When the green fluorescent protein (GFP) labeled Aqp1 overexpressing MSCs were systemically injected into rats with a femoral fracture, there were significantly more GFP-MSCs found at the fracture gap in the Aqp1-GFP-MSC-treated group compared to the GFP-MSC group. To elucidate the underlying mechanism, we screened several migration-related regulators. The results showed that β-catenin and focal adhesion kinase (FAK) were upregulated in the Aqp1-MSCs and downregulated in the Aqp1-depleted MSCs, while C-X-C chemokine receptor type 4 had no change. Furthermore, β-catenin and FAK were co-immunoprecipitated with Aqp1, and depletion of FAK abolished the Aqp1 effects on MSC migration. This study demonstrates that Aqp1 enhances MSC migration ability mainly through the FAK pathway and partially through the β-catenin pathway. Our finding suggests a novel function of Aqp1 in governing MSC migration, and this may aid MSC therapeutic applications.
Collapse
Affiliation(s)
- Fanbiao Meng
- 1 Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Chowdhury SR, Ng MH, Hassan NSA, Aminuddin BS, Ruszymah BHI. Identification of suitable culture condition for expansion and osteogenic differentiation of human bone marrow stem cells. Hum Cell 2012; 25:69-77. [DOI: 10.1007/s13577-012-0045-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 04/30/2012] [Indexed: 11/30/2022]
|
15
|
Nishi M, Matsumoto R, Dong J, Uemura T. Engineered bone tissue associated with vascularization utilizing a rotating wall vessel bioreactor. J Biomed Mater Res A 2012; 101:421-7. [PMID: 22865391 DOI: 10.1002/jbm.a.34340] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 03/22/2012] [Accepted: 04/19/2012] [Indexed: 11/08/2022]
Abstract
Tissue-engineered bone has attracted much attention as an alternative material for bone grafting; however, implantable bone tissue of an appropriate size and shape for clinical use has not yet been developed due to a lack of vascularization, which results in necrosis of the seeded cells in vivo. This is the first report of bone tissue engineering associated with vascularization by co-culturing bone marrow mesenchymal stem cells (MSCs) with MSC-derived endothelial cells (ECs) within a porous scaffold using a rotating wall vessel (RWV) bioreactor. MSC-derived ECs were identified by immunofluorescence staining for von Willebrand factor (vWF) and by flow cytometry for CD31 expression. The tissue obtained was histochemically analyzed using toluidin blue, hematoxylin and eosin, anti-osteopontin antibody, anti-osteocalcin antibody, and tomato-lectin stain. Results showed that bone tissue containing vascular-like structures was generated. Three-dimensional culture condition created by medium flow in the RWV vessel and the interaction of MSCs with MSC-derived ECs might provide the cells an advantage in the construction of three-dimensional bone tissue with blood vessels.
Collapse
Affiliation(s)
- Masanori Nishi
- National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | | | | | | |
Collapse
|
16
|
Taguchi T. Assembly of cells and vesicles for organ engineering. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2011; 12:064703. [PMID: 27877453 PMCID: PMC5090668 DOI: 10.1088/1468-6996/12/6/064703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 10/10/2011] [Accepted: 07/29/2011] [Indexed: 06/02/2023]
Abstract
The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration.
Collapse
Affiliation(s)
- Tetsushi Taguchi
- Biofunctional Materials Unit, Nano-Bio Field, Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
17
|
Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med 2011; 9:66. [PMID: 21627784 PMCID: PMC3123714 DOI: 10.1186/1741-7015-9-66] [Citation(s) in RCA: 1138] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/31/2011] [Indexed: 02/08/2023] Open
Abstract
Bone regeneration is a complex, well-orchestrated physiological process of bone formation, which can be seen during normal fracture healing, and is involved in continuous remodelling throughout adult life. However, there are complex clinical conditions in which bone regeneration is required in large quantity, such as for skeletal reconstruction of large bone defects created by trauma, infection, tumour resection and skeletal abnormalities, or cases in which the regenerative process is compromised, including avascular necrosis, atrophic non-unions and osteoporosis. Currently, there is a plethora of different strategies to augment the impaired or 'insufficient' bone-regeneration process, including the 'gold standard' autologous bone graft, free fibula vascularised graft, allograft implantation, and use of growth factors, osteoconductive scaffolds, osteoprogenitor cells and distraction osteogenesis. Improved 'local' strategies in terms of tissue engineering and gene therapy, or even 'systemic' enhancement of bone repair, are under intense investigation, in an effort to overcome the limitations of the current methods, to produce bone-graft substitutes with biomechanical properties that are as identical to normal bone as possible, to accelerate the overall regeneration process, or even to address systemic conditions, such as skeletal disorders and osteoporosis.
Collapse
Affiliation(s)
- Rozalia Dimitriou
- Department of Trauma and Orthopaedics, Academic Unit, Clarendon Wing, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | | | | |
Collapse
|
18
|
Yang X, Wang D, Hao J, Gong M, Arlet V, Balian G, Shen FH, Li XJ. Enhancement of matrix production and cell proliferation in human annulus cells under bioreactor culture. Tissue Eng Part A 2011; 17:1595-603. [PMID: 21303231 DOI: 10.1089/ten.tea.2010.0449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tissue engineering is a promising approach for treatment of disc degeneration. Herein, we evaluated effects of rotating bioreactor culture on the extracellular matrix production and proliferation of human annulus fibrosus (AF) cells. AF cells were embedded into alginate beads, and then cultured up to 3 weeks in a rotating wall vessel bioreactor or a static vessel. By real-time reverse transcription-polymerase chain reaction, expression of aggrecan, collagen type I and type II, and collagen prolyl 4-hydroxylase II was remarkably elevated, whereas expression of matrix metalloproteinase 3 and a disintegrin and metalloproteinase with thrombospondin motifs 5 was significantly decreased under bioreactor. Biochemical analysis revealed that the levels of the whole cell-associated proteoglycan and collagen were approximately five- and twofolds in rotating bioreactor, respectively, compared to those in static culture. Moreover, AF cell proliferation was augmented in rotating bioreactor. DNA contents were threefolds higher in rotating bioreactor than that in static culture. Expression of the proliferating cell nuclear antigen was robustly enhanced in rotating bioreactor as early as 1 week. Our findings suggested that rotating bioreactor culture would be an effective technique for expansion of human annulus cells for tissue engineering driven treatment of disc degeneration.
Collapse
Affiliation(s)
- Xinlin Yang
- Orthopaedic Research Lab, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sheyn D, Pelled G, Netanely D, Domany E, Gazit D. The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system: a bioinformatics study. Tissue Eng Part A 2010; 16:3403-12. [PMID: 20807102 DOI: 10.1089/ten.tea.2009.0834] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One proposed strategy for bone regeneration involves ex vivo tissue engineering, accomplished using bone-forming cells, biodegradable scaffolds, and dynamic culture systems, with the goal of three-dimensional tissue formation. Rotating wall vessel bioreactors generate simulated microgravity conditions ex vivo, which lead to cell aggregation. Human mesenchymal stem cells (hMSCs) have been extensively investigated and shown to possess the potential to differentiate into several cell lineages. The goal of the present study was to evaluate the effect of simulated microgravity on all genes expressed in hMSCs, with the underlying hypothesis that many important pathways are affected during culture within a rotating wall vessel system. Gene expression was analyzed using a whole genome microarray and clustering with the aid of the National Institutes of Health's Database for Annotation, Visualization and Integrated Discovery database and gene ontology analysis. Our analysis showed 882 genes that were downregulated and 505 genes that were upregulated after exposure to simulated microgravity. Gene ontology clustering revealed a wide variety of affected genes with respect to cell compartment, biological process, and signaling pathway clusters. The data sets showed significant decreases in osteogenic and chondrogenic gene expression and an increase in adipogenic gene expression, indicating that ex vivo adipose tissue engineering may benefit from simulated microgravity. This finding was supported by an adipogenic differentiation assay. These data are essential for further understanding of ex vivo tissue engineering using hMSCs.
Collapse
Affiliation(s)
- Dima Sheyn
- Skeletal Biotechnology Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
20
|
Yoshioka T, Mishima H, Kaul Z, Ohyabu Y, Sakai S, Ochiai N, Kaul SC, Wadhwa R, Uemura T. Fate of bone marrow mesenchymal stem cells following the allogeneic transplantation of cartilaginous aggregates into osteochondral defects of rabbits. J Tissue Eng Regen Med 2010; 5:437-43. [PMID: 20799242 DOI: 10.1002/term.329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 04/27/2010] [Indexed: 01/25/2023]
Abstract
The purpose of this study was to track mesenchymal stem cells (MSCs) labelled with internalizing quantum dots (i-QDs) in the reparative tissues, following the allogeneic transplantation of three-dimensional (3D) cartilaginous aggregates into the osteochondral defects of rabbits. QDs were conjugated with a unique internalizing antibody against a heat shock protein-70 (hsp70) family stress chaperone, mortalin, which is upregulated and expressed on the surface of dividing cells. The i-QDs were added to the culture medium for 24 h. Scaffold-free cartilaginous aggregates formed from i-QD-labelled MSCs (i-MSCs), using a 3D culture system with chondrogenic supplements for 1 week, were transplanted into osteochondral defects of rabbits. At 4, 8 and 26 weeks after the transplantation, the reparative tissues were evaluated macroscopically, histologically and fluoroscopically. At as early as 4 weeks, the defects were covered with a white tissue resembling articular cartilage. In histological appearance, the reparative tissues resembled hyaline cartilage on safranin-O staining throughout the 26 weeks. In the deeper portion, subchondral bone and bone marrow were well remodelled. On fluoroscopic evaluation, QDs were tracked mainly in bone marrow stromata, with some signals detected in cartilage and the subchondral bone layer. We showed that the labelling of rabbit MSCs with anti-mortalin antibody-conjugated i-QDs is a tolerable procedure and provides a stable fluorescence signal during the cartilage repair process for up to 26 weeks after transplantation. The results suggest that i-MSCs did not inhibit, and indeed contributed to, the regeneration of osteochondral defects.
Collapse
Affiliation(s)
- Tomokazu Yoshioka
- Department of Orthopaedic Surgery, University of Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Skardal A, Sarker SF, Crabbé A, Nickerson CA, Prestwich GD. The generation of 3-D tissue models based on hyaluronan hydrogel-coated microcarriers within a rotating wall vessel bioreactor. Biomaterials 2010; 31:8426-35. [PMID: 20692703 DOI: 10.1016/j.biomaterials.2010.07.047] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
With the increasing necessity for functional tissue- and organ equivalents in the clinic, the optimization of techniques for the in vitro generation of organotypic structures that closely resemble the native tissue is of paramount importance. The engineering of a variety of highly differentiated tissues has been achieved using the rotating wall vessel (RWV) bioreactor technology, which is an optimized suspension culture allowing cells to grow in three-dimensions (3-D). However, certain cell types require the use of scaffolds, such as collagen-coated microcarrier beads, for optimal growth and differentiation in the RWV. Removal of the 3-D structures from the microcarriers involves enzymatic treatment, which disrupts the delicate 3-D architecture and makes it inapplicable for potential implantation. Therefore, we designed a microcarrier bead coated with a synthetic extracellular matrix (ECM) composed of a disulfide-crosslinked hyaluronan and gelatin hydrogel for 3-D tissue engineering, that allows for enzyme-free cell detachment under mild reductive conditions (i.e. by a thiol-disulfide exchange reaction). The ECM-coated beads (ECB) served as scaffold to culture human intestinal epithelial cells (Int-407) in the RWV, which formed viable multi-layered cell aggregates and expressed epithelial differentiation markers. The cell aggregates remained viable following dissociation from the microcarriers, and could be returned to the RWV bioreactor for further culturing into bead-free tissue assemblies. The developed ECBs thus offer the potential to generate scaffold-free 3-D tissue assemblies, which could further be explored for tissue replacement and remodeling.
Collapse
Affiliation(s)
- Aleksander Skardal
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84108-1257, USA
| | | | | | | | | |
Collapse
|
22
|
Bal BS, Rahaman MN, Jayabalan P, Kuroki K, Cockrell MK, Yao JQ, Cook JL. In vivo outcomes of tissue-engineered osteochondral grafts. J Biomed Mater Res B Appl Biomater 2010; 93:164-74. [PMID: 20091911 DOI: 10.1002/jbm.b.31571] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tissue-engineered osteochondral grafts have been synthesized from a variety of materials, with some success at repairing chondral defects in animal models. We hypothesized that in tissue-engineered osteochondral grafts synthesized by bonding mesenchymal stem cell-loaded hydrogels to a porous material, the choice of the porous scaffold would affect graft healing to host bone, and the quality of cell restoration at the hyaline cartilage surface. Bone marrow-derived allogeneic mesenchymal stem cells were suspended in hydrogels that were attached to cylinders of porous tantalum metal, allograft bone, or a bioactive glass. The tissue-engineered osteochondral grafts, thus created were implanted into experimental defects in rabbit knees. Subchondral bone restoration, defect fill, bone ingrowth-implant integration, and articular tissue quality were compared between the three subchondral materials at 6 and 12 weeks. Bioactive glass and porous tantalum were superior to bone allograft in integrating to adjacent host bone, regenerating hyaline-like tissue at the graft surface, and expressing type II collagen in the articular cartilage.
Collapse
Affiliation(s)
- B Sonny Bal
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Ogawa T, Ishii T, Mishima H, Sakai S, Watanabe A, Nishino T, Ochiai N. Effectiveness of bone marrow transplantation for revitalizing a severely necrotic small bone: experimental rabbit model. J Orthop Sci 2010; 15:381-8. [PMID: 20559807 DOI: 10.1007/s00776-010-1459-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 02/01/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND Although treating Kienböck disease is controversial, we previously applied a new method that was less invasive and comprised drilling, bone marrow (BM) transplantation, external fixation, and radiating low-intensity pulsed ultrasound. We reported good clinical results obtained by this new method, which were comparable to those obtained using other, rather invasive methods. Here, we investigated the effect of drilling holes and transplanting BM into necrotic bone in an animal model to further understand the effect of these methods on the revitalization of necrotic bone. METHODS We used rabbit fourth tarsal bones, whose surfaces consist of cartilage and cortical bone, mimicking human lunate bone. We soaked the retrieved bones in liquid nitrogen to induce necrosis. After thawing, we inserted them separately into bilateral subcutaneous pouches in the backs of rabbits. A total of 60 rabbits were divided into four groups of 15 rabbits each: BM transplantation (BM group); peripheral blood transplantation (PB group); drilling (D group); control (C group). We sacrificed three rabbits to obtain six specimens in each group at 2, 4, 8, 12, and 20 weeks after operation and evaluated the specimens histomorphologically. RESULTS In the BM group, significantly larger mineralizing surfaces, osteoblast surfaces, and osteoclast numbers were observed at 4, 8, and 12 weeks compared with those in the other groups. No significant differences were observed at 2 and 20 weeks in the groups except the mineralizing surface of the 20-week-BM group, which was significantly greater. CONCLUSIONS We examined the efficacy of drilling and of BM transplantation for regenerating necrotic bone in a rabbit model. Our experiments suggest that drilling with BM transplantation to the necrotic bone accelerates bone formation and remodeling.
Collapse
Affiliation(s)
- Takeshi Ogawa
- Department of Orthopaedic Surgery, Kikkoman General Hospital, Noda, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Elder SH, Cooley AJ, Borazjani A, Sowell BL, To H, Tran SC. Production of hyaline-like cartilage by bone marrow mesenchymal stem cells in a self-assembly model. Tissue Eng Part A 2009; 15:3025-36. [PMID: 19335060 DOI: 10.1089/ten.tea.2008.0617] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A scaffoldless or self-assembly approach to cartilage tissue engineering has been used to produce hyaline cartilage from bone marrow-derived mesenchymal stem cells (bMSCs), but the mechanical properties of such engineered cartilage and the effects the transforming growth factor (TGF) isoform have not been fully explored. This study employs a cell culture insert model to produce tissue-engineered cartilage using bMSCs. Neonatal pig bMSCs were isolated by plastic adherence and expanded in monolayer before being seeded into porous transwell inserts and cultured for 4 or 8 weeks in defined chondrogenic media containing either TGF-beta1 or TGF-beta3. Following biomechanical evaluation in confined compression, colorimetric dimethyl methylene blue and Sircol dye-binding assays were used to analyze glycosaminoglycan (GAG) and collagen contents, respectively. Histological sections were stained with toluidine blue for proteoglycans and with picrosirius red to reveal collagen orientation, and immunostained for detection of collagen types I and II. Neocartilage increased in thickness, collagen, and GAG content between 4 and 8 weeks. Proteoglycan concentration increased with depth from the top surface. The tissue contained much more collagen type II than type I, and there was a consistent pattern of collagen alignment. TGF-beta1-treated and TGF-beta3-treated constructs were similar at 4 weeks, but 8-week TGF-beta1 constructs had a higher aggregate modulus and GAG content compared to TGF-beta3. These results demonstrate that bMSCs can generate functional hyaline-like cartilage through a self-assembling process.
Collapse
Affiliation(s)
- Steven H Elder
- Agricultural & Biological Engineering, College of Agriculture and Life Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi 39762, USA.
| | | | | | | | | | | |
Collapse
|
25
|
O'Shea TM, Miao X. Bilayered scaffolds for osteochondral tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:447-64. [PMID: 18844605 DOI: 10.1089/ten.teb.2008.0327] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease that places a significant burden on the socioeconomic efficacy of communities around the world. Tissue engineering repair of articular cartilage in synovial joints represents a potential OA treatment strategy superior to current surgical techniques. In particular, osteochondral tissue engineering, which promotes the simultaneous regeneration of articular cartilage and underlining subchondral bone, may be a clinically relevant approach toward impeding OA progression. The unique and complex functional demands of the two contrasting tissues that comprise osteochondral tissue require the use of bilayered scaffolds to promote individual growth of both on a single integrated implant. This paper reviews the three current bilayered scaffold strategies applied to solve this challenging problem, with a focus on the need for an innovative approach to design and fabrication of new optimized scaffold combinations to reinforce materials science as an important element of osteochondral tissue engineering.
Collapse
Affiliation(s)
- Timothy M O'Shea
- School of Engineering Systems, Queensland University of Technology, Brisbane, Australia
| | | |
Collapse
|
26
|
Ahn JH, Lee TH, Oh JS, Kim SY, Kim HJ, Park IK, Choi BS, Im GI. A Novel Hyaluronate–Atelocollagen/β-TCP–Hydroxyapatite Biphasic Scaffold for the Repair of Osteochondral Defects in Rabbits. Tissue Eng Part A 2009; 15:2595-604. [DOI: 10.1089/ten.tea.2008.0511] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ji-Hyun Ahn
- Department of Orthopaedics, Dongguk University International Hospital, Goyang, Korea
| | - Tae-Hyeong Lee
- Department of Orthopaedics, Dongguk University International Hospital, Goyang, Korea
| | - Jong-Soo Oh
- Department of Orthopaedics, Dongguk University International Hospital, Goyang, Korea
| | - Su-Yeon Kim
- Department of Orthopaedics, Dongguk University International Hospital, Goyang, Korea
| | | | | | | | - Gun-Ii Im
- Department of Orthopaedics, Dongguk University International Hospital, Goyang, Korea
| |
Collapse
|
27
|
Ohyabu Y, Tanaka J, Ikada Y, Uemura T. Cartilage tissue regeneration from bone marrow cells by RWV bioreactor using collagen sponge scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Sakai S, Mishima H, Ishii T, Akaogi H, Yoshioka T, Ohyabu Y, Chang F, Ochiai N, Uemura T. Rotating three-dimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage. J Orthop Res 2009; 27:517-21. [PMID: 18932231 DOI: 10.1002/jor.20566] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The method of constructing cartilage tissue from bone marrow-derived cells in vitro is considered a valuable technique for hyaline cartilage regenerative medicine. Using a rotating wall vessel (RWV) bioreactor developed in a NASA space experiment, we attempted to efficiently construct hyaline cartilage tissue from human bone marrow-derived cells without using a scaffold. Bone marrow aspirates were obtained from the iliac crest of nine patients during orthopedic operation. After their proliferation in monolayer culture, the adherent cells were cultured in the RWV bioreactor with chondrogenic medium for 2 weeks. Cells from the same source were cultured in pellet culture as controls. Histological and immunohistological evaluations (collagen type I and II) and quantification of glycosaminoglycan were performed on formed tissues and compared. The engineered constructs obtained using the RWV bioreactor showed strong features of hyaline cartilage in terms of their morphology as determined by histological and immunohistological evaluations. The glycosaminoglycan contents per microg DNA of the tissues were 10.01 +/- 3.49 microg/microg DNA in the case of the RWV bioreactor and 6.27 +/- 3.41 microg/microg DNA in the case of the pellet culture, and their difference was significant. The RWV bioreactor could provide an excellent environment for three-dimensional cartilage tissue architecture that can promote the chondrogenic differentiation of adult human bone marrow-derived cells.
Collapse
Affiliation(s)
- Shinsuke Sakai
- Department of Orthopaedic Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
McMahon LA, O’Brien FJ, Prendergast PJ. Biomechanics and mechanobiology in osteochondral tissues. Regen Med 2008; 3:743-59. [DOI: 10.2217/17460751.3.5.743] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
30
|
Shepherd DET, Azangwe G. Synthetic versus tissue-engineered implants for joint replacement. Appl Bionics Biomech 2008. [DOI: 10.1080/11762320701816966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Pörtner R, Goepfert C, Wiegandt K, Janssen R, Ilinich E, Paetzold H, Eisenbarth E, Morlock M. Technical Strategies to Improve Tissue Engineering of Cartilage-Carrier-Constructs. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008. [DOI: 10.1007/10_2008_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Navran S. The application of low shear modeled microgravity to 3-D cell biology and tissue engineering. BIOTECHNOLOGY ANNUAL REVIEW 2008; 14:275-96. [PMID: 18606368 DOI: 10.1016/s1387-2656(08)00011-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The practice of cell culture has been virtually unchanged for 100 years. Until recently, life scientists have had to content themselves with two-dimensional cell culture technology. Clearly, living creatures are not constructed in two dimensions and thus it has become widely recognized that in vitro culture systems must become three dimensional to correctly model in vivo biology. Attempts to modify conventional 2-D culture technology to accommodate 3-D cell growth such as embedding cells in extracellular matrix have demonstrated the superiority of concept. Nevertheless, there are serious drawbacks to this approach including limited mass transport and lack of scalability. Recently, a new cell culture technology developed at NASA to study the effects of microgravity on cells has emerged to solve many of the problems of 3-D cell culture. The technology, the Rotating Wall Vessel (RWV) is a single axis clinostat consisting of a fluid-filled, cylindrical, horizontally rotating culture vessel. Cells placed in this environment are suspended by the resolution of the gravitational, centrifugal and Coriolis forces with extremely low mechanical shear. These conditions, which have been called "low shear modeled microgravity", enable cells to assemble into tissue-like aggregates with high mass transport of nutrients, oxygen and wastes. Examples of the use of the RWV for basic cell biology research and tissue engineering applications are discussed.
Collapse
Affiliation(s)
- Stephen Navran
- Synthecon, Inc., 8042 El Rio, Houston, Texas 77054, USA.
| |
Collapse
|