1
|
Civil R, Brook MS, Santos L, Varley I, Elliott-Sale KJ, Lensu S, Ahtiainen JP, Kainulainen H, Koch LG, Britton SL, Wilkinson DJ, Smith K, Atherton PJ, Sale C. The effects of endurance trainability phenotype, sex, and interval running training on bone collagen synthesis in adult rats. Bone 2024; 189:117257. [PMID: 39299627 DOI: 10.1016/j.bone.2024.117257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Bone is influenced by many factors such as genetics and mechanical loading, but the short-term physiological effects of these factors on bone (re)modelling are not well characterised. This study investigated the effects of endurance trainability phenotype, sex, and interval running training (7-week intervention) on bone collagen formation in rats using a deuterium oxide stable isotope tracer method. Bone samples of the femur diaphysis, proximal tibia, mid-shaft tibia, and distal tibia were collected after necropsy from forty-six 9 ± 3-month male and female rats selectively bred for yielding low (LRT) or high (HRT) responses to endurance training. Bone collagen proteins were isolated and hydrolysed, and fractional synthetic rates (FSRs) were determined by the incorporation of deuterium into protein-bound alanine via GC-pyrolysis-IRMS. There was a significant large main effect of phenotype at the femur site (p < 0.001; η2g = 0.473) with HRT rats showing greater bone collagen FSRs than LRT rats. There was a significant large main effect of phenotype (p = 0.008; η2g = 0.178) and a significant large main effect of sex (p = 0.005; η2g = 0.196) at the proximal site of the tibia with HRT rats showing greater bone collagen FSRs than LRT rats, and male rats showing greater bone collagen FSRs compared to female rats. There was a significant large main effect of training at the mid-shaft site of the tibia (p = 0.012; η2g = 0.159), with rats that underwent interval running training having greater bone collagen FSRs than control rats. Similarly, there was a significant large main effect of training at the distal site of the tibia (p = 0.050; η2g = 0.156), with rats in the interval running training group having greater bone collagen FSRs compared to rats in the control group. Collectively, this evidence highlights that bone responses to physiological effects are site-specific, indicating that interval running training has positive effects on bone collagen synthesis at the tibial mid-shaft and distal sites, whilst genetic factors affect bone collagen synthesis at the femur diaphysis (phenotype) and proximal tibia (phenotype and sex) in rats.
Collapse
Affiliation(s)
- Rita Civil
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK.; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Matthew S Brook
- Centre of Metabolism, Ageing & Physiology (CMAP), MRC-Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK.; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences at the University of Nottingham, Nottingham, UK
| | - Lívia Santos
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Kirsty J Elliott-Sale
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Sanna Lensu
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Lauren G Koch
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Wilkinson
- Centre of Metabolism, Ageing & Physiology (CMAP), MRC-Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Kenneth Smith
- Centre of Metabolism, Ageing & Physiology (CMAP), MRC-Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology (CMAP), MRC-Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK.; Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| |
Collapse
|
2
|
Weber CJ, Weitzel AJ, Liu AY, Gacasan EG, Sah RL, Cooper KL. Cellular and molecular mechanisms that shape the development and evolution of tail vertebral proportion in mice and jerboas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620311. [PMID: 39484405 PMCID: PMC11527341 DOI: 10.1101/2024.10.25.620311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Despite the functional importance of the vertebral skeleton, little is known about how individual vertebrae elongate or achieve disproportionate lengths as in the giraffe neck. Rodent tails are an abundantly diverse and more tractable system to understand mechanisms of vertebral growth and proportion. In many rodents, disproportionately long mid-tail vertebrae form a 'crescendo-decrescendo' of lengths in the tail series. In bipedal jerboas, these vertebrae grow exceptionally long such that the adult tail is 1.5x the length of a mouse tail, relative to body length, with four fewer vertebrae. How do vertebrae with the same regional identity elongate differently from their neighbors to establish and diversify adult proportion? Here, we find that vertebral lengths are largely determined by differences in growth cartilage height and the number of cells progressing through endochondral ossification. Hypertrophic chondrocyte size, a major contributor to differential elongation in mammal limb bones, differs only in the longest jerboa mid-tail vertebrae where they are exceptionally large. To uncover candidate molecular mechanisms of disproportionate vertebral growth, we performed intersectional RNA-Seq of mouse and jerboa tail vertebrae with similar and disproportionate elongation rates. Many regulators of posterior axial identity and endochondral elongation are disproportionately differentially expressed in jerboa vertebrae. Among these, the inhibitory natriuretic peptide receptor C (NPR3) appears in multiple studies of rodent and human skeletal proportion suggesting it refines local growth rates broadly in the skeleton and broadly in mammals. Consistent with this hypothesis, NPR3 loss of function mice have abnormal tail and limb proportions. Therefore, in addition to genetic components of the complex process of vertebral evolution, these studies reveal fundamental mechanisms of skeletal growth and proportion.
Collapse
Affiliation(s)
- Ceri J Weber
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alexander J Weitzel
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alexander Y Liu
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Erica G Gacasan
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Robert L Sah
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Kimberly L Cooper
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Rubin S, Agrawal A, Seewald A, Lian MJ, Gottdenker O, Villoutreix P, Baule A, Stern T, Zelzer E. Limited column formation in the embryonic growth plate implies divergent growth mechanisms during pre- and postnatal bone development. eLife 2024; 13:e95289. [PMID: 39269144 PMCID: PMC11509684 DOI: 10.7554/elife.95289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.
Collapse
Affiliation(s)
- Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Ankit Agrawal
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
- Würzburg Institute of Systems Immunology, Julius‐Maximilians‐Universität WürzburgWürzburgGermany
| | - Anne Seewald
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Meng-Jia Lian
- Department of Biologic and Materials & Prosthodontics, University of Michigan School of DentistryAnn ArborUnited States
| | - Olivia Gottdenker
- Department of Biologic and Materials & Prosthodontics, University of Michigan School of DentistryAnn ArborUnited States
| | - Paul Villoutreix
- Aix Marseille Univ, INSERM, MMG, UMR1251, Turing Center for Living SystemsMarseilleFrance
| | - Adrian Baule
- School of Mathematical Sciences, Queen Mary University of LondonLondonUnited Kingdom
| | - Tomer Stern
- Department of Biologic and Materials & Prosthodontics, University of Michigan School of DentistryAnn ArborUnited States
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
4
|
Parlato MB, Lee JS, Belair DG, Fontana G, Leiferman E, Hanna R, Chamberlain C, Ranheim EA, Murphy WL, Halanski MA. Subperiosteal delivery of transforming growth factor beta 1 and human growth hormone from mineralized PCL films. J Biomed Mater Res A 2024; 112:1578-1593. [PMID: 38530161 DOI: 10.1002/jbm.a.37684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
The ability to locally deliver bioactive molecules to distinct regions of the skeleton may provide a novel means by which to improve fracture healing, treat neoplasms or infections, or modulate growth. In this study, we constructed single-sided mineral-coated poly-ε-caprolactone membranes capable of binding and releasing transforming growth factor beta 1 (TGF-β1) and human growth hormone (hGH). After demonstrating biological activity in vitro and characterization of their release, these thin bioabsorbable membranes were surgically implanted using an immature rabbit model. Membranes were circumferentially wrapped under the periosteum, thus placed in direct contact with the proximal metaphysis to assess its bioactivity in vivo. The direct effects on the metaphyseal bone, bone marrow, and overlying periosteum were assessed using radiography and histology. Effects of membrane placement at the tibial growth plate were assessed via physeal heights, tibial growth rates (pulsed fluorochrome labeling), and tibial lengths. Subperiosteal placement of the mineralized membranes induced greater local chondrogenesis in the plain mineral and TGF-β1 samples than the hGH. More exuberant and circumferential ossification was seen in the TGF-β1 treated tibiae. The TGF-β1 membranes also induced hypocellularity of the bone marrow with characteristics of gelatinous degeneration not seen in the other groups. While the proximal tibial growth plates were taller in the hGH treated than TGF-β1, no differences in growth rates or overall tibial lengths were found. In conclusion, these data demonstrate the feasibility of using bioabsorbable mineral coated membranes to deliver biologically active compounds subperiosteally in a sustained fashion to affect cells at the insertion site, bone marrow, and even growth plate.
Collapse
|
5
|
Abubakar AA, Ali AK, Ibrahim SM, Handool KO, Khan MS, Mustapha NM, Ibrahim TAT, Kaka U, Yusof LM. Roles of Sodium Hydrogen Exchanger (NHE1) and Anion Exchanger (AE2) across Chondrocytes Plasma Membrane during Longitudinal Bone Growth. MEMBRANES 2022; 12:membranes12070707. [PMID: 35877910 PMCID: PMC9321928 DOI: 10.3390/membranes12070707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022]
Abstract
Mammalian long bone growth occurs through endochondral ossification, majorly regulated by the controlled enlargement of chondrocytes at the growth plate (GP). This study aimed to investigate the roles of Na+/H+ (sodium hydrogen exchanger (NHE1)) and HCO3− (anion exchanger [AE2]) during longitudinal bone growth in mammals. Bones from P10 SpragueDawley rat pups were cultured exvivo in the presence or absence of NHE1 and AE2 inhibitors to determine their effect on long bone growth. Gross morphometry, histomorphometry, and immunohistochemistry were used to assess the bone growth. The results revealed that the culture of the bones in the presence of NHE1 and AE2 inhibitors reduces bone growth significantly (p < 0.05) by approximately 11%. The inhibitor significantly (p < 0.05) reduces bone growth velocity and the length of the hypertrophic chondrocyte zone without any effect on the total GP length. The total GP chondrocyte density was significantly (p < 0.05) reduced, but hypertrophic chondrocyte densities remained constant. NHE1 fluorescence signaling across the GP length was higher than AE2, and their localization was significantly (p < 0.05) inhibited at the hypertrophic chondrocytes zone. The GP lengthening was majorly driven by an increase in the overall GP chondrocyte and hypertrophic chondrocyte densities apart from the regulatory volume phenomenon. This may suggest that NHE1 and AE2 could have a regulatory role in long bone growth.
Collapse
Affiliation(s)
- Adamu Abdul Abubakar
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Department of Veterinary Surgery and Radiology, Usmanu Danfodiyo University, Sokoto PMB 2346, Nigeria
| | - Ahmed Khalaf Ali
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Department of Surgery and Theriogenology, College of Veterinary Medicine, University of Mosul, Mosul 00964, Iraq
| | - Sahar Mohammed Ibrahim
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Department of Surgery and Theriogenology, College of Veterinary Medicine, University of Mosul, Mosul 00964, Iraq
| | - Kareem Obayes Handool
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
| | - Mohammad Shuaib Khan
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Faculty of Veterinary and Animal Science, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Noordin Mohamed Mustapha
- Department of Veterinary Pathology and Microbiology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | | | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
| | - Loqman Mohamad Yusof
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Correspondence: ; Tel.: +60-192-590-571; Fax: +60-386-093-959
| |
Collapse
|
6
|
Motch Perrine SM, Pitirri MK, Durham EL, Kawasaki M, Zheng H, Chen DZ, Kawasaki K, Richtsmeier JT. A dysmorphic mouse model reveals developmental interactions of chondrocranium and dermatocranium. eLife 2022; 11:76653. [PMID: 35704354 PMCID: PMC9259032 DOI: 10.7554/elife.76653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
The cranial endo- and dermal skeletons, which comprise the vertebrate skull, evolved independently over 470 million years ago and form separately during embryogenesis. In mammals, much of the cartilaginous chondrocranium is transient, undergoing endochondral ossification or disappearing, so its role in skull morphogenesis is not well studied and it remains an enigmatic structure. We provide complete three-dimensional (3D) reconstructions of the laboratory mouse chondrocranium from embryonic day 13.5 through 17.5 using a novel methodology of uncertainty-guided segmentation of phosphotungstic enhanced 3D microcomputed tomography images with sparse annotation. We evaluate the embryonic mouse chondrocranium and dermatocranium in 3D and delineate the effects of a Fgfr2 variant on embryonic chondrocranial cartilages and on their association with forming dermal bones using the Fgfr2cC342Y/+ Crouzon syndrome mouse. We show that the dermatocranium develops outside of and in shapes that conform to the chondrocranium. Results reveal direct effects of the Fgfr2 variant on embryonic cartilage, on chondrocranium morphology, and on the association between chondrocranium and dermatocranium development. Histologically we observe a trend of relatively more chondrocytes, larger chondrocytes, and/or more matrix in the Fgfr2cC342Y/+ embryos at all timepoints before the chondrocranium begins to disintegrate at E16.5. The chondrocrania and forming dermatocrania of Fgfr2cC342Y/+ embryos are relatively large, but a contrasting trend begins at E16.5 and continues into early postnatal (P0 and P2) timepoints, with the skulls of older Fgfr2cC342Y/+ mice reduced in most dimensions compared to Fgfr2c+/+ littermates. Our findings have implications for the study and treatment of human craniofacial disease, for understanding the impact of chondrocranial morphology on skull growth, and potentially on the evolution of skull morphology.
Collapse
Affiliation(s)
- Susan M Motch Perrine
- Department of Anthropology, The Pennsylvania State University, University Park, United States
| | - M Kathleen Pitirri
- Department of Anthropology, The Pennsylvania State University, University Park, United States
| | - Emily L Durham
- Department of Anthropology, The Pennsylvania State University, University Park, United States
| | - Mizuho Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, United States
| | - Hao Zheng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, United States
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, United States
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, United States
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, United States
| |
Collapse
|
7
|
Pitirri MK, Durham EL, Romano NA, Santos JI, Coupe AP, Zheng H, Chen DZ, Kawasaki K, Jabs EW, Richtsmeier JT, Wu M, Motch Perrine SM. Meckel's Cartilage in Mandibular Development and Dysmorphogenesis. Front Genet 2022; 13:871927. [PMID: 35651944 PMCID: PMC9149363 DOI: 10.3389/fgene.2022.871927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/15/2022] [Indexed: 12/02/2022] Open
Abstract
The Fgfr2cC342Y/+ Crouzon syndrome mouse model carries a cysteine to tyrosine substitution at amino acid position 342 (Cys342Tyr; C342Y) in the fibroblast growth factor receptor 2 (Fgfr2) gene equivalent to a FGFR2 mutation commonly associated with Crouzon and Pfeiffer syndromes in humans. The Fgfr2c C342Y mutation results in constitutive activation of the receptor and is associated with upregulation of osteogenic differentiation. Fgfr2cC342Y/+ Crouzon syndrome mice show premature closure of the coronal suture and other craniofacial anomalies including malocclusion of teeth, most likely due to abnormal craniofacial form. Malformation of the mandible can precipitate a plethora of complications including disrupting development of the upper jaw and palate, impediment of the airway, and alteration of occlusion necessary for proper mastication. The current paradigm of mandibular development assumes that Meckel’s cartilage (MC) serves as a support or model for mandibular bone formation and as a template for the later forming mandible. If valid, this implies a functional relationship between MC and the forming mandible, so mandibular dysmorphogenesis might be discerned in MC affecting the relationship between MC and mandibular bone. Here we investigate the relationship of MC to mandible development from the early mineralization of the mandible (E13.5) through the initiation of MC degradation at E17.7 using Fgfr2cC342Y/+ Crouzon syndrome embryos and their unaffected littermates (Fgfr2c+/+). Differences between genotypes in both MC and mandibular bone are subtle, however MC of Fgfr2cC342Y/+ embryos is generally longer relative to unaffected littermates at E15.5 with specific aspects remaining relatively large at E17.5. In contrast, mandibular bone is smaller overall in Fgfr2cC342Y/+ embryos relative to their unaffected littermates at E15.5 with the posterior aspect remaining relatively small at E17.5. At a cellular level, differences are identified between genotypes early (E13.5) followed by reduced proliferation in MC (E15.5) and in the forming mandible (E17.5) in Fgfr2cC342Y/+ embryos. Activation of the ERK pathways is reduced in the perichondrium of MC in Fgfr2cC342Y/+ embryos and increased in bone related cells at E15.5. These data reveal that the Fgfr2c C342Y mutation differentially affects cells by type, location, and developmental age indicating a complex set of changes in the cells that make up the lower jaw.
Collapse
Affiliation(s)
- M Kathleen Pitirri
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Emily L Durham
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Natalie A Romano
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Jacob I Santos
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Abigail P Coupe
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Hao Zheng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Kazuhiko Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joan T Richtsmeier
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Susan M Motch Perrine
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
8
|
Rubin S, Agrawal A, Stegmaier J, Krief S, Felsenthal N, Svorai J, Addadi Y, Villoutreix P, Stern T, Zelzer E. Application of 3D MAPs pipeline identifies the morphological sequence chondrocytes undergo and the regulatory role of GDF5 in this process. Nat Commun 2021; 12:5363. [PMID: 34508093 PMCID: PMC8433335 DOI: 10.1038/s41467-021-25714-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
The activity of epiphyseal growth plates, which drives long bone elongation, depends on extensive changes in chondrocyte size and shape during differentiation. Here, we develop a pipeline called 3D Morphometric Analysis for Phenotypic significance (3D MAPs), which combines light-sheet microscopy, segmentation algorithms and 3D morphometric analysis to characterize morphogenetic cellular behaviors while maintaining the spatial context of the growth plate. Using 3D MAPs, we create a 3D image database of hundreds of thousands of chondrocytes. Analysis reveals broad repertoire of morphological changes, growth strategies and cell organizations during differentiation. Moreover, identifying a reduction in Smad 1/5/9 activity together with multiple abnormalities in cell growth, shape and organization provides an explanation for the shortening of Gdf5 KO tibias. Overall, our findings provide insight into the morphological sequence that chondrocytes undergo during differentiation and highlight the ability of 3D MAPs to uncover cellular mechanisms that may regulate this process.
Collapse
Affiliation(s)
- Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ankit Agrawal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Svorai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Paul Villoutreix
- LIS (UMR 7020), IBDM (UMR 7288), Turing Center For Living Systems, Aix-Marseille University, Marseille, France.
| | - Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Civil R, Brook MS, Elliott-Sale KJ, Santos L, Varley I, Lensu S, Kainulainen H, Koch LG, Britton SL, Wilkinson DJ, Smith K, Sale C, Atherton PJ. A collagen extraction and deuterium oxide stable isotope tracer method for the quantification of bone collagen synthesis rates in vivo. Physiol Rep 2021; 9:e14799. [PMID: 34042295 PMCID: PMC8157767 DOI: 10.14814/phy2.14799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 12/25/2022] Open
Abstract
The development of safe and practical strategies to prevent weakening of bone tissue is vital, yet attempts to achieve this have been hindered by a lack of understanding of the short-term (days-weeks) physiology of bone collagen turnover. To address this, we have developed a method to quantify bone collagen synthesis in vivo, using deuterium oxide (D2 O) tracer incorporation techniques combined with gas chromatography pyrolysis isotope-ratio mass spectrometry (GC-pyrolysis-IRMS). Forty-six male and female rats from a selectively bred model ingested D2 O for 3 weeks. Femur diaphyses (FEM), tibia proximal (T-PRO), and distal (T-DIS) epiphyses-metaphyses and tibia mid-shaft diaphyses (T-MID) were obtained from all rats after necropsy. After demineralisation, collagen proteins were isolated and hydrolysed and collagen fractional synthetic rates (FSRs) determined by incorporation of deuterium into protein-bound alanine via GC-pyrolysis-IRMS. The collagen FSR for the FEM (0.131 ± 0.078%/day; 95% CI [0.106-0.156]) was greater than the FSR at T-MID (0.055 ± 0.049%/day; 95% CI [0.040-0.070]; p < 0.001). The T-PRO site had the highest FSR (0.203 ± 0.123%/day; 95% CI [0.166-0.241]) and T-DIS the lowest (0.027 ± 0.015%/day; 95% CI [0.022-0.031]). The three tibial sites exhibited different FSRs (p < 0.001). Herein, we have developed a sensitive method to quantify in vivo bone collagen synthesis and identified site-specific rates of synthesis, which could be applicable to studies of human bone collagen turnover.
Collapse
Affiliation(s)
- Rita Civil
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Matthew S Brook
- Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Kirsty J Elliott-Sale
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Lívia Santos
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Sanna Lensu
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Kainulainen
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Wilkinson
- Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Kenneth Smith
- Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Philip J Atherton
- Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, UK
| |
Collapse
|
10
|
Silva TACC, Quigley SP, Kidd LJ, Anderson ST, McLennan SR, Poppi DP. Effect of a high crude protein content diet during energy restriction and re-alimentation on animal performance, skeletal growth and metabolism of bone tissue in two genotypes of cattle. PLoS One 2021; 16:e0247718. [PMID: 33630953 PMCID: PMC7906379 DOI: 10.1371/journal.pone.0247718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/11/2021] [Indexed: 12/05/2022] Open
Abstract
The objective of this study was to investigate the effect of diet crude protein (CP) content and metabolisable energy (ME) intake on skeletal growth and associated parameters of growing steers prior to and during compensatory growth in weight and catch-up growth in skeletal elongation. The experiment was a factorial design with two cattle genotypes [Brahman crossbred (BX, 178 ± 6 kg) and Holstein-Friesian (HF, 230 ± 34 kg)] and three nutritional treatments; high CP content and high ME intake (HCP-HME), high CP content and low ME intake (HCP-LME) and low CP content and low ME intake (LCP-LME) with the ME intake of HCP-LME matched to that of LCP-LME. Nutritional treatments were imposed over a 103 d period (Phase 1), and after this, all steers were offered ad libitum access to the HCP-HME nutritional treatment for 100 d (Phase 2). Steers fed the high CP content treatment with a low ME intake, showed higher hip height gain (P = 0.04), larger terminal hypertrophic chondrocytes (P = 0.02) and a higher concentration of total triiodothyronine in plasma (P = 0.01) than steers with the same ME intake of the low CP content treatment. In addition, the low CP treatment resulted in significant decreases in bone volume (P = 0.03), bone surface area (P = 0.03) and the concentration of bone-specific alkaline phosphatase in plasma (P < 0.001) compared to steers fed the HCP-HME treatment. A significant interaction between genotype and nutritional treatment existed for the concentration of thyroxine (T4) in plasma where HF steers fed LCP-LME had a lower T4 concentration in plasma (P = 0.05) than BX steers. All steers with a restricted ME intake during Phase 1 demonstrated compensatory growth during Phase 2. However, HF steers fed the LCP treatment during Phase 1 showed a tendency (P = 0.07) for a greater LWG during Phase 2 without any increase in dry matter intake. Results observed at the growth plate and hip height growth suggest that catch-up growth in cattle may also be explained by the growth plate senescence hypothesis. Contrary to our initial hypothesis, the results demonstrate that greater CP intake during ME restriction does not increase compensatory gain in cattle during re-alimentation.
Collapse
Affiliation(s)
- Tiago A. C. C. Silva
- School of Environmental and Rural Science, University of New England, Armidale, Australia
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Australia
- * E-mail:
| | - Simon P. Quigley
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Australia
| | - Lisa J. Kidd
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Stephen T. Anderson
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Stuart R. McLennan
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, Australia
| | - Dennis P. Poppi
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Australia
| |
Collapse
|
11
|
Zhou E, Lui J. Physiological regulation of bone length and skeletal proportion in mammals. Exp Physiol 2020; 106:389-395. [PMID: 33369789 DOI: 10.1113/ep089086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/11/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Mechanisms regulating bone length and skeletal proportions What advances does it highlight? The study of differential bone length between leg and finger bones, metatarsals of the Egyptian jerboa and genomic analysis of giraffes. ABSTRACT Among mammalian species, skeletal structures vary greatly in size and shape, leading to a dramatic variety of body sizes and proportions. How different bones grow to different lengths, whether among different species, different individuals of the same species, or even in different anatomical parts of our the body, has always been a fascinating subject of research in biology and physiology. In the current review, we focus on some of the recent advances in the field and discuss how these provided important new insights into the mechanisms regulating bone length and skeletal proportions.
Collapse
Affiliation(s)
- Elaine Zhou
- Section on Growth and Development, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Julian Lui
- Section on Growth and Development, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Bone elongation is a complex process driven by multiple intrinsic (hormones, growth factors) and extrinsic (nutrition, environment) variables. Bones grow in length by endochondral ossification in cartilaginous growth plates at ends of developing long bones. This review provides an updated overview of the important factors that influence this process. RECENT FINDINGS Insulin-like growth factor-1 (IGF-1) is the major hormone required for growth and a drug for treating pediatric skeletal disorders. Temperature is an underrecognized environmental variable that also impacts linear growth. This paper reviews the current state of knowledge regarding the interaction of IGF-1 and environmental factors on bone elongation. Understanding how internal and external variables regulate bone lengthening is essential for developing and improving treatments for an array of bone elongation disorders. Future studies may benefit from understanding how these unique relationships could offer realistic new approaches for increasing bone length in different growth-limiting conditions.
Collapse
Affiliation(s)
- Holly L Racine
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV, 26074, USA
| | - Maria A Serrat
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
- Department of Orthopaedics, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
13
|
Cooper KL. Developmental and Evolutionary Allometry of the Mammalian Limb Skeleton. Integr Comp Biol 2020; 59:1356-1368. [PMID: 31180500 DOI: 10.1093/icb/icz082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The variety of limb skeletal proportions enables a remarkable diversity of behaviors that include powered flight in bats and flipper-propelled swimming in whales using extremes of a range of homologous limb architectures. Even within human limbs, bone lengths span more than an order of magnitude from the short finger and toe bones to the long arm and leg bones. Yet all of this diversity arises from embryonic skeletal elements that are each a very similar size at formation. In this review article, I survey what is and is not yet known of the development and evolution of skeletal proportion at multiple hierarchical levels of biological organization. These include the cellular parameters of skeletal elongation in the cartilage growth plate, genes associated with differential growth, and putative gene regulatory mechanisms that would allow both covariant and independent evolution of the forelimbs and hindlimbs and of individual limb segments. Although the genetic mechanisms that shape skeletal proportion are still largely unknown, and most of what is known is limited to mammals, it is becoming increasingly apparent that the diversity of bone lengths is an emergent property of a complex system that controls elongation of individual skeletal elements using a genetic toolkit shared by all.
Collapse
Affiliation(s)
- Kimberly L Cooper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0377, USA
| |
Collapse
|
14
|
Romeo SG, Alawi KM, Rodrigues J, Singh A, Kusumbe AP, Ramasamy SK. Endothelial proteolytic activity and interaction with non-resorbing osteoclasts mediate bone elongation. Nat Cell Biol 2019; 21:430-441. [PMID: 30936475 DOI: 10.1038/s41556-019-0304-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 02/26/2019] [Indexed: 12/31/2022]
Abstract
Growth plate cartilage contributes to the generation of a large variety of shapes and sizes of skeletal elements in the mammalian system. The removal of cartilage and how this process regulates bone shape are not well understood. Here we identify a non-bone-resorbing osteoclast subtype termed vessel-associated osteoclast (VAO). Endothelial cells at the bone/cartilage interface support VAOs through a RANKL-RANK signalling mechanism. In contrast to classical bone-associated osteoclasts, VAOs are dispensable for cartilage resorption and regulate anastomoses of type H vessels. Remarkably, proteinases including matrix metalloproteinase-9 (Mmp9) released from endothelial cells, not osteoclasts, are essential for resorbing cartilage to lead directional bone growth. Importantly, disrupting the orientation of angiogenic blood vessels by misdirecting them results in contorted bone shape. This study identifies proteolytic functions of endothelial cells in cartilage and provides a framework to explore tissue-lytic features of blood vessels in fracture healing, arthritis and cancer.
Collapse
Affiliation(s)
- Sara G Romeo
- Institute of Clinical Sciences, Imperial College London, London, UK.,MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Khadija M Alawi
- Institute of Clinical Sciences, Imperial College London, London, UK.,MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Julia Rodrigues
- Institute of Clinical Sciences, Imperial College London, London, UK.,MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Amit Singh
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Anjali P Kusumbe
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Saravana K Ramasamy
- Institute of Clinical Sciences, Imperial College London, London, UK. .,MRC London Institute of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
15
|
Abubakar AA, Ibrahim SM, Ali AK, Handool KO, Khan MS, Noordin Mustapha M, Azmi Ibrahim T, Kaka U, Mohamad Yusof L. Postnatal ex vivo rat model for longitudinal bone growth investigations. Animal Model Exp Med 2019; 2:34-43. [PMID: 31016285 PMCID: PMC6431117 DOI: 10.1002/ame2.12051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/20/2018] [Accepted: 12/05/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Chondrocytes in the growth plate (GP) undergo increases in volume during different cascades of cell differentiation during longitudinal bone growth. The volume increase is reported to be the most significant variable in understanding the mechanism of long bone growth. METHODS Forty-five postnatal Sprague-Dawley rat pups, 7-15 days old were divided into nine age groups (P7-P15). Five pups were allocated to each group. The rats were sacrificed and tibia and metatarsal bones were harvested. Bone lengths were measured after 0, 24, 48, and 72 hours of ex vivo incubation. Histology of bones was carried out, and GP lengths and chondrocyte densities were determined. RESULTS There were significant differences in bone length among the age groups after 0 and 72 hours of incubation. Histological sectioning was possible in metatarsal bone from all age groups, and in tibia from 7- to 13-day-old rats. No significant differences in tibia and metatarsal GP lengths were seen among different age groups at 0 and 72 hours of incubation. Significant differences in chondrocyte densities along the epiphyseal GP of the bones between 0 and 72 hours of incubation were observed in most of the age groups. CONCLUSION Ex vivo growth of tibia and metatarsal bones of rats aged 7-15 days old is possible, with percentage growth rates of 23.87 ± 0.80% and 40.38 ± 0.95% measured in tibia and metatarsal bone, respectively. Histological sectioning of bones was carried out without the need for decalcification in P7-P13 tibia and P7-P15 metatarsal bone. Increases in chondrocyte density along the GP influence overall bone elongation.
Collapse
Affiliation(s)
- Adamu Abdul Abubakar
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
- Department of Veterinary Surgery and RadiologyUsmanu Danfodiyo UniversitySokotoNigeria
| | - Sahar Mohammed Ibrahim
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
- Department of Surgery and TheriogenologyCollege of Veterinary MedicineUniversity of MosulMosulIraq
| | - Ahmed Khalaf Ali
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
- Department of Surgery and TheriogenologyCollege of Veterinary MedicineUniversity of MosulMosulIraq
| | - Kareem Obayes Handool
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
| | - Mohammad Shuaib Khan
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
- Faculty of Veterinary and Animal ScienceGomal UniversityDera Ismail KhanPakistan
| | | | - Tengku Azmi Ibrahim
- Department of Pre‐Clinical Veterinary SciencesUniversiti Putra MalaysiaSerdangMalaysia
| | - Ubedullah Kaka
- Laboratory of Sustainable Animal Production and BiodiversityInstitute of Tropical Agriculture and Food SecurityUniversiti Putra MalaysiaSerdangMalaysia
| | - Loqman Mohamad Yusof
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
| |
Collapse
|
16
|
Racine HL, Meadows CA, Ion G, Serrat MA. Heat-Induced Limb Length Asymmetry Has Functional Impact on Weight Bearing in Mouse Hindlimbs. Front Endocrinol (Lausanne) 2018; 9:289. [PMID: 29915560 PMCID: PMC5994414 DOI: 10.3389/fendo.2018.00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Limb length inequality results from many types of musculoskeletal disorders. Asymmetric weight bearing from a limb length discrepancy of less than 2% can have debilitating consequences such as back problems and early-onset osteoarthritis. Existing treatments include invasive surgeries and/or drug regimens that are often only partially effective. As a noninvasive alternative, we previously developed a once daily limb-heating model using targeted heat on one side of the body for 2 weeks to unilaterally increase bone length by up to 1.5% in growing mice. In this study, we applied heat for 1 week to determine whether these small differences in limb length are functionally significant, assessed by changes in hindlimb weight bearing. We tested the hypothesis that heat-induced limb length asymmetry has a functional impact on weight bearing in mouse hindlimbs. Female 3-week-old C57BL/6 mice (N = 12 total) were treated with targeted intermittent heat for 7 days (40 C for 40 min/day). High-resolution x-ray (N = 6) and hindlimb weight bearing data (N = 8) were acquired at the start and end of the experiments. There were no significant left-right differences in starting tibial length or hindlimb weight bearing. After 1-week heat exposure, tibiae (t = 7.7, p < 0.001) and femora (t = 11.5, p < 0.001) were ~1 and 1.4% longer, respectively, on the heat-treated sides (40 C) compared to the non-treated contralateral sides (30 C). Tibial elongation rate was over 6% greater (t = 5.19, p < 0.001). Hindlimb weight bearing was nearly 20% greater (t = 11.9, p < 0.001) and significantly correlated with the increase in tibial elongation rate on the heat-treated side (R2 = 0.82, p < 0.01). These results support the hypothesis that even a small limb length discrepancy can cause imbalanced weight distribution in healthy mice. The increase in bone elongation rate generated by localized heat could be a way to equalize limb length and weight bearing asymmetry caused by disease or trauma, leading to new approaches with better outcomes by using heat to lengthen limbs and reduce costly side effects of more invasive interventions.
Collapse
|
17
|
A journey through growth plates: tracking differences in morphology and regulation between the spine and the long bones in a pig model. Spine J 2017. [PMID: 28645676 DOI: 10.1016/j.spinee.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The process of linear growth is driven by axial elongation of both long bones and vertebral bodies and is accomplished by enchondral ossification. Differences in regulation between the two skeletal sites are mirrored clinically by the age course in body proportions. Whereas long bone growth plates (GPs) can easily be discriminated, vertebral GPs are part of the cartilaginous end plate, which typically shows important species differences. PURPOSE The objective of this study was to describe and compare histologic, histomorphometric, and regulatory characteristics in the GPs of the spine and the long bones in a porcine model. MATERIALS AND METHODS Two- and six-week-old piglet GPs of three vertebral segments (cervical, thoracic, and lumbar) and eight long bones (proximal and distal radius, humerus, tibia, and femur) were analyzed morphometrically. Further, estrogen receptors, proliferation markers, and growth factor expressions were examined by immunohistochemistry. RESULTS Individual vertebral GPs were smaller in width and contained fewer chondrocytes than long bone GPs, although their proliferation activity was similar. Whereas the expression pattern of growth hormone-associated factors such as insulin-like growth factor (IGF)-1 and IGF-1 receptor (IGF-1R) was similar, estrogen receptor (ER)-ß and IGF-2 were distinctly expressed in the vertebral samples. CONCLUSIONS Vertebral GPs display differential growth, with measurements similar to the slowest-growing GPs of long bones. Further investigation is needed to decipher the molecular basis of the differential growth of the spine and the long bones. Knowledge on the distinct mechanism will ultimately improve the assessment of clinically essential characteristics of spinal growth, such as vertebral elongation potential and GP fusion.
Collapse
|
18
|
Serrat MA, Ion G. Imaging IGF-I uptake in growth plate cartilage using in vivo multiphoton microscopy. J Appl Physiol (1985) 2017; 123:1101-1109. [PMID: 28798204 DOI: 10.1152/japplphysiol.00645.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/27/2022] Open
Abstract
Bones elongate through endochondral ossification in cartilaginous growth plates located at ends of primary long bones. Linear growth ensues from a cascade of biochemical signals initiated by actions of systemic and local regulators on growth plate chondrocytes. Although cellular processes are well defined, there is a fundamental gap in understanding how growth regulators are physically transported from surrounding blood vessels into and through dense, avascular cartilage matrix. Intravital imaging using in vivo multiphoton microscopy is one promising strategy to overcome this barrier by quantitatively tracking molecular delivery to cartilage from the vasculature in real time. We previously used in vivo multiphoton imaging to show that hindlimb heating increases vascular access of large molecules to growth plates using 10-, 40-, and 70-kDa dextran tracers. To comparatively evaluate transport of similarly sized physiological regulators, we developed and validated methods for measuring uptake of biologically active IGF-I into proximal tibial growth plates of live 5-wk-old mice. We demonstrate that fluorescently labeled IGF-I (8.2 kDa) is readily taken up in the growth plate and localizes to chondrocytes. Bioactivity tests performed on cultured metatarsal bones confirmed that the labeled protein is functional, assessed by phosphorylation of its signaling kinase, Akt. This methodology, which can be broadly applied to many different proteins and tissues, is relevant for understanding factors that affect delivery of biologically relevant molecules to the skeleton in real time. Results may lead to the development of drug-targeting strategies to treat a wide range of bone and cartilage pathologies.NEW & NOTEWORTHY This paper describes and validates a novel method for imaging transport of biologically active, fluorescently labeled IGF-I into skeletal growth plates of live mice using multiphoton microscopy. Cellular patterns of fluorescence in the growth plate were completely distinct from our prior publications using biologically inert probes, demonstrating for the first time in vivo localization of IGF-I in chondrocytes and perichondrium. These results form important groundwork for future studies aimed at targeting therapeutics into growth plates.
Collapse
Affiliation(s)
- Maria A Serrat
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Gabriela Ion
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
19
|
Stern T, Aviram R, Rot C, Galili T, Sharir A, Kalish Achrai N, Keller Y, Shahar R, Zelzer E. Isometric Scaling in Developing Long Bones Is Achieved by an Optimal Epiphyseal Growth Balance. PLoS Biol 2015; 13:e1002212. [PMID: 26241802 PMCID: PMC4524611 DOI: 10.1371/journal.pbio.1002212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 06/26/2015] [Indexed: 11/19/2022] Open
Abstract
One of the major challenges that developing organs face is scaling, that is, the adjustment of physical proportions during the massive increase in size. Although organ scaling is fundamental for development and function, little is known about the mechanisms that regulate it. Bone superstructures are projections that typically serve for tendon and ligament insertion or articulation and, therefore, their position along the bone is crucial for musculoskeletal functionality. As bones are rigid structures that elongate only from their ends, it is unclear how superstructure positions are regulated during growth to end up in the right locations. Here, we document the process of longitudinal scaling in developing mouse long bones and uncover the mechanism that regulates it. To that end, we performed a computational analysis of hundreds of three-dimensional micro-CT images, using a newly developed method for recovering the morphogenetic sequence of developing bones. Strikingly, analysis revealed that the relative position of all superstructures along the bone is highly preserved during more than a 5-fold increase in length, indicating isometric scaling. It has been suggested that during development, bone superstructures are continuously reconstructed and relocated along the shaft, a process known as drift. Surprisingly, our results showed that most superstructures did not drift at all. Instead, we identified a novel mechanism for bone scaling, whereby each bone exhibits a specific and unique balance between proximal and distal growth rates, which accurately maintains the relative position of its superstructures. Moreover, we show mathematically that this mechanism minimizes the cumulative drift of all superstructures, thereby optimizing the scaling process. Our study reveals a general mechanism for the scaling of developing bones. More broadly, these findings suggest an evolutionary mechanism that facilitates variability in bone morphology by controlling the activity of individual epiphyseal plates. A novel computational approach for studying bone morphogenesis reveals that the longitudinal proportions of developing long bones are accurately maintained throughout elongation by the balance between proximal and distal growth rates. One of the major challenges that developing organs face is scaling, that is, the adjustment of physical proportions during the massive increase in size. Bone superstructures are projections that typically serve for tendon and ligament insertion or articulation. Therefore, superstructure position along the bone is crucial for musculoskeletal functionality. As bones are rigid structures that elongate only from their ends, it is unclear how superstructure positions are regulated during growth to end up in the right locations. Here, by analyzing a massive database of micro-CT images of developing mouse long bones, we show that all superstructures maintain their relative positions throughout development. It has been suggested that during development, superstructures are continuously reconstructed and relocated along the shaft, a process known as drift. However, our analysis reveals that most superstructures did not drift at all, implying the involvement of another mechanism. Indeed, we identify a novel mechanism for bone scaling, whereby each bone exhibits a specific and unique balance between the growth rates from its two ends, which accurately maintains the relative position of its superstructures. Moreover, we show mathematically that this mechanism minimizes the cumulative drift of all superstructures, thereby optimizing the scaling process.
Collapse
Affiliation(s)
- Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (TS); (EZ)
| | - Rona Aviram
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Chagai Rot
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Galili
- Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel
| | - Amnon Sharir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noga Kalish Achrai
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yosi Keller
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Ron Shahar
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (TS); (EZ)
| |
Collapse
|
20
|
Serrat MA, Schlierf TJ, Efaw ML, Shuler FD, Godby J, Stanko LM, Tamski HL. Unilateral heat accelerates bone elongation and lengthens extremities of growing mice. J Orthop Res 2015; 33:692-8. [PMID: 25639189 PMCID: PMC6818498 DOI: 10.1002/jor.22812] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/19/2014] [Indexed: 02/04/2023]
Abstract
Linear growth failure results from a broad spectrum of systemic and local disorders that can generate chronic musculoskeletal disability. Current bone lengthening protocols involve invasive surgeries or drug regimens, which are only partially effective. Exposure to warm ambient temperature during growth increases limb length, suggesting that targeted heat could noninvasively enhance bone elongation. We tested the hypothesis that daily heat exposure on one side of the body unilaterally increases femoral and tibial lengths. Mice (N = 20) were treated with 40 °C unilateral heat for 40 min/day for 14 days post-weaning. Non-treated mice (N = 6) served as controls. Unilateral increases in ear (8.8%), hindfoot (3.5%), femoral (1.3%), and tibial (1.5%) lengths were obtained. Tibial elongation rate was > 12% greater (15 μm/day) on the heat-treated side. Extremity lengthening correlated with temperature during treatment. Body mass and humeral length were unaffected. To test whether differences persisted in adults, mice were examined 7-weeks post-treatment. Ear area, hindfoot, femoral, and tibial lengths were still significantly increased ∼6%, 3.5%, 1%, and 1%, respectively, on the heat-treated side. Left-right differences were absent in non-treated controls, ruling out inherent side asymmetry. This model is important for designing noninvasive heat-based therapies to potentially combat a range of debilitating growth impediments in children.
Collapse
Affiliation(s)
- Maria A. Serrat
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia 25704
- Department of Orthopaedics, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia 25701
| | - Thomas J. Schlierf
- Department of Orthopaedics, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia 25701
| | - Morgan L. Efaw
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia 25704
| | - Franklin D. Shuler
- Department of Orthopaedics, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia 25701
| | - Justin Godby
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia 25704
| | - Laura M. Stanko
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia 25704
| | - Holly L. Tamski
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia 25704
| |
Collapse
|
21
|
Abstract
Environmental temperature can have a surprising impact on extremity growth in homeotherms, but the underlying mechanisms have remained elusive for over a century. Limbs of animals raised at warm ambient temperature are significantly and permanently longer than those of littermates housed at cooler temperature. These remarkably consistent lab results closely resemble the ecogeographical tenet described by Allen's "extremity size rule," that appendage length correlates with temperature and latitude. This phenotypic growth plasticity could have adaptive significance for thermal physiology. Shortened extremities help retain body heat in cold environments by decreasing surface area for potential heat loss. Homeotherms have evolved complex mechanisms to maintain tightly regulated internal temperatures in challenging environments, including "facultative extremity heterothermy" in which limb temperatures can parallel ambient. Environmental modulation of tissue temperature can have direct and immediate consequences on cell proliferation, metabolism, matrix production, and mineralization in cartilage. Temperature can also indirectly influence cartilage growth by modulating circulating levels and delivery routes of essential hormones and paracrine regulators. Using an integrated approach, this article synthesizes classic studies with new data that shed light on the basis and significance of this enigmatic growth phenomenon and its relevance for treating human bone elongation disorders. Discussion centers on the vasculature as a gateway to understanding the complex interconnection between direct (local) and indirect (systemic) mechanisms of temperature-enhanced bone lengthening. Recent advances in imaging modalities that enable the dynamic study of cartilage growth plates in vivo will be key to elucidating fundamental physiological mechanisms of long bone growth regulation.
Collapse
Affiliation(s)
- Maria A Serrat
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
22
|
Shapiro IM, Layfield R, Lotz M, Settembre C, Whitehouse C. Boning up on autophagy: the role of autophagy in skeletal biology. Autophagy 2013; 10:7-19. [PMID: 24225636 DOI: 10.4161/auto.26679] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
From an evolutionary perspective, the major function of bone is to provide stable sites for muscle attachment and affording protection of vital organs, especially the heart and lungs (ribs) and spinal cord (vertebrae and intervertebral discs). However, bone has a considerable number of other functions: serving as a store for mineral ions, providing a site for blood cell synthesis and participating in a complex system-wide endocrine system. Not surprisingly, bone and cartilage cell homeostasis is tightly controlled, as is the maintenance of tissue structure and mass. While a great deal of new information is accruing concerning skeletal cell homeostasis, one relatively new observation is that the cells of bone (osteoclasts osteoblasts and osteocytes) and cartilage (chondrocytes) exhibit autophagy. The focus of this review is to examine the significance of this process in terms of the functional demands of the skeleton in health and during growth and to provide evidence that dysregulation of the autophagic response is involved in the pathogenesis of diseases of bone (Paget disease of bone) and cartilage (osteoarthritis and the mucopolysaccharidoses). Delineation of molecular changes in the autophagic process is uncovering new approaches for the treatment of diseases that affect the axial and appendicular skeleton.
Collapse
Affiliation(s)
- Irving M Shapiro
- Jefferson Medical College; Thomas Jefferson University; Philadelphia, PA USA
| | - Robert Layfield
- School of Life Sciences; University of Nottingham Medical School; Nottingham UK
| | - Martin Lotz
- Arthritis Research; The Scripps Research Institute; La Jolla, CA USA
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM); Naples, Italy; Department of Molecular and Human Genetics; Baylor College of Medicine, Houston, TXUSA and Jan and Dan Duncan Neurological Research Institute; Texas Children's Hospital; Houston, TX USA; Medical Genetics; Department of Translational and Medical Science; Federico II University; Naples, Italy
| | - Caroline Whitehouse
- Department of Medical and Molecular Genetics; Kings College London; London UK
| |
Collapse
|
23
|
Loqman MY, Bush PG, Farquharson C, Hall AC. Suppression of mammalian bone growth by membrane transport inhibitors. J Cell Biochem 2013; 114:658-68. [PMID: 23059814 DOI: 10.1002/jcb.24408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/21/2012] [Indexed: 12/12/2022]
Abstract
Bone lengthening during skeletal growth is driven primarily by the controlled enlargement of growth plate (GP) chondrocytes. The cellular mechanisms are unclear but membrane transporters are probably involved. We investigated the role of the Na(+)/H(+) antiporter (NHE1) and anion exchanger (AE2) in bone lengthening and GP chondrocyte hypertrophy in Sprague-Dawley 7-day-old rat (P7) bone rudiments using the inhibitors EIPA (5-(N-ethyl-N-isopropyl)amiloride) and DIDS (4,4-diidothiocyano-2,2-stilbenedisulphonate), respectively. We have also determined cell-associated levels of these transporters along the GP using fluorescent immunohistochemistry (FIHC). Culture of bones with EIPA or DIDS inhibited rudiment growth (50% at approx. 250 and 25 µM, respectively). Both decreased the size of the hypertrophic zone (P < 0.05) but had no effect on overall length or cell density of the GP. In situ chondrocyte volume in proliferative and hypertrophic zones was decreased (P < 0.01) with EIPA but not DIDS. FIHC labeling of NHE1 was relatively high and constant along the GP but declined steeply in the late hypertrophic zone. In contrast, AE2 labeling was relatively low in proliferative zone cells but increased (P < 0.05) reaching a maximum in the early hypertrophic zone, before falling rapidly in the late hypertrophic zone suggesting AE2 might regulate the transition phase of chondrocytes between proliferative and hypertrophic zones. The inhibition of bone growth by EIPA may be due to a reduction to chondrocyte volume set-point. However the effect of DIDS was unclear but could result from inhibition of AE2 and blocking of the transition phase. These results demonstrate that NHE1 and AE2 are important regulators of bone growth.
Collapse
Affiliation(s)
- Mohamad Y Loqman
- Centre for Integrative Physiology, School of Biomedical Sciences, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK
| | | | | | | |
Collapse
|
24
|
Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 2013; 495:375-8. [PMID: 23485973 PMCID: PMC3606657 DOI: 10.1038/nature11940] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 01/29/2013] [Indexed: 11/08/2022]
Abstract
The wide diversity of skeletal proportions in mammals is evident upon a survey of any natural history museum's collections and allows us to distinguish between species even when reduced to their calcified components. Similarly, each individual is comprised of a variety of bones of differing lengths. The largest contribution to the lengthening of a skeletal element, and to the differential elongation of elements, comes from a dramatic increase in the volume of hypertrophic chondrocytes in the growth plate as they undergo terminal differentiation. However, the mechanisms of chondrocyte volume enlargement have remained a mystery. Here we use quantitative phase microscopy to show that mammalian chondrocytes undergo three distinct phases of volume increase, including a phase of massive cell swelling in which the cellular dry mass is significantly diluted. In light of the tight fluid regulatory mechanisms known to control volume in many cell types, this is a remarkable mechanism for increasing cell size and regulating growth rate. It is, however, the duration of the final phase of volume enlargement by proportional dry mass increase at low density that varies most between rapidly and slowly elongating growth plates. Moreover, we find that this third phase is locally regulated through a mechanism dependent on insulin-like growth factor. This study provides a framework for understanding how skeletal size is regulated and for exploring how cells sense, modify and establish a volume set point.
Collapse
|
25
|
Lampl M. Perspectives on modelling human growth: Mathematical models and growth biology. Ann Hum Biol 2012; 39:342-51. [DOI: 10.3109/03014460.2012.704072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Sanger TJ, Norgard EA, Pletscher LS, Bevilacqua M, Brooks VR, Sandell LJ, Cheverud JM. Developmental and genetic origins of murine long bone length variation. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316B:146-61. [PMID: 21328530 PMCID: PMC3160521 DOI: 10.1002/jez.b.21388] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 08/30/2010] [Accepted: 10/16/2010] [Indexed: 01/08/2023]
Abstract
If we wish to understand whether development influences the rate or direction of morphological evolution, we must first understand the developmental bases of morphological variation within species. However, quantitative variation in adult morphology is the product of molecular and cellular processes unfolding from embryonic development through juvenile growth to maturity. The Atchley-Hall model provides a useful framework for dissecting complex morphologies into their component parts as a way of determining which developmental processes contribute to variation in adult form. We have examined differences in postnatal allometry and the patterns of genetic correlation between age-specific traits for ten recombinant inbred strains of mice generated from an intercross of LG/J and SM/J. Long bone length is closely tied to body size, but variation in adult morphology is more closely tied to differences in growth rate between 3 and 5 weeks of age. These analyses show that variation generated during early development is overridden by variation generated later in life. To more precisely determine the cellular processes generating this variation we then examined the cellular dynamics of long bone growth plates at the time of maximum elongation rate differences in the parent strains. Our analyses revealed that variation in long bone length is the result of faster elongation rates of the LG/J stain. The developmental bases for these differences in growth rate involve the rate of cell division and chondrocyte hypertrophy in the growth plate.
Collapse
Affiliation(s)
- Thomas J Sanger
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Bush PG, Pritchard M, Loqman MY, Damron TA, Hall AC. A key role for membrane transporter NKCC1 in mediating chondrocyte volume increase in the mammalian growth plate. J Bone Miner Res 2010; 25:1594-603. [PMID: 20200963 PMCID: PMC3154001 DOI: 10.1002/jbmr.47] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mechanisms that underlie growth plate chondrocyte volume increase and hence bone lengthening are poorly understood. Many cell types activate the Na-K-Cl cotransporter (NKCC) to bring about volume increase. We hypothesised that NKCC may be responsible for the volume expansion of hypertrophic chondrocytes. Metatarsals/metacarpals from 16 rat pups (P(7)) were incubated in the presence/absence of the specific NKCC inhibitor bumetanide and measurement of whole-bone lengths and histologic analysis of the growth plate were done after 24 hours. Fluorescent NKCC immunohistochemistry was visualised using a confocal laser scanning microscopy on seven rat tibial growth plates (P(7)). Microarray analysis was performed on mRNA isolated from proliferative and hypertrophic zone cells of tibial growth plates from five rats of each of three ages (P(49/53/58)). Exposure to bumetanide resulted in approximately 35% reduction (paired Student's t test, p < .05) of bone growth in a dose-dependent manner; histologic analysis showed that a reduction in hypertrophic zone height was responsible. Quantification of fluorescence immunohistochemistry revealed a significant (paired Student's t test, p < .05) change in NKCC from the intracellular space of proliferative cells to the cytosolic membrane of hypertrophic zone cells. Further, microarray analysis illustrated an increase in NKCC1 mRNA between proliferative and hypertrophic cells. The increase in NKCC1 mRNA in hypertrophic zone cells, its cellular localization, and reduced bone growth in the presence of the NKCC inhibitor bumetanide implicate NKCC in growth plate hypertrophic chondrocyte volume increase. Further investigation is warranted to determine the regulatory control of NKCC in the mammalian growth plate and the possible detrimental effect on bone growth with chronic exposure to loop diuretics.
Collapse
Affiliation(s)
- Peter G Bush
- Centre for Biomedical and Health Science Research, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.
| | | | | | | | | |
Collapse
|
28
|
Hattori T, Müller C, Gebhard S, Bauer E, Pausch F, Schlund B, Bösl MR, Hess A, Surmann-Schmitt C, von der Mark H, de Crombrugghe B, von der Mark K. SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development 2010; 137:901-11. [PMID: 20179096 DOI: 10.1242/dev.045203] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SOX9 is a transcription factor of the SRY family that regulates sex determination, cartilage development and numerous other developmental events. In the foetal growth plate, Sox9 is highly expressed in chondrocytes of the proliferating and prehypertrophic zone but declines abruptly in the hypertrophic zone, suggesting that Sox9 downregulation in hypertrophic chondrocytes might be a necessary step to initiate cartilage-bone transition in the growth plate. In order to test this hypothesis, we generated transgenic mice misexpressing Sox9 in hypertrophic chondrocytes under the control of a BAC-Col10a1 promoter. The transgenic offspring showed an almost complete lack of bone marrow in newborns, owing to strongly retarded vascular invasion into hypertrophic cartilage and impaired cartilage resorption, resulting in delayed endochondral bone formation associated with reduced bone growth. In situ hybridization analysis revealed high levels of Sox9 misexpression in hypertrophic chondrocytes but deficiencies of Vegfa, Mmp13, RANKL and osteopontin expression in the non-resorbed hypertrophic cartilage, indicating that Sox9 misexpression in hypertrophic chondrocytes inhibits their terminal differentiation. Searching for the molecular mechanism of SOX9-induced inhibition of cartilage vascularization, we discovered that SOX9 is able to directly suppress Vegfa expression by binding to SRY sites in the Vegfa gene. Postnatally, bone marrow formation and cartilage resorption in transgenic offspring are resumed by massive invasion of capillaries through the cortical bone shaft, similar to secondary ossification. These findings imply that downregulation of Sox9 in the hypertrophic zone of the normal growth plate is essential for allowing vascular invasion, bone marrow formation and endochondral ossification.
Collapse
Affiliation(s)
- Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City 700-8525, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Norgard EA, Jarvis JP, Roseman CC, Maxwell TJ, Kenney-Hunt JP, Samocha KE, Pletscher LS, Wang B, Fawcett GL, Leatherwood CJ, Wolf JB, Cheverud JM. Replication of long-bone length QTL in the F9-F10 LG,SM advanced intercross. Mamm Genome 2009; 20:224-35. [PMID: 19306044 DOI: 10.1007/s00335-009-9174-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
Quantitative trait locus (QTL) mapping techniques are frequently used to identify genomic regions associated with variation in phenotypes of interest. However, the F(2) intercross and congenic strain populations usually employed have limited genetic resolution resulting in relatively large confidence intervals that greatly inhibit functional confirmation of statistical results. Here we use the increased resolution of the combined F(9) and F(10) generations (n = 1455) of the LG,SM advanced intercross to fine-map previously identified QTL associated with the lengths of the humerus, ulna, femur, and tibia. We detected 81 QTL affecting long-bone lengths. Of these, 49 were previously identified in the combined F(2)-F(3) population of this intercross, while 32 represent novel contributors to trait variance. Pleiotropy analysis suggests that most QTL affect three to four long bones or serially homologous limb segments. We also identified 72 epistatic interactions involving 38 QTL and 88 novel regions. This analysis shows that using later generations of an advanced intercross greatly facilitates fine-mapping of confidence intervals, resolving three F(2)-F(3) QTL into multiple linked loci and narrowing confidence intervals of other loci, as well as allowing identification of additional QTL. Further characterization of the biological bases of these QTL will help provide a better understanding of the genetics of small variations in long-bone length.
Collapse
Affiliation(s)
- Elizabeth A Norgard
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Box 8108, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sansone JM, Wilsman NJ, Leiferman EM, Noonan KJ. The effect of periosteal resection on tibial growth velocity measured by microtransducer technology in lambs. J Pediatr Orthop 2009; 29:61-7. [PMID: 19098649 PMCID: PMC3101265 DOI: 10.1097/bpo.0b013e3181929c71] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Disruption of the periosteum, whether traumatic or elective, has long been known to accelerate growth in the developing skeleton. However, the extent, timing, and mechanism of the resultant increase in growth velocity (if any) remain undefined. The primary research questions were: Does periosteal resection result in a change (increase) in growth velocity of a long bone at the growth plate? When does the effect start after the resection and for how long? Finally, which of several cellular mechanisms is most likely responsible for the change in growth velocity? METHODS Five lambs underwent proximal tibial growth plate periosteal resection with subsequent measurement of growth velocity by implantable microtransducers or fluorochrome labeling. This former technique provided real-time growth velocity data with a resolution of about 10 microm (width of a proliferative zone chondrocyte). These measurements were accurate at up to 4 weeks postoperative, as verified by fluorochrome labeling, and radiographic measurement. Two lambs were continued on the study for an additional 3 weeks. Histomorphometric and stereological assessments of chondrocytic kinetic parameters were performed on control and experimental tibiae after euthanasia. RESULTS Periosteal resection increased growth velocity in every lamb, at every time point, and in a consistent and sustained manner. Histomorphometric correlation to this phenomenon indicated that the cellular basis of this acceleration was most likely the result of hypertrophic chondrocyte axial elongation rather than changes in chondrocyte proliferation, magnitude of hypertrophic chondrocytic swelling, or increased matrix production. CONCLUSIONS Periosteal resection creates immediate and sustained acceleration of growth resulting from axial elongation of the hypertrophic chondrocyte. Although the increase in growth velocity was consistent, the absolute magnitude of the acceleration suggests that periosteal resection be considered as an adjunct to other primary procedures. Periosteal resection may serve as a useful clinical adjunct to provide a modest growth stimulus in cases of hemihypertrophy or angular limb deformity or to counteract the growth inhibition seen when performing distraction osteogenesis.
Collapse
Affiliation(s)
| | | | - Ellen M. Leiferman
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Kenneth J. Noonan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|