1
|
Yang W, Yang Y, Wang Y, Gao Z, Zhang J, Gao W, Chen Y, Lu Y, Wang H, Zhou L, Wang Y, Li J, Tao H. Metformin prevents the onset and progression of intervertebral disc degeneration: New insights and potential mechanisms (Review). Int J Mol Med 2024; 54:71. [PMID: 38963023 PMCID: PMC11232665 DOI: 10.3892/ijmm.2024.5395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Metformin has been the go‑to medical treatment for addressing type 2 diabetes mellitus (T2DM) as a frontline oral antidiabetic. Obesity, cancer and bone deterioration are linked to T2DM, which is considered a metabolic illness. Numerous diseases associated with T2DM, such as tumours, cardiovascular disease and bone deterioration, may be treated with metformin. Intervertebral disc degeneration (IVDD) is distinguished by degeneration of the spinal disc, accompanied by the gradual depletion of proteoglycans and water in the nucleus pulposus (NP) of the IVD, resulting in lower back pain. The therapeutic effect of metformin on IVDD has also attracted much attention. By stimulating AMP‑activated kinase, metformin could enhance autophagy and suppress cell senescence, apoptosis and inflammation, thus effectively delaying IVDD. The present review aimed to systematically explain the development of IVDD and mechanism of metformin in the treatment and prevention of IVDD to provide a reference for the clinical application of metformin as adjuvant therapy in the treatment of IVDD.
Collapse
Affiliation(s)
- Wenzhi Yang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yipin Yang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yong Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zongshi Gao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jingtang Zhang
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weimin Gao
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yanjun Chen
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - You Lu
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Haoyu Wang
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lingyan Zhou
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yifan Wang
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jie Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hui Tao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
2
|
Bitterli T, Schmid D, Ettinger L, Krupkova O, Bach FC, Tryfonidou MA, Meij BP, Pozzi A, Steffen F, Wuertz‐Kozak K, Smolders LA. Targeted screening of inflammatory mediators in spontaneous degenerative disc disease in dogs reveals an upregulation of the tumor necrosis superfamily. JOR Spine 2024; 7:e1292. [PMID: 38222814 PMCID: PMC10782068 DOI: 10.1002/jsp2.1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/28/2023] [Accepted: 09/26/2023] [Indexed: 01/16/2024] Open
Abstract
Background The regulation of inflammatory mediators in the degenerating intervertebral disc (IVD) and corresponding ligamentum flavum (LF) is a topic of emerging interest. The study aimed to investigate the expression of a broad array of inflammatory mediators in the degenerated LF and IVD using a dog model of spontaneous degenerative disc disease (DDD) to determine potential treatment targets. Methods LF and IVD tissues were collected from 22 normal dogs (Pfirrmann grades I and II) and 18 dogs affected by DDD (Pfirrmann grades III and IV). A qPCR gene array was used to investigate the expression of 80 inflammatory genes for LF and IVD tissues, whereafter targets of interest were investigated in additional tissue samples using qPCR, western blot (WB), and immunohistochemistry. Results Tumor necrosis factor superfamily (TNFSF) signaling was identified as a regulated pathway in DDD, based on the significant regulation (n-fold ± SD) of various TNFSF members in the degenerated IVD, including nerve growth factor (NGF; -8 ± 10), CD40LG (464 ± 442), CD70 (341 ± 336), TNFSF Ligand 10 (9 ± 8), and RANKL/TNFSF Ligand 11 (85 ± 74). In contrast, TNFSF genes were not significantly affected in the degenerated LF compared to the control LF. Protein expression of NGF (WB) was significantly upregulated in both the degenerated LF (4.4 ± 0.5) and IVD (11.3 ± 5.6) compared to the control group. RANKL immunopositivity was significantly upregulated in advanced stages of degeneration (Thompson grades IV and V) in the nucleus pulposus and annulus fibrosus of the IVD, but not in the LF. Conclusions DDD involves a significant upregulation of various TNFSF members, with tissue-specific expression profiles in LF and IVD tissues. The differential involvement of TNFSF members within multiple spinal tissues from the same individual provides new insights into the inflammatory processes involved in DDD and may provide a basis to formulate hypotheses for the determination of potential treatment targets.
Collapse
Affiliation(s)
- Thomas Bitterli
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - David Schmid
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Ladina Ettinger
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Olga Krupkova
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
- Spine SurgeryUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of Basel & University Hospital Basel, Tissue EngineeringBaselSwitzerland
| | - Frances C. Bach
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Björn P. Meij
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Antonio Pozzi
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Frank Steffen
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Karin Wuertz‐Kozak
- Institute for Biomechanics, ETH ZurichZurichSwitzerland
- Department of Biomedical EngineeringRochester Institute of Technology (RIT)RochesterNew YorkUSA
- Schön Clinic Munich Harlaching, Spine CenterAcademic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria)MunichGermany
| | - Lucas A. Smolders
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
3
|
Zhang S, Liu W, Chen S, Wang B, Wang P, Hu B, Lv X, Shao Z. Extracellular matrix in intervertebral disc: basic and translational implications. Cell Tissue Res 2022; 390:1-22. [DOI: 10.1007/s00441-022-03662-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023]
|
4
|
Ramanathan R, Firdous A, Dong Q, Wang D, Lee J, Vo N, Sowa G. Investigation into the anti-inflammatory properties of metformin in intervertebral disc cells. JOR Spine 2022; 5:e1197. [PMID: 35783910 PMCID: PMC9238278 DOI: 10.1002/jsp2.1197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Intervertebral disc degeneration (IDD) is closely related to heightened inflammation in the annulus fibrosis (AF) and nucleus pulposus (NP) cells in the intervertebral disc. An imbalanced matrix homeostasis has been shown to contribute to disc degeneration and associated discogenic low back pain. Metformin, a diabetes medication, has been noted to exhibit anti-inflammatory properties through upregulation of the AMPK pathway, leading to various anti-inflammatory-related responses in hepatocytes. However, it is still unclear how metformin influences disc cellular response to inflammatory stress and the corresponding mechanism. Hence, the objective of this study is to elucidate the effects of metformin on expression of key pro-inflammatory, catabolic, and anabolic factors within rat AF cells in response to inflammatory stimulation and mechanical tensile stress. Methods Five Fischer 344 rats were sacrificed and their spines isolated. AF cells were cultured and plated in flexible silicone membrane-based six-well plates. Wells were split into eight groups and subjected to metformin, IL-1β, mechanical stretch, and combined treatments. Relative gene expressions of MMP-13, COX-2, iNOS, AGC, and Col1 were assessed with quantitative real-time polymerase chain reaction (qRT-PCR), and downstream prostaglandin E2 (PGE2) production was quantified with enzyme-linked immunosorbent assay (ELISA). NF-kB nuclear translocation was also quantified. Results Metformin in the presence of the combined stress treatments (M + IL/S) significantly increased Col1, COX-2, and MMP-13 gene expression, decreased PGE2 production compared to IL/S conditions alone. Metformin treatment of cultured rat annulus fibrosus cells significantly reduced the nuclear translocation of NF-κB after 4 h of IL-1β treatment from 43.1% in case of IL-1β treatment down to 26.2% in the case of metformin + IL-1β treatment. Discussion The lack of metformin-mediated suppression of inflammatory response in the nonstretch groups indicates that metformin may be enacting its effects through a stretch-dependent manner. These results suggest a foundation for pursuing further research into metformin's potential role as an anti-inflammatory agent for curtailing intervertebral disc degeneration.
Collapse
Affiliation(s)
- Rahul Ramanathan
- Ferguson Spine Laboratory, Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ayesha Firdous
- Ferguson Spine Laboratory, Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Qing Dong
- Ferguson Spine Laboratory, Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dong Wang
- Ferguson Spine Laboratory, Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Joon Lee
- Ferguson Spine Laboratory, Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Nam Vo
- Ferguson Spine Laboratory, Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Gwendolyn Sowa
- Ferguson Spine Laboratory, Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Vo N, Couch B, Lee J, Sowa G, Kang J, Rebecca S. Actions of Prostaglandins on Human Nucleus Pulposus Metabolism Inferred by Cyclooxygenase 2 Inhibition of Cytokine Activated Cells. Neurospine 2020; 17:60-68. [PMID: 32252155 PMCID: PMC7136088 DOI: 10.14245/ns.2040050.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/28/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Low back pain is frequently treated with nonsteroidal anti-inflammatory drugs (NSAIDs), but little is known about intervertebral disc metabolism of the prostaglandins that are diminished by these drugs. Hence, this study aimed at delineating prostaglandin actions in cytokine activated disc cells by comparing the response of nucleus pulposus (NP) cells to the pro-inflammatory cytokine interleukin (IL)-1β with and without cyclooxygenase 2 (COX-2) inhibition. METHODS NP cells cultured in alginate beads were activated with IL-1β ± the COX-2 inhibitor Sc-58125. Media harvested from cultured cells were analyzed for prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2α), IL-6, and matrix metalloproteinase (MMP)-3 by enzymelinked immunosorbent assay and nitric oxide by Griess Reaction. Gene expression along with proteoglycan, collagen, and total protein synthesis were also measured. RESULTS IL-1β increased culture media PGE2 and PGF2α, but decreased proteoglycan and collagen syntheses as well as mRNA expression of the matrix genes aggrecan, versican, collagen I, and collagen II. COX-2 inhibition partially rescued proteoglycan and collagen syntheses and collagen I mRNA, but decreased collagen II mRNA IL-1β activated NP cells. COX-2 inhibition initially enhanced and subsequently reduced IL-1β induced inducible nitric oxide synthase, without altering medium nitrite. IL-1β induction of MMP-3 mRNA was increased by COX-2 inhibition at 24 and 48 hours. CONCLUSION COX-2 inhibition alters the response of NP cells to IL-1β, suggesting IL-1β action on disc cells is mediated at least in part through COX-2 and its prostaglandins. COX-2 inhibition produces minimal effects on several key catabolic mediators, with the exception of MMP-3. Blocking COX-2 might be beneficial for maintaining disc matrix since it provides an overall rescue of IL-1 induced loss of matrix protein synthesis.
Collapse
Affiliation(s)
- Nam Vo
- Ferguson Laboratory for Orthopedic and Spine Research, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brandon Couch
- Ferguson Laboratory for Orthopedic and Spine Research, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joon Lee
- Ferguson Laboratory for Orthopedic and Spine Research, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gwendolyn Sowa
- Ferguson Laboratory for Orthopedic and Spine Research, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James Kang
- Ferguson Laboratory for Orthopedic and Spine Research, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Orthopedics, Brigham and Women's Hospital, Harvard University School of Medicine, Boston, MA, USA
| | - Studer Rebecca
- Ferguson Laboratory for Orthopedic and Spine Research, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Zhou X, Zhang F, Wang D, Wang J, Wang C, Xia K, Ying L, Huang X, Tao Y, Chen S, Xue D, Hua J, Liang C, Chen Q, Li F. Micro Fragmented Adipose Tissue Promotes the Matrix Synthesis Function of Nucleus Pulposus Cells and Regenerates Degenerated Intervertebral Disc in a Pig Model. Cell Transplant 2020; 29:963689720905798. [PMID: 32030997 PMCID: PMC7444234 DOI: 10.1177/0963689720905798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration and consequent lower back pain is a common
disease. Micro fragmented adipose tissue (MFAT) is promising for a wide range of
applications in regenerative medicine. In this study, MFAT was isolated by a
nonenzymatic method and co-cultured with nucleus pulposus cells (NPCs) using an
indirect co-culture system in vitro. A pig disc degeneration
model was used to investigate the regenerative effect of MFAT on degenerated
IVDs in vivo. The mRNA expression of Sox9,
Acan, and Col2 in NPCs was significantly
increased, while no significant increase was observed in the mRNA expression of
proinflammatory cytokine genes after the NPCs were co-cultured with MFAT.
Nucleus pulposus (NP)-specific markers were increased in MFAT cells after
co-culture with NPCs. After injection of MFAT, the disc height, water content,
extracellular matrix, and structure of the degenerated NP were significantly
improved. MFAT promoted the matrix synthesis function of NPCs, and NPCs
stimulated the NP-like differentiation of MFAT cells. In addition, MFAT also
partly regenerated degenerated IVDs in the pig model.
Collapse
Affiliation(s)
- Xiaopeng Zhou
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,These authors contributed equally to this article
| | - Feng Zhang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,These authors contributed equally to this article
| | - Dawei Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,These authors contributed equally to this article
| | - Jingkai Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,These authors contributed equally to this article
| | - Chenggui Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Kaishun Xia
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Liwei Ying
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yiqing Tao
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Shouyong Chen
- Department of Orthopedics Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Deting Xue
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianming Hua
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Qixin Chen
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fangcai Li
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Borem R, Madeline A, Bowman M, Gill S, Tokish J, Mercuri J. Differential Effector Response of Amnion- and Adipose-Derived Mesenchymal Stem Cells to Inflammation; Implications for Intradiscal Therapy. J Orthop Res 2019; 37:2445-2456. [PMID: 31287173 DOI: 10.1002/jor.24412] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/25/2019] [Indexed: 02/04/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a progressive condition marked by tissue destruction and inflammation. The therapeutic effector functions of mesenchymal stem cells (MSCs) makes them an attractive therapy for patients with IVDD. While several sources of MSCs exist, the optimal choice for use in the inflamed IVD remains a significant question. Adipose (AD)- and amnion (AM)-derived MSCs have several advantages compared with other sources, however, no study has directly compared the impact of IVDD inflammation on their effector functions. Human MSCs were cultured in media with or without supplementation of interleukin-1β (IL-1β) and tumor necrosis factor-α at concentrations reportedly produced by IVDD cells. MSC proliferation and production of pro- and anti-inflammatory cytokines were quantified following 24 and 48 h of culture. Additionally, the osteogenic and chondrogenic potential of AD- and AM-MSCs was characterized via histology and biochemical analysis following 28 days of culture. In inflammatory culture, AM-MSCs produced significantly more anti-inflammatory IL-10 (14.47 ± 2.39 pg/ml; p = 0.004) and larger chondrogenic pellets (5.67 ± 0.26 mm2 ; p = 0.04) with greater percent area staining positively for glycosaminoglycan (82.03 ± 3.26%; p < 0.001) compared with AD-MSCs (0.00 ± 0.00 pg/ml; 2.76 ± 0.18 mm2 ; 34.75 ± 2.49%; respectively). Conversely, AD-MSCs proliferated more resulting in higher cell numbers (221,000 ± 8,021 cells; p = 0.048) and produced higher concentrations of pro-inflammatory cytokines prostaglandin E2 (1,118.30 ± 115.56 pg/ml; p = 0.030) and IL-1β (185.40 ± 7.63 pg/ml; p = 0.010) compared with AM-MSCs (109,667 ± 5,696 cells; 1,291.40 ± 78.47 pg/ml; 144.10 ± 4.57 pg/ml; respectively). AD-MSCs produced more mineralized extracellular matrix (3.34 ± 0.05 relative absorbance units [RAU]; p < 0.001) compared with AM-MSCs (1.08 ± 0.06 RAU). Under identical inflammatory conditions, a different effector response was observed with AM-MSCs producing more anti-inflammatories and demonstrating enhanced chondrogenesis compared with AD-MSCs, which produced more pro-inflammatory cytokines and demonstrated enhanced osteogenesis. These findings may begin to help inform researchers which MSC source may be optimal for IVD regeneration. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2445-2456, 2019.
Collapse
Affiliation(s)
- Ryan Borem
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634
| | - Allison Madeline
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634
| | - Mackenzie Bowman
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634
| | - Sanjitpal Gill
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634.,Department of Orthopaedic Surgery, Medical Group of the Carolinas-Pelham, Spartanburg Regional Healthcare System, Greer, South Carolina, 29651
| | - John Tokish
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634.,Department of Orthopaedic Surgery, Mayo Clinic, Phoenix, Arizona, 85054
| | - Jeremy Mercuri
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
8
|
Kakiuchi Y, Yurube T, Kakutani K, Takada T, Ito M, Takeoka Y, Kanda Y, Miyazaki S, Kuroda R, Nishida K. Pharmacological inhibition of mTORC1 but not mTORC2 protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism through Akt and autophagy induction. Osteoarthritis Cartilage 2019; 27:965-976. [PMID: 30716534 DOI: 10.1016/j.joca.2019.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 01/15/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that integrates nutrients to execute cell growth. We hypothesized that mTOR is influential in the intervertebral disc-largest avascular, low-nutrient organ. Our objective was to identify the optimal mTOR inhibitor for treating human degenerative disc disease. DESIGN mTOR complex 1 (mTORC1) regulates p70/ribosomal S6 kinase (p70/S6K), negatively regulates autophagy, and is controlled by Akt. Akt is controlled by phosphatidylinositol 3-kinase (PI3K) and mTOR complex 2 (mTORC2). mTORC1 inhibitors-rapamycin, temsirolimus, everolimus, and curcumin, mTORC1&mTORC2 inhibitor-INK-128, PI3K&mTOR inhibitor-NVP-BEZ235, and Akt inhibitor-MK-2206-were applied to human disc nucleus pulposus (NP) cells. mTOR signaling, autophagy, apoptosis, senescence, and matrix metabolism were evaluated. RESULTS mTORC1 inhibitors decreased p70/S6K but increased Akt phosphorylation, promoted autophagy with light chain 3 (LC3)-II increases and p62/sequestosome 1 (p62/SQSTM1) decreases, and suppressed pro-inflammatory interleukin-1 beta (IL-1β)-induced apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positivity (versus rapamycin, 95% confidence interval (CI) -0.431 to -0.194; temsirolimus, 95% CI -0.529 to -0.292; everolimus, 95% CI -0.477 to -0.241; curcumin, 95% CI -0.248 to -0.011) and poly (ADP-ribose) polymerase (PARP) and caspase-9 cleavage, senescent senescence-associated beta-galactosidase (SA-β-gal) positivity (versus rapamycin, 95% CI -0.437 to -0.230; temsirolimus, 95% CI -0.534 to -0.327; everolimus, 95% CI -0.485 to -0.278; curcumin, 95% CI -0.210 to -0.003) and p16/INK4A expression, and catabolic matrix metalloproteinase (MMP) release and activation. Meanwhile, dual mTOR inhibitors decreased p70/S6K and Akt phosphorylation without enhanced autophagy and suppressed apoptosis, senescence, and matrix catabolism. MK-2206 counteracted protective effects of temsirolimus. Additional disc-tissue analysis found relevance of mTOR signaling to degeneration grades. CONCLUSION mTORC1 inhibitors-notably temsirolimus with an improved water solubility-but not dual mTOR inhibitors protect against inflammation-induced apoptosis, senescence, and matrix catabolism in human disc cells, which depends on Akt and autophagy induction.
Collapse
Affiliation(s)
- Y Kakiuchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - T Yurube
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - K Kakutani
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - T Takada
- Department of Orthopaedic Surgery, Kenshinkai Kobe Hokuto Hospital, 37-3 Yamada-cho Shimotanigami Aza Umekidani, Kita-ku, Kobe 651-1243, Japan.
| | - M Ito
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Y Takeoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Y Kanda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - S Miyazaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - R Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - K Nishida
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
9
|
Propionibacterium acnes Induces Intervertebral Disc Degeneration by Promoting iNOS/NO and COX-2/PGE 2 Activation via the ROS-Dependent NF- κB Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3692752. [PMID: 30210652 PMCID: PMC6120277 DOI: 10.1155/2018/3692752] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/09/2018] [Accepted: 06/20/2018] [Indexed: 01/05/2023]
Abstract
Accumulating evidence suggests that Propionibacterium acnes (P. acnes) is a novel pathogenic factor promoting intervertebral disc degeneration (IVDD). However, the underlying mechanisms by which P. acnes induces IVDD have been unclear. In this study, we quantified the severity of IVDD, as well as the expressions of inducible nitric oxide synthase (iNOS)/nitric oxide (NO) and cyclooxygenase (COX-2)/prostaglandin (PGE2) in human intervertebral discs (IVDs) infected with P. acnes. Compared with P. acnes-negative IVDs, P. acnes-positive IVDs showed increased iNOS/NO and COX-2/PGE2 activity concomitant with more severe IVDD. In order to detect the potential correlation between iNOS/NO expression, COX-2/PGE2 expression, and IVDD, we developed a P. acnes-induced IVDD rat model and found that the upregulation of iNOS/NO and COX-2/PGE2 was essential to the occurrence of P. acnes-induced IVDD. This finding was supported by the fact that the inhibition of iNOS/NO and COX-2/PGE2 activity ameliorated IVDD significantly, as evidenced by restored aggrecan and collagen II expression both in vivo and in vitro. Mechanistically, we found that P. acnes induced iNOS/NO and COX-2/PGE2 expressions via a reactive oxygen species- (ROS-) dependent NF-κB cascade. Furthermore, NADPH oxidase participated in P. acnes-induced ROS, iNOS/NO, and COX-2/PGE2 expressions. Overall, these findings further validated the involvement of P. acnes in the pathology of IVDD and provided evidence that P. acnes-induced iNOS/NO and COX-2/PGE2 activation via the ROS-dependent NF-κB pathway is likely responsible for the pathology of IVDD.
Collapse
|
10
|
Sun S, Li C, Liu S, Luo J, Chen Z, Zhang C, Zhang T, Huang J, Xi L. RNA sequencing and differential expression reveals the effects of serial oestrus synchronisation on ovarian genes in dairy goats. Reprod Fertil Dev 2018; 30:1622-1633. [DOI: 10.1071/rd17511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/05/2018] [Indexed: 11/23/2022] Open
Abstract
A total of 24 female Xinong Saanen dairy goats were used to examine differentially expressed genes (DEGs) in the ovaries of goats treated once or three times for oestrus synchronisation (ES). The goats were randomly divided into two groups: one group received three ES treatments at fortnightly intervals (repeated or triple ES group), whereas the other was only treated once on the same day as the third ES treatment for the triple group (control group) during the breeding season. Ovaries of three goats in oestrus from each group were collected for morphological examination and transcriptome sequencing, while the rest of the goats were artificially inseminated twice. Litter size and fecundity rate tended (P = 0.06) to be lower in the triple ES group. A total of 319 DEGs were identified, including carbohydrate sulphotransferase 8 (CHST8), corticosteroid-binding globulin (CBG), oestradiol 17-β-dehydrogenase 1 (DHB1), oestrogen receptor 1 (ESR1), progestin and adipoQ receptor family member 4 (PAQR4), PAQR9, prostacyclin synthase (PTGIS), contactin-associated protein (CNTNAP4), matrix metalloproteinase-2 (MMP-2), regulator of G-protein signalling 9-2 (RGS9-2) and sperm surface protein Sp17 (Sp17); these were the most promising novel candidate genes for reproductive performances in goats. Our study indicates that triple ES could cause DNA damage and alter gene expression in goat ovaries, potentially affecting ovary function, neural regulation and hormone secretion.
Collapse
|
11
|
Monchaux M, Forterre S, Spreng D, Karol A, Forterre F, Wuertz-Kozak K. Inflammatory Processes Associated with Canine Intervertebral Disc Herniation. Front Immunol 2017; 8:1681. [PMID: 29255462 PMCID: PMC5723024 DOI: 10.3389/fimmu.2017.01681] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/15/2017] [Indexed: 01/16/2023] Open
Abstract
Intervertebral disc herniation (IVDH) is an important pathology in humans and also in dogs. While the molecular disease mechanisms are well investigated in humans, little is known about the inflammatory mediators in naturally occurring canine IVDH. The objective of this study was to investigate whether the involved proinflammatory cytokines in human IVDH are also key cytokines in canine IVDH and thus to elucidate the suitability of the dog as a model for human trials. 59 samples from 25 dogs with surgically confirmed thoracolumbar IVDH were collected and classified in three subgroups: herniated (H), affected non-herniated (NH) disc, and adjacent non-affected (NA) disc. Discs from 11 healthy dogs acted as controls (C). Samples were analyzed for IL-1, IL-6, IL-8, and TNF-α expression (qPCR/ELISA) as well as cell infiltration and activation of the MAP kinase pathways (immunohistochemistry). Gene and protein expression of all key cytokines could be detected in IVDH affected dogs. Canine IVDH was significantly associated with a higher gene expression of IL-6 (H > C, NH > C) and TNF-α (H > C, NH > C, NA > C) and a significant down-regulation of IL-1β (H < C). Dogs with spontaneous pain had significantly higher IL-6 mRNA compared to those with pain arising only upon palpation. An inter-donor comparison (H and HN relative to NA) revealed a significant increase of IL-6 gene expression (H > NA, NH > NA). IL-8 (H > C, NA > C) and TNF-α (NH > C) protein levels were significantly increased in diseased dogs while inversely, IL-6 protein levels were significantly higher in patients with better clinical outcome. Aside from resident IVD cells, mostly monocytes and macrophages were found in extruded material, with concomitant activation of extracellular signal-regulated kinase p38 in the majority of samples. Dogs with spontaneous IVDH might provide a useful model for human disc diseases. Although the expression of key cytokines found in human IVDH was also demonstrated in canine tissue, the inflammatory mechanisms accompanying canine IVDH diverges partially from humans, which will require further investigations in the future. In dogs, IL-6 seems to play an important pathological role and may represent a new potential therapeutic target for canine patients.
Collapse
Affiliation(s)
- Marie Monchaux
- Vetsuisse Faculty, Department of Clinical Veterinary Science, University of Bern, Bern, Switzerland
| | - Simone Forterre
- Vetsuisse Faculty, Department of Clinical Veterinary Science, University of Bern, Bern, Switzerland
| | - David Spreng
- Vetsuisse Faculty, Department of Clinical Veterinary Science, University of Bern, Bern, Switzerland.,Competence Center of Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Agnieszka Karol
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Franck Forterre
- Vetsuisse Faculty, Department of Clinical Veterinary Science, University of Bern, Bern, Switzerland.,Competence Center of Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Karin Wuertz-Kozak
- Competence Center of Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.,Schön Clinic Munich, Harlaching, Munich, Germany.,Spine Research Institute, Paracelsus Medical University, Salzburg, Austria.,Department of Health Sciences, University of Postdam, Postdam, Germany
| |
Collapse
|
12
|
Ito M, Yurube T, Kakutani K, Maeno K, Takada T, Terashima Y, Kakiuchi Y, Takeoka Y, Miyazaki S, Kuroda R, Nishida K. Selective interference of mTORC1/RAPTOR protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism with Akt and autophagy induction. Osteoarthritis Cartilage 2017; 25:2134-2146. [PMID: 28888905 DOI: 10.1016/j.joca.2017.08.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/11/2017] [Accepted: 08/30/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that integrates nutrients to execute cell growth and protein synthesis. We hypothesized that mTOR is essential for the intervertebral disc, the largest avascular, low-nutrient organ. Our objective was to elucidate roles of mTOR signaling in human disc cells. DESIGN The mTOR exists in two complexes: mTORC1 containing the regulatory-associated protein of mTOR (RAPTOR) and mTORC2 containing the rapamycin-insensitive companion of mTOR (RICTOR). To analyze their functions in human disc nucleus pulposus cells, RNA interference (RNAi) of mTOR targeting mTORC1 and mTORC2, RAPTOR targeting mTORC1, or RICTOR targeting mTORC2 or rapamycin, a pharmacological mTORC1 inhibitor, was applied. First, mTOR signaling including Akt, p70/ribosomal S6 kinase (p70/S6K), and autophagy were assessed. Then, apoptosis, senescence, and matrix metabolism were evaluated under pro-inflammatory interleukin-1 beta (IL-1β) stimulation. RESULTS Western blotting showed significant decreases in specific proteins by each RNAi (all P < 0.0001). In mTOR signaling, RNAi of mTOR and RICTOR decreased p70/S6K and Akt phosphorylation, whereas RAPTOR RNAi decreased p70/S6K but increased Akt phosphorylation. All RNAi treatments increased light chain 3 (LC3)-II and decreased p62/sequestosome 1 (p62/SQSTM1), indicating enhanced autophagy. In apoptosis, IL-1β-induced terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells and poly (ADP-ribose) polymerase (PARP) and caspase-9 cleavage decreased by RAPTOR RNAi. In senescence, IL-1β-induced senescence-associated beta-galactosidase (SA-β-gal)-positive cells and p16/INK4A expression also decreased by RAPTOR RNAi. In matrix metabolism, RAPTOR RNAi reduced IL-1β-induced catabolic matrix metalloproteinase (MMP) release and activation and up-regulated anabolic gene expression. These findings were all consistent with rapamycin administration. Additional disc-tissue analysis detected expression and phosphorylation of mTOR-signaling molecules in varying ages. CONCLUSION Selective interference of mTORC1/RAPTOR protects against inflammation-induced apoptosis, senescence, and matrix catabolism possibly through Akt and autophagy induction in human disc cells.
Collapse
Affiliation(s)
- M Ito
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - T Yurube
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - K Kakutani
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - K Maeno
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - T Takada
- Department of Orthopaedic Surgery, Kenshinkai Kobe Hokuto Hospital, 37-3 Yamada-cho Shimotanigami Aza Umekidani, Kita-ku, Kobe 651-1243, Japan.
| | - Y Terashima
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Y Kakiuchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Y Takeoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - S Miyazaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - R Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - K Nishida
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
13
|
Aker L, Ghannam M, Alzuabi MA, Jumah F, Alkhdour SM, Mansour S, Samara A, Cronk K, Massengale J, Holsapple J, Adeeb N, Oskouian RJ, Tubbs RS. Molecular Biology and Interactions in Intervertebral Disc Development, Homeostasis, and Degeneration, with Emphasis on Future Therapies: A Systematic Review. ACTA ACUST UNITED AC 2017. [DOI: 10.26632/ss.3.2017.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Vaudreuil N, Kadow T, Yurube T, Hartman R, Ngo K, Dong Q, Pohl P, Coelho JP, Kang J, Vo N, Sowa G. NSAID use in intervertebral disc degeneration: what are the effects on matrix homeostasis in vivo? Spine J 2017; 17:1163-1170. [PMID: 28416438 PMCID: PMC5538909 DOI: 10.1016/j.spinee.2017.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Non-steroidal anti-inflammatory drugs (NSAIDs) are a widely used treatment for low back pain (LBP). Literature on NSAID use in articular cartilage has shown detrimental effects; however, minimal data exist to detail the effects of NSAIDs in intervertebral disc degeneration (IDD). As IDD is a major cause of LBP, we explored the effects of indomethacin, a commonly used NSAID, on disc matrix homeostasis in an animal model of IDD. PURPOSE This study aimed to determine the effects of oral indomethacin administration on IDD in an in vivo rabbit model. This study hypothesized that indomethacin use would accelerate the progression of IDD based upon serial imaging and tissue outcomes. STUDY DESIGN/SETTING This was a laboratory-based, controlled, in vivo evaluation of the effects of oral indomethacin administration on rabbit intervertebral discs. METHODS Six skeletally mature New Zealand white rabbits were divided into two groups: disc puncture alone to induce IDD (Puncture group) and disc puncture plus indomethacin (Punc+Ind group). The Punc+Ind group received daily administration of 6mg/kg oral indomethacin. Serial magnetic resonance imaging (MRI) was obtained at 0, 4, 8, and 12 weeks. The MRI index and the nucleus pulposus (NP) area were calculated. Discs were harvested at 12 weeks for determination of disc glycosaminoglycan (GAG) content, relative gene expression measured by real-time polymerase chain reaction, and histologic analyses. RESULTS The MRI index and the NP area of punctured discs in the Punc+Ind group demonstrated no worsening of degeneration compared with the Puncture group. Histologic analysis was consistent with less severe disc degeneration in the Punc+Ind group. Minimal differences in gene expression of matrix genes were observed between Puncture and Punc+Ind groups. The GAG content was higher in animals receiving indomethacin in both annulus fibrosus and NP at adjacent uninjured discs. CONCLUSIONS Oral indomethacin administration did not result in acceleration of IDD in an in vivo rabbit model. Future research is needed to ascertain long-term effects of indomethacin and other NSAIDs on disc matrix homeostasis.
Collapse
Affiliation(s)
- Nicholas Vaudreuil
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, 200 Lothrop St, EBST 1640, Pittsburgh, PA 15261, USA.
| | - Tiffany Kadow
- University of Pittsburgh Medical Center, Department of Orthopaedic Surgery, Pittsburgh, PA, USA
| | - Takashi Yurube
- Kobe University Graduate School of Medicine, Department of Orthopaedic Surgery, Kobe, Japan
| | - Robert Hartman
- University of Pittsburgh Medical Center, Department of Physical Medicine and Rehabilitation, Pittsburgh, PA, USA
| | - Kevin Ngo
- University of Pittsburgh Medical Center, Department of Orthopaedic Surgery, Pittsburgh, PA, USA
| | - Qing Dong
- University of Pittsburgh Medical Center, Department of Orthopaedic Surgery, Pittsburgh, PA, USA
| | - Pedro Pohl
- University of Pittsburgh Medical Center, Department of Orthopaedic Surgery, Pittsburgh, PA, USA,ABC Medical School (FMABC), Discipline of Orthopaedic Surgery and Traumatology, Spine Surgery Group, Sao Paulo, Brazil
| | - J. Paulo Coelho
- University of Pittsburgh Medical Center, Department of Orthopaedic Surgery, Pittsburgh, PA, USA,University of Pittsburgh Medical Center, Department of Physical Medicine and Rehabilitation, Pittsburgh, PA, USA
| | - James Kang
- Harvard Medical School, Department of Orthopaedic Surgery, Boston, MA, USA
| | - Nam Vo
- University of Pittsburgh Medical Center, Department of Orthopaedic Surgery, Pittsburgh, PA, USA
| | - Gwendolyn Sowa
- University of Pittsburgh Medical Center, Department of Orthopaedic Surgery, Pittsburgh, PA, USA,University of Pittsburgh Medical Center, Department of Physical Medicine and Rehabilitation, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Ghannam M, Jumah F, Mansour S, Samara A, Alkhdour S, Alzuabi MA, Aker L, Adeeb N, Massengale J, Oskouian RJ, Tubbs RS. Surgical anatomy, radiological features, and molecular biology of the lumbar intervertebral discs. Clin Anat 2017; 30:251-266. [PMID: 27997062 DOI: 10.1002/ca.22822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 01/07/2023]
Abstract
The intervertebral disc (IVD) is a joint unique in structure and functions. Lying between adjacent vertebrae, it provides both the primary support and the elasticity required for the spine to move stably. Various aspects of the IVD have long been studied by researchers seeking a better understanding of its dynamics, aging, and subsequent disorders. In this article, we review the surgical anatomy, imaging modalities, and molecular biology of the lumbar IVD. Clin. Anat. 30:251-266, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Malik Ghannam
- An-Najah National University Hospital, Nablus, Palestine
| | - Fareed Jumah
- An-Najah National University Hospital, Nablus, Palestine
| | - Shaden Mansour
- An-Najah National University Hospital, Nablus, Palestine
| | - Amjad Samara
- An-Najah National University Hospital, Nablus, Palestine
| | - Saja Alkhdour
- An-Najah National University Hospital, Nablus, Palestine
| | | | - Loai Aker
- An-Najah National University Hospital, Nablus, Palestine
| | - Nimer Adeeb
- Department of Neurosurgery, Boston Medical Center, Boston University, Massachusetts
| | - Justin Massengale
- Department of Neurosurgery, Boston Medical Center, Boston University, Massachusetts
| | | | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, Grenada.,Seattle Science Foundation, Seattle, Washington
| |
Collapse
|
16
|
Willems N, Tellegen AR, Bergknut N, Creemers LB, Wolfswinkel J, Freudigmann C, Benz K, Grinwis GCM, Tryfonidou MA, Meij BP. Inflammatory profiles in canine intervertebral disc degeneration. BMC Vet Res 2016; 12:10. [PMID: 26757881 PMCID: PMC4711078 DOI: 10.1186/s12917-016-0635-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/07/2016] [Indexed: 12/27/2022] Open
Abstract
Background Intervertebral disc (IVD) disease is a common spinal disorder in dogs and degeneration and inflammation are significant components of the pathological cascade. Only limited studies have studied the cytokine and chemokine profiles in IVD degeneration in dogs, and mainly focused on gene expression. A better understanding is needed in order to develop biological therapies that address both pain and degeneration in IVD disease. Therefore, in this study, we determined the levels of prostaglandin E2 (PGE2), cytokines, chemokines, and matrix components in IVDs from chondrodystrophic (CD) and non-chondrodystrophic (NCD) dogs with and without clinical signs of IVD disease, and correlated these to degeneration grade (according to Pfirrmann), or herniation type (according to Hansen). In addition, we investigated cyclooxygenase 2 (COX-2) expression and signs of inflammation in histological IVD samples of CD and NCD dogs. Results PGE2 levels were significantly higher in the nucleus pulposus (NP) of degenerated IVDs compared with non-degenerated IVDs, and in herniated IVDs from NCD dogs compared with non-herniated IVDs of NCD dogs. COX-2 expression in the NP and annulus fibrosus (AF), and proliferation of fibroblasts and numbers of macrophages in the AF significantly increased with increased degeneration grade. GAG content did not significantly change with degeneration grade or herniation type. Cytokines interleukin (IL)-2, IL-6, IL-7, IL-8, IL-10, IL-15, IL-18, immune protein (IP)-10, tumor necrosis factor (TNF)-α, and granulocyte macrophage colony-stimulating factor (GM-CSF) were not detectable in the samples. Chemokine (C-C) motif ligand (CCL)2 levels in the NP from extruded samples were significantly higher compared with the AF of these samples and the NP from protrusion samples. Conclusions PGE2 levels and CCL2 levels in degenerated and herniated IVDs were significantly higher compared with non-degenerated and non-herniated IVDs. COX-2 expression in the NP and AF and reactive changes in the AF increased with advancing degeneration stages. Although macrophages invaded the AF as degeneration progressed, the production of inflammatory mediators seemed most pronounced in degenerated NP tissue. Future studies are needed to investigate if inhibition of PGE2 levels in degenerated IVDs provides effective analgesia and exerts a protective role in the process of IVD degeneration and the development of IVD disease. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0635-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Willems
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, 3584 CM, Utrecht, The Netherlands
| | - Anna R Tellegen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, 3584 CM, Utrecht, The Netherlands
| | - Niklas Bergknut
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, 3584 CM, Utrecht, The Netherlands
| | - Laura B Creemers
- Department of Orthopaedics, University Medical Center, 3584 CX, Utrecht, The Netherlands
| | - Jeannette Wolfswinkel
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, 3584 CM, Utrecht, The Netherlands
| | - Christian Freudigmann
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Regenerative Medicine II, 72770, Reutlingen, Germany
| | - Karin Benz
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Regenerative Medicine II, 72770, Reutlingen, Germany
| | - Guy C M Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, 3508 TD, Utrecht, The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, 3584 CM, Utrecht, The Netherlands.
| | - Björn P Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, 3584 CM, Utrecht, The Netherlands
| |
Collapse
|
17
|
Hiyama A, Yokoyama K, Nukaga T, Sakai D, Mochida J. Response to tumor necrosis factor-α mediated inflammation involving activation of prostaglandin E2 and Wnt signaling in nucleus pulposus cells. J Orthop Res 2015; 33:1756-68. [PMID: 26123748 DOI: 10.1002/jor.22959] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/30/2015] [Indexed: 02/04/2023]
Abstract
The cyclooxygenase 2 (COX-2) product, prostaglandin E2 (PGE2 ), acts through a family of G protein-coupled receptors designated E-prostanoid (EP) receptors that mediate intracellular signaling by multiple pathways. However, it is not known whether crosstalk between tumor necrosis factor-α(TNF-α)-PGE2 -mediated signaling and Wnt signaling plays a role in the regulation of intervertebral disc (IVD) cells. In this study, we investigated the relationship between TNF-α-PGE2 signaling and Wnt signaling in IVD cells. TNF-α increased the expression of COX-2 in IVD cells. The EP receptors EP1, EP3, and EP4 were expressed in IVD cells, and TNF-α significantly increased PGE2 production. Stimulation with TNF-α also upregulated EP3 and EP4 mRNA and protein expression in IVD cells. The inductive effect of the EP3 and EP4 receptors on Topflash promoter activity was confirmed through gain- and loss-of-function studies using selective EP agonists and antagonists. PGE2 treatment activated Wnt-β-catenin signaling through activation of EP3. We conclude that TNF-α-induced COX-2 and PGE2 stimulate Wnt signaling and activate Wnt target genes. Suppression of the EP3 receptor via TNF-α-PGE2 signaling seems to suppress IVD degeneration by controlling the activation of Wnt signaling. These findings may help identify the underlying mechanism and role of Wnt signaling in IVD degeneration.
Collapse
Affiliation(s)
- Akihiko Hiyama
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Katsuya Yokoyama
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tadashi Nukaga
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Joji Mochida
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
18
|
Willems N, Yang HY, Langelaan MLP, Tellegen AR, Grinwis GCM, Kranenburg HJC, Riemers FM, Plomp SGM, Craenmehr EGM, Dhert WJA, Papen-Botterhuis NE, Meij BP, Creemers LB, Tryfonidou MA. Biocompatibility and intradiscal application of a thermoreversible celecoxib-loaded poly-N-isopropylacrylamide MgFe-layered double hydroxide hydrogel in a canine model. Arthritis Res Ther 2015; 17:214. [PMID: 26290179 PMCID: PMC4545995 DOI: 10.1186/s13075-015-0727-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022] Open
Abstract
Introduction Chronic low back pain due to intervertebral disc (IVD) degeneration is associated with increased levels of inflammatory mediators. Current medical treatment consists of oral anti-inflammatory drugs to alleviate pain. In this study, the efficacy and safety of a novel thermoreversible poly-N-isopropylacrylamide MgFe-layered double hydroxide (pNIPAAM MgFe-LDH) hydrogel was evaluated for intradiscal controlled delivery of the selective cyclooxygenase (COX) 2 inhibitor and anti-inflammatory drug celecoxib (CXB). Methods Degradation, release behavior, and the ability of a CXB-loaded pNIPAAM MgFe-LDH hydrogel to suppress prostaglandin E2 (PGE2) levels in a controlled manner in the presence of a proinflammatory stimulus (TNF-α) were evaluated in vitro. Biocompatibility was evaluated histologically after subcutaneous injection in mice. Safety of intradiscal application of the loaded and unloaded hydrogels was studied in a canine model of spontaneous mild IVD degeneration by histological, biomolecular, and biochemical evaluation. After the hydrogel was shown to be biocompatible and safe, an in vivo dose–response study was performed in order to determine safety and efficacy of the pNIPAAM MgFe-LDH hydrogel for intradiscal controlled delivery of CXB. Results CXB release correlated to hydrogel degradation in vitro. Furthermore, controlled release from CXB-loaded hydrogels was demonstrated to suppress PGE2 levels in the presence of TNF-α. The hydrogel was shown to exhibit a good biocompatibility upon subcutaneous injection in mice. Upon intradiscal injection in a canine model, the hydrogel exhibited excellent biocompatibility based on histological evaluation of the treated IVDs. Gene expression and biochemical analyses supported the finding that no substantial negative effects of the hydrogel were observed. Safety of application was further confirmed by the absence of clinical symptoms, IVD herniation or progression of degeneration. Controlled release of CXB resulted in a nonsignificant maximal inhibition (approximately 35 %) of PGE2 levels in the mildly degenerated canine IVDs. Conclusions In conclusion, this study showed biocompatibility and safe intradiscal application of an MgFe LDH-pNIPAAM hydrogel. Controlled release of CXB resulted in only limited inhibition of PGE2 in this model with mild IVD degeneration, and further studies should concentrate on application of controlled release from this type of hydrogel in animal models with more severe IVD degeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0727-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Willems
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht, 3584, CM, The Netherlands.
| | - Hsiao-Yin Yang
- Department of Orthopedics, University Medical Center, Heidelberglaan 100, Utrecht, 3584, CX, The Netherlands.
| | - Marloes L P Langelaan
- Department of Materials Technology, TNO, De Rondom 1, Eindhoven, 5612, AP, The Netherlands.
| | - Anna R Tellegen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht, 3584, CM, The Netherlands.
| | - Guy C M Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, 3508, TD, The Netherlands.
| | - Hendrik-Jan C Kranenburg
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht, 3584, CM, The Netherlands.
| | - Frank M Riemers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht, 3584, CM, The Netherlands.
| | - Saskia G M Plomp
- Department of Orthopedics, University Medical Center, Heidelberglaan 100, Utrecht, 3584, CX, The Netherlands.
| | - Eric G M Craenmehr
- Department of Materials Technology, TNO, De Rondom 1, Eindhoven, 5612, AP, The Netherlands.
| | - Wouter J A Dhert
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht, 3584, CM, The Netherlands. .,Department of Orthopedics, University Medical Center, Heidelberglaan 100, Utrecht, 3584, CX, The Netherlands.
| | | | - Björn P Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht, 3584, CM, The Netherlands.
| | - Laura B Creemers
- Department of Orthopedics, University Medical Center, Heidelberglaan 100, Utrecht, 3584, CX, The Netherlands.
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht, 3584, CM, The Netherlands.
| |
Collapse
|
19
|
Zhang J, Zhang HY, Zhang M, Qiu ZY, Wu YP, Callaway DA, Jiang JX, Lu L, Jing L, Yang T, Wang MQ. Connexin43 hemichannels mediate small molecule exchange between chondrocytes and matrix in biomechanically-stimulated temporomandibular joint cartilage. Osteoarthritis Cartilage 2014; 22:822-30. [PMID: 24704497 PMCID: PMC4706739 DOI: 10.1016/j.joca.2014.03.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/14/2014] [Accepted: 03/22/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Connexin (Cx) 43 hemichannels play a role in mechanotransduction. This study was undertaken in order to determine if Cx43 hemichannels were activated in rat temporomandibular joint (TMJ) chondrocytes under mechanical stimulation. METHODS Sprague-Dawley rats were stimulated dental-mechanically. Cx43 expression in rat TMJ cartilage was determined with immunohistochemistry and real-time PCR, and Cx43 hemichannel opening was evaluated by the extra- and intracellular levels of prostaglandin E2 (PGE2). Both primary rat chondrocytes and ATDC5 cells were treated with fluid flow shear stress (FFSS) to induce hemichannel opening. The Cx43 expression level was then determined by real-time PCR or Western blotting, and the extent of Cx43 hemichannel opening was evaluated by measuring both PGE2 release and cellular dye uptake. RESULTS Cx43 expression and intra- and extracellular PGE2 levels were increased in mechanically-stimulated rat TMJ cartilage compared to the unstimulated control. The FFSS treatment increased Cx43 expression and induced Cx43 hemichannel opening in primary rat chondrocytes and ATDC5 cells indicated by enhanced PGE2 release and dye uptake. Furthermore, the Cx43 hemichannel opening could be blocked by the addition of 18β-glycyrrhetinic acid, a Cx channel inhibitor, Cx43-targeting siRNA, or by withdrawal of FFSS stimulation. The migration of cytosolic Cx43 protein to the plasma membrane in ATDC5 cells was still significant after 8 h post 2-h FFSS treatment, and the Cx43 protein level was still high at 48 h, which returned to control levels at 72 h after treatment. CONCLUSION Cx43 hemichannels are activated and mediate small molecule exchange between TMJ chondrocytes and matrix under mechanical stimulation.
Collapse
Affiliation(s)
- J Zhang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - H Y Zhang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - M Zhang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - Z Y Qiu
- College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Y P Wu
- Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, 15 Changlexi Road, Xi'an, 710032, China
| | - D A Callaway
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - J X Jiang
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - L Lu
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - L Jing
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - T Yang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - M Q Wang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China.
| |
Collapse
|
20
|
van Dijk B, Potier E, Licht R, Creemers L, Ito K. The effect of a cyclooxygenase 2 inhibitor on early degenerated human nucleus pulposus explants. Global Spine J 2014; 4:33-40. [PMID: 24494179 PMCID: PMC3908972 DOI: 10.1055/s-0033-1359724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 09/11/2013] [Indexed: 11/24/2022] Open
Abstract
Study Design Preclinical in vitro culture of human degenerated nucleus pulposus (NP) tissue. Objective Cyclooxygenase 2 inhibitors (e.g., celecoxib) inhibit prostaglandin E2 (PGE2) production, and they have been shown to upregulate regeneration of articular cartilage. In this study, we developed an explant culture system for use with human tissue and tested the potential of celecoxib. Methods NP explants were cultured with or without 1 μM of celecoxib and were analyzed at days 0 and 7 for biochemical content (water, sulfated glycosaminoglycans, hydroxyproline, and DNA), gene expression (for disk matrix anabolic and catabolic markers), and PGE2 content. Results Water and biochemical contents as well as gene expression remained close to native values after 1 week of culture. PGE2 levels were not increased in freshly harvested human NP tissue and thus were not reduced in treated tissues. Although no anabolic effects were observed at the dosage and culture duration used, no detrimental effects were observed and some specimens did respond by lowering PGE2. Conclusions Human degenerated NP explants were successfully cultured in a close to in vivo environment for 1 week. Further research, especially dosage-response studies, is needed to understand the role of PGE2 in low back pain and the potential of celecoxib to treat painful disks.
Collapse
Affiliation(s)
- Bart van Dijk
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Esther Potier
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ruud Licht
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Laura Creemers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands,Address for correspondence Keita Ito, MD, ScD Department of Biomedical Engineering, Eindhoven University of TechnologyP.O. Box 513, GEM-Z 4.115, 5600 MB EindhovenThe Netherlands
| |
Collapse
|
21
|
Extracellular signal-regulated kinase inhibition modulates rat annulus fibrosus cell response to interleukin-1. Spine (Phila Pa 1976) 2013; 38:E1075-81. [PMID: 23680829 DOI: 10.1097/brs.0b013e31829a6930] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Rat annulus fibrosus (AF) cells were activated with interleukin-1 (IL-1) with or without extracellular signal-regulated kinase (ERK) inhibition. Factors associated with the anabolic/catabolic balance of the disc were determined. OBJECTIVE To clarify the role of ERK pathway in AF cells response to IL-1. SUMMARY OF BACKGROUND DATA IL-1 plays an important role in intervertebral disc degeneration. ERK is an important inflammatory pathway that plays a crucial role in the expression of inflammatory and catabolic genes induced by IL-1 in chondrocytes. However, the role of the ERK pathway in AF cells response to IL-1 has not been fully investigated. METHODS Rat AF cells in monolayer culture were exposed to IL-1, with or without ERK inhibition; ribonucleic acid was isolated for real time polymerase chain reaction analysis of gene expression, conditioned media analyzed for nitrite, prostaglandin E-2, and IL-6, Western blot was performed to detect the changes of protein expression. RESULTS ERK specific inhibitor U0126 significantly inhibited IL-1-induced ERK activation. IL-1-dependent upregulation of iNOS, IL-6, Cox-2, (MMP)-3, and MMP-13 was significantly reduced by ERK inhibition. The decreased gene expression of collagen I, collagen II, collagen IX, and IGF-1 induced by IL-1 was also reversed by U0126. Gene expression of ADAMTS-4, ADAMTS-5, and TGF-b were not affected by IL-1 or ERK inhibition. IL-1 moderately upregulated aggrecan and TIMP-1 expression, ERK inhibition had no significant effect on aggrecan expression but decreased TIMP-1 expression in the presence of IL-1. ERK inhibition reversed the changes of protein expression of MMP-3, MMP-13, TIMP-1, aggrecan and collagen II induced by IL-1. IL-1-induced nitric oxide, prostaglandin E-2, and IL-6 accumulation were also reduced by ERK inhibition. CONCLUSION These results suggest that IL-1 induces an imbalance between anabolic and catabolic events in AF cells, ERK inhibition could provide some protection against the adverse effects of IL-1. LEVEL OF EVIDENCE N/A.
Collapse
|
22
|
Wang D, Nasto LA, Roughley P, Leme AS, Houghton M, Usas A, Sowa G, Lee J, Niedernhofer L, Shapiro S, Kang J, Vo N. Spine degeneration in a murine model of chronic human tobacco smokers. Osteoarthritis Cartilage 2012; 20:896-905. [PMID: 22531458 PMCID: PMC3389285 DOI: 10.1016/j.joca.2012.04.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/28/2012] [Accepted: 04/13/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the mechanisms by which chronic tobacco smoking promotes intervertebral disc degeneration (IDD) and vertebral degeneration in mice. METHODS Three month old C57BL/6 mice were exposed to tobacco smoke by direct inhalation (4 cigarettes/day, 5 days/week for 6 months) to model long-term smoking in humans. Total disc proteoglycan (PG) content [1,9-dimethylmethylene blue (DMMB) assay], aggrecan proteolysis (immunobloting analysis), and cellular senescence (p16INK4a immunohistochemistry) were analyzed. PG and collagen syntheses ((35)S-sulfate and (3)H-proline incorporation, respectively) were measured using disc organotypic culture. Vertebral osteoporosity was measured by micro-computed tomography. RESULTS Disc PG content of smoke-exposed mice was 63% of unexposed control, while new PG and collagen syntheses were 59% and 41% of those of untreated mice, respectively. Exposure to tobacco smoke dramatically increased metalloproteinase-mediated proteolysis of disc aggrecan within its interglobular domain (IGD). Cellular senescence was elevated two-fold in discs of smoke-exposed mice. Smoke exposure increased vertebral endplate porosity, which closely correlates with IDD in humans. CONCLUSIONS These findings further support tobacco smoke as a contributor to spinal degeneration. Furthermore, the data provide a novel mechanistic insight, indicating that smoking-induced IDD is a result of both reduced PG synthesis and increased degradation of a key disc extracellular matrix protein, aggrecan. Cleavage of aggrecan IGD is extremely detrimental as this results in the loss of the entire glycosaminoglycan-attachment region of aggrecan, which is vital for attracting water necessary to counteract compressive forces. Our results suggest identification and inhibition of specific metalloproteinases responsible for smoke-induced aggrecanolysis as a potential therapeutic strategy to treat IDD.
Collapse
Affiliation(s)
- Dong Wang
- Beijing Haidian Hospital, Department of Orthopaedics. 29 Zhong-Guan-Cun Street, Beijing 100080, China
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| | - Luigi A Nasto
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
- Department of Orthopaedic Surgery, Catholic University of Rome School of Medicine, “A. Gemelli” University Hospital, l.go Agostino Gemelli 8, 00168 Roma, Italy
| | - Peter Roughley
- Genetics Unit, Shriners Hospital for Children, Montreal, Quebec, Canada
| | - Adriana S. Leme
- University of Pittsburgh School of Medicine, Pittsburgh PA 15213
| | - McGarry Houghton
- University of Pittsburgh School of Medicine, Pittsburgh PA 15213
| | - Arvydas Usas
- Stem Cell Research Center, Department of Orthopaedic Surgery of UPMC, Pittsburgh PA 15261
| | - Gwendolyn Sowa
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| | - Joon Lee
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| | - Laura Niedernhofer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| | - Steven Shapiro
- University of Pittsburgh School of Medicine, Pittsburgh PA 15213
| | - James Kang
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| | - Nam Vo
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| |
Collapse
|
23
|
Vo N, Wang D, Sowa G, Witt W, Ngo K, Coelho P, Bedison R, Byer B, Studer R, Lee J, Di YP, Kang J. Differential effects of nicotine and tobacco smoke condensate on human annulus fibrosus cell metabolism. J Orthop Res 2011; 29:1585-91. [PMID: 21448984 DOI: 10.1002/jor.21417] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/28/2011] [Indexed: 02/04/2023]
Abstract
Tobacco smoking increases the risk of intervertebral disc degeneration (IDD) and back pain, but the mechanisms underlying the adverse effects of smoking are largely unknown. Current hypotheses predict that smoking contributes to IDD indirectly through nicotine-mediated vasoconstriction which limits the exchange of nutrients between the discs and their surroundings. We alternatively hypothesize that direct contact of disc cells, that is, cells in the outermost annulus and those present along fissures in degenerating discs, with the vascular system containing soluble tobacco smoking constituents could perturb normal metabolic activities resulting in IDD. In this study, we tested our hypothesis by comparing the effects of direct exposure of human disc cells to tobacco smoke condensate and nicotine on cell viability and metabolic activity. We showed that smoke condensate, which contains all of the water-soluble compounds inhaled by smokers, exerts greater detrimental effects on human disc cell viability and metabolism than nicotine. Smoke condensate greatly induced an inflammatory response and gene expression of metalloproteinases while reduced active matrix synthesis and expression of matrix structural genes. Therefore, we have demonstrated that disc cell exposure to the constituents of tobacco smoke has negative consequences which have the potential to alter disc matrix homeostasis.
Collapse
Affiliation(s)
- Nam Vo
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|