1
|
Akhtar Ali K, He L, Li J, Zhang W, Tasiken B, Huang H. MRI spectrum of avascular necrosis of femoral head in patients treated for COVID-19. Hip Int 2024; 34:510-515. [PMID: 38456448 DOI: 10.1177/11207000241233906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND PURPOSE This prospective observational study aimed to investigate the occurrence of avascular necrosis (AVN) of the femoral head in COVID-19 patients through MRI scans. The study examined the patterns of AVN in 110 individuals who had undergone conventional COVID-19 therapy and reported hip discomfort. This study highlights the importance of considering AVN as a potential complication of COVID-19 therapy, particularly in younger patients who experience hip discomfort. METHODS Individuals who had corticosteroid treatment for COVID-19 and experienced hip discomfort during 6 months between January 2022 and August 2022 were included in this study, and an MRI scan was done to observe changes in the hip joint. RESULTS The results were classified using the Ficat and Arlet classification system. The analysis revealed that AVN was not present in 91.81% of cases. However, Stage I AVN was detected in 4.54% of cases, Stage II AVN in 2.72% of cases, and Stage III AVN in 1.1% of cases. No cases of Stage IV AVN were observed. CONCLUSIONS The study concludes that AVN occurred in 6% of individuals who underwent conventional therapy for COVID-19 and experienced hip discomfort. In these settings (post COVID-19), normal MRI results were more typical, and mild AVN (Stage I) was a frequent finding in MRI scans that were positive.
Collapse
Affiliation(s)
- Khan Akhtar Ali
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingxiao He
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianwen Li
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weikai Zhang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Hui Huang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Zheng C, Wu Y, Xu J, Liu Y, Ma J. Exosomes from bone marrow mesenchymal stem cells ameliorate glucocorticoid-induced osteonecrosis of femoral head by transferring microRNA-210 into bone microvascular endothelial cells. J Orthop Surg Res 2023; 18:939. [PMID: 38062514 PMCID: PMC10704824 DOI: 10.1186/s13018-023-04440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVES Bone microvascular endothelial cells (BMECs) played an important role in the pathogenesis of glucocorticoid-induced osteonecrosis of femoral head (GCS-ONFH), and exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) may provide an effective treatment. This study aimed to evaluate the effects of BMSC-Exos and internal microRNA-210-3p (miRNA-210) on GCS-ONFH in an in vitro hydrocortisone-induced BMECs injury model and an in vivo rat GCS-ONFH model. METHODS BMECs, BMSCs and BMSC-Exos were isolated and validated. BMECs after the treatment of hydrocortisone were cocultured with different concentrations of BMSC-Exos, then proliferation, migration, apoptosis and angiogenesis of BMECs were evaluated by CCK-8, Annexin V-FITC/PI, cell scratch and tube formation assays. BMSCs were transfected with miRNA-210 mimics and miRNA-210 inhibitors, then BMSC-ExosmiRNA-210 mimic and BMSC-ExosmiRNA-210 inhibitor secreted from such cells were collected. The differences between BMSC-Exos, BMSC-ExosmiRNA-210 mimic and BMSC-ExosmiRNA-210 inhibitor in protecting BMECs against GCS treatment were analyzed by methods mentioned above. Intramuscular injections of methylprednisolone were performed on Sprague-Dawley rats to establish an animal model of GCS-ONFH, then tail intravenous injections of BMSC-Exos, BMSC-ExosmiRNA-210 mimic or BMSC-ExosmiRNA-210 inhibitor were conducted after methylprednisolone injection. Histological and immunofluorescence staining and micro-CT were performed to evaluate the effects of BMSC-Exos and internal miRNA-210 on the in vivo GCS-ONFH model. RESULTS Different concentrations of BMSC-Exos, especially high concentration of BMSC-Exos, could enhance the proliferation, migration and angiogenesis ability and reduce the apoptosis rates of BMECs treated with GCS. Compared with BMSC-Exos, BMSC-ExosmiRNA-210 mimic could further enhance the proliferation, migration and angiogenesis ability and reduce the apoptosis rates of BMECs, while BMECs in the GCS + BMSC-ExosmiRNA-210 inhibitor group showed reduced proliferation, migration and angiogenesis ability and higher apoptosis rates. In the rat GCS-ONFH model, BMSC-Exos, especially BMSC-ExosmiRNA-210 mimic, could increase microvascular density and enhance bone remodeling of femoral heads. CONCLUSIONS BMSC-Exos containing miRNA-210 could serve as potential therapeutics for protecting BMECs and ameliorating the progression of GCS-ONFH.
Collapse
Affiliation(s)
- Che Zheng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, People's Republic of China
- Department of Orthopedic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan Province, People's Republic of China
| | - Yuangang Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Jiawen Xu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Yuan Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Jun Ma
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
3
|
Castaño IM, Raftery RM, Chen G, Cavanagh B, Quinn B, Duffy GP, Curtin CM, O'Brien FJ. Dual scaffold delivery of miR-210 mimic and miR-16 inhibitor enhances angiogenesis and osteogenesis to accelerate bone healing. Acta Biomater 2023; 172:480-493. [PMID: 37797708 DOI: 10.1016/j.actbio.2023.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Angiogenesis is critical for successful bone repair, and interestingly, miR-210 and miR-16 possess counter-active targets involved in both angiogenesis and osteogenesis: miR-210 acts as an activator by silencing EFNA3 & AcvR1b, while miR-16 inhibits both pathways by silencing VEGF & Smad5. It was thus hypothesized that dual delivery of both a miR-210 mimic and a miR-16 inhibitor from a collagen-nanohydroxyapatite scaffold system may hold significant potential for bone repair. Therefore, this systems potential to rapidly accelerate bone repair by directing enhanced angiogenic-osteogenic coupling in host cells in a rat calvarial defect model at a very early 4 week timepoint was assessed. In vitro, the treatment significantly enhanced angiogenic-osteogenic coupling of human mesenchymal stem cells, with enhanced calcium deposition after just 10 days in 2D and 14 days on scaffolds. In vivo, these dual-miRNA loaded scaffolds showed more than double bone volume and vessel recruitment increased 2.3 fold over the miRNA-free scaffolds. Overall, this study demonstrates the successful development of a dual-miRNA mimic/inhibitor scaffold for enhanced in vivo bone repair for the first time, and the possibility of extending this 'off-the-shelf' platform system to applications beyond bone offers immense potential to impact a myriad of other tissue engineering areas. STATEMENT OF SIGNIFICANCE: miRNAs have potential as a new class of bone healing therapeutics as they can enhance the regenerative capacity of bone-forming cells. However, angiogenic-osteogenic coupling is critical for successful bone repair. Therefore, this study harnesses the delivery of miR-210, known to be an activator of both angiogenesis and osteogenesis, and miR-16 inhibitor, as miR-16 is known to inhibit both pathways, from a collagen-nanohydroxyapatite scaffold system to rapidly enhance osteogenesis in vitro and bone repair in vivo in a rat calvarial defect model. Overall, it describes the successful development of the first dual-miRNA mimic/inhibitor scaffold for enhanced in vivo bone repair. This 'off-the-shelf' platform system offers immense potential to extend beyond bone applications and impact a myriad of other tissue engineering areas.
Collapse
Affiliation(s)
- Irene Mencía Castaño
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland
| | - Rosanne M Raftery
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland; School of Pharmacy, RCSI, Dublin, Ireland
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Microsurgical Research and Training Facility, RCSI, Dublin 2, Ireland
| | | | - Brian Quinn
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), College Green, Dublin 2, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin 2, Ireland; Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, University Road, Galway, Ireland
| | - Caroline M Curtin
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), College Green, Dublin 2, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin 2, Ireland.
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), College Green, Dublin 2, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin 2, Ireland.
| |
Collapse
|
4
|
Lv B, Cheng Z, Yu Y, Chen Y, Gan W, Li S, Zhao K, Yang C, Zhang Y. Therapeutic perspectives of exosomes in glucocorticoid-induced osteoarthrosis. Front Surg 2022; 9:836367. [PMID: 36034358 PMCID: PMC9405187 DOI: 10.3389/fsurg.2022.836367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Exosomes are widely involved in a variety of physiological and pathological processes. These important roles are also hidden in the physiological processes related to bone. Chondrocytes, osteoblasts, synovial fibroblasts, and bone marrow mesenchymal stem cells produce and secrete exosomes, thereby affecting the biology process of target cells. Furthermore, in the primary pathogenesis of osteoarthrosis induced by steroid hormones, mainly involve glucocorticoid (GC), the exosomes have also widely participated. Therefore, exosomes may also play an important role in glucocorticoid-induced osteoarthrosis and serve as a promising treatment for early intervention of osteoarthrosis in addition to playing a regulatory role in malignant tumors. This review summarizes the previous results on this direction, systematically combs the role and therapeutic potential of exosomes in GC-induced osteoarthrosis, discusses the potential role of exosomes in the treatment and prevention of GC-induced osteoarthrosis, and reveals the current challenges we confronted.
Collapse
Affiliation(s)
- Bin Lv
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | | | | | | | | | | | - Kangcheng Zhao
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | - Cao Yang
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | - Yukun Zhang
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| |
Collapse
|
5
|
Huang X, Jie S, Li W, Li H, Ni J, Liu C. miR-122-5p targets GREM2 to protect against glucocorticoid-induced endothelial damage through the BMP signaling pathway. Mol Cell Endocrinol 2022; 544:111541. [PMID: 34973370 DOI: 10.1016/j.mce.2021.111541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 01/05/2023]
Abstract
Glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH) accounts for a big portion of non-traumatic ONFH; nevertheless, the pathogenesis has not yet been fully understood. GC-induced endothelial dysfunction might be a major contributor to ONFH progression. The Gene Expression Omnibus (GEO) dataset was analyzed to identify deregulated miRNAs in ONFH; among deregulated miRNAs, the physiological functions of miR-122-5p on ONFH and endothelial dysfunction remain unclear. In the present study, miR-122-5p showed to be under-expressed within GC-induced ONFH femoral head tissues and GC-stimulated bone microvascular endothelial cells (BMECs). In human umbilical vein endothelial cells (HUVECs) and BMECs, GC stimulation significantly repressed cell viability, promoted cell apoptosis and increased the mRNA expression of proinflammatory cytokines, such as TNF-α, IL-1β, and IFN-γ. After overexpressing miR-122-5p, GC-induced endothelial injuries were attenuated, as manifested by rescued cell viability, cell migration, and tube formation capacity. Regarding the BMP signaling, GC decreased the protein levels of BMP-2/6/7 and SMAD-1/5/8, whereas miR-122-5p overexpression significantly attenuated the inhibitory effects of GC on these proteins. Online tool and experimental analyses revealed the direct binding between miR-122-5p and GREM2, a specific antagonist of BMP-2. In contrast to miR-122-5p overexpression, GREM2 overexpression aggravated GC-induced endothelial injury; GREM2 silencing partially eliminated the effects of miR-122-5p inhibition on GC-stimulated HUVECs and BMECs. Finally, GREM2 silencing reversed the suppressive effects of GC on BMP-2/6/7 and SMAD-1/5/8, and attenuated the effects of miR-122-5p inhibition on these proteins upon GC stimulation. Conclusively, the present study demonstrates a miR-122-5p/GREM2 axis modulating the GC-induced endothelial damage via the BMP/SMAD signaling. Considering the critical role of endothelial function in ONFH pathogenesis, the in vivo role and clinical application of the miR-122-5p/GREM2 axis is worthy of further investigation.
Collapse
Affiliation(s)
- Xianzhe Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shuo Jie
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wenzhao Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hui Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jiangdong Ni
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Chan Liu
- Department of International Medical, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
6
|
Zhang S, Wang C, Shi L, Xue Q. Beware of Steroid-Induced Avascular Necrosis of the Femoral Head in the Treatment of COVID-19-Experience and Lessons from the SARS Epidemic. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:983-995. [PMID: 33692615 PMCID: PMC7939498 DOI: 10.2147/dddt.s298691] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/19/2021] [Indexed: 01/08/2023]
Abstract
Summary The recent outbreak of coronavirus disease 2019 (COVID-19) has become a global epidemic. Corticosteroids have been widely used in the treatment of severe acute respiratory syndrome (SARS), and the pathological findings seen in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are very similar to those observed in severe acute respiratory syndrome-related coronavirus (SARS-CoV) infection. However, the long-term use of corticosteroids (especially at high doses) is associated with potentially serious adverse events, particularly steroid-induced avascular necrosis of the femoral head (SANFH). In today’s global outbreak, whether corticosteroid therapy should be used, the dosage and duration of treatment, and ways for the prevention, early detection, and timely intervention of SANFH are some important issues that need to be addressed. This review aims to provide a reference for health care providers in COVID-19 endemic countries and regions. Article Focus Hormones are a double-edged sword. This review aims to provide a reference for health care providers in coronavirus disease 2019 (COVID-19) endemic countries and regions, especially with respect to the pros and cons of corticosteroid use in the treatment of patients with COVID-19. Key Messages In today’s global outbreak, whether corticosteroid therapy should be used, the dosage and duration of treatment, and ways for the prevention, early detection, and timely intervention of SANFH are some important issues that need to be addressed. Strengths and Limitations Since SARS was mainly prevalent in China at that time, many evidences in this paper came from the reports of Chinese scholars. There is a bias in the selection of data, which may ignore the differences in environment, race, living habits, medical level and so on. SANFH may be the result of multiple factors. Whether the virus itself is an independent risk factor for SANFH has not been confirmed. In this paper, through literature retrieval, some reference opinions on glucocorticoid usage, diagnosis and treatment of SANFH are given. However, due to the lack of large-scale research data support, it can not be used as the gold standard for the above problems.
Collapse
Affiliation(s)
- Shenqi Zhang
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Department of Joint and Sports Medicine, Zaozhuang Municipal Hospital Affiliated to Jining Medical University, Shandong, People's Republic of China
| | - Chengbin Wang
- Department of Joint and Sports Medicine, Zaozhuang Municipal Hospital Affiliated to Jining Medical University, Shandong, People's Republic of China
| | - Lei Shi
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Qingyun Xue
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
7
|
Wu X, Crawford R, Xiao Y, Mao X, Prasadam I. Osteoarthritic Subchondral Bone Release Exosomes That Promote Cartilage Degeneration. Cells 2021; 10:cells10020251. [PMID: 33525381 PMCID: PMC7911822 DOI: 10.3390/cells10020251] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022] Open
Abstract
Altered subchondral bone and articular cartilage interactions have been implicated in the pathogenesis of osteoarthritis (OA); however, the mechanisms remain unknown. Exosomes are membrane-derived vesicles that have recently been recognized as important mediators of intercellular communication. Herein, we investigated if OA subchondral bone derived exosomes alter transcriptional and bioenergetic signatures of chondrocytes. Exosomes were isolated and purified from osteoblasts of nonsclerotic or sclerotic zones of human OA subchondral bone and their role on the articular cartilage chondrocytes was evaluated by measuring the extent of extracellular matrix production, cellular bioenergetics, and the expression of chondrocyte activity associated marker genes. Exosomal microRNAs were analyzed using RNA sequencing and validated by quantitative real-time PCR and loss-of-function. In coculture studies, chondrocytes internalized OA sclerotic subchondral bone osteoblast derived exosomes and triggered catabolic gene expression and reduced chondrocyte-specific marker expression a phenomenon that is often observed in OA cartilage. RNA sequencing and miRNA profiling have identified miR-210-5p, which is highly enriched in OA sclerotic subchondral bone osteoblast exosomes, triggered the catabolic gene expression in articular cartilage chondrocytes. Importantly, we demonstrate that miR-210-5p suppresses the oxygen consumption rate of chondrocytes, altering their bioenergetic state that is often observed in OA conditions. These effects were markedly inhibited by the addition of a miR-210-5p inhibitor. Our study indicates that exosomes released by OA sclerotic subchondral bone osteoblasts plays a critical role in progression of cartilage degeneration and might be a potential target for therapeutic intervention in OA.
Collapse
Affiliation(s)
- Xiaoxin Wu
- Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Institute of Health and Biomedical Innovation, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4059, Australia; (R.C.); (Y.X.)
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4059, Australia; (R.C.); (Y.X.)
- Orthopedic Department, the Prince Charles Hospital, Brisbane 4059, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4059, Australia; (R.C.); (Y.X.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia
| | - Xinzhan Mao
- Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Correspondence: (X.M.); (I.P.); Tel.: +617-3138-6137 (I.P.)
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4059, Australia; (R.C.); (Y.X.)
- Correspondence: (X.M.); (I.P.); Tel.: +617-3138-6137 (I.P.)
| |
Collapse
|
8
|
The Effect of MicroRNA-101 on Angiogenesis of Human Umbilical Vein Endothelial Cells during Hypoxia and in Mice with Myocardial Infarction. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5426971. [PMID: 32953883 PMCID: PMC7487113 DOI: 10.1155/2020/5426971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/10/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Background Previous studies showed that recanalization and angiogenesis within the infarct region are of vital importance to the survival of myocardial cells during the treatment of acute myocardial infarction (AMI). Methods In this study, EdU cell proliferation assay, Transwell assay, scratch wound assay, and tube formation assay were used. Twelve bioinformatics analysis packages were used to predict the target genes of miR-101. Target genes were verified by luciferase reporter generation and assay, fluorescent quantitative PCR, and western blotting. Animal model and treatments were detected by M-mode echocardiography and immunofluorescent staining of CD31, Ki67, and α-SMA. Results AgomiR-101 significantly enhanced HUVEC proliferation, migration, and tube formation. A double-luciferase reporter assay revealed that the hsa-miR-101 mimic attenuated the activity of the EIF4E3′-UTR-wt type plasmid by 36%. The expression levels of HIF-1α and VEGF-A in the scrambled RNA group were significantly lower than those in the EIF4E3 siRNA and agomiR-101 groups. The left ventricular ejection fraction of the AMI+Adv-miR-101 group was significantly higher than that of the AMI+Adv-null and Sham+Adv-null groups. The proliferation of vessel cells in the peripheral infarcted myocardium was higher in the AMI+Adv-miR-101 group than that in the AMI+Adv-null and Sham+Adv-null groups. Conclusion MiR-101 can promote angiogenesis in the region surrounding the myocardial infarction.
Collapse
|
9
|
Cai W, Liu S, Liu Z, Hou S, Lv Q, Cui H, Wang X, Zhang Y, Fan H, Ding H. Downregulation of lung miR-203a-3p expression by high-altitude hypoxia enhances VEGF/Notch signaling. Aging (Albany NY) 2020; 12:4247-4267. [PMID: 32112644 PMCID: PMC7093161 DOI: 10.18632/aging.102878] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/05/2020] [Indexed: 12/26/2022]
Abstract
Hypoxia-related microRNAs (miRNAs) are involved in the pathogenesis of various diseases. Because potential variations in miRNA expression mediated by hypoxic lung injury at high altitude remain incompletely characterized, we used a rat model to investigate the biochemical and miRNA changes induced by high-altitude hypoxia. After 24, 48, or 72 h of hypoxic exposure, expression of VEGF/Notch pathway-related proteins were increased in rat lung tissues. Microarray screening of hypoxic lung samples revealed 57 differentially expressed miRNAs, 19 of which were related to the VEGF/Notch signaling pathway. We verified that the top downregulated miRNA (miR-203a-3p) suppresses VEGF-A translation through direct binding and also indirectly reduces Notch1, VEGFR2, and Hes1 levels, which restricts the angiogenic capacity of pulmonary microvascular endothelial cells in vitro. These findings may aid in the development of new therapeutic strategies for the prevention and treatment of hypoxic lung injury at high altitude.
Collapse
Affiliation(s)
- Wei Cai
- School of Disaster Medical Research, Tianjin University, Tianjin 300072, China.,Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Sanli Liu
- School of Disaster Medical Research, Tianjin University, Tianjin 300072, China.,Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China.,Health Company, 95985 Troops of PLA, Kaifeng 475000, Henan province, China
| | - Ziquan Liu
- School of Disaster Medical Research, Tianjin University, Tianjin 300072, China
| | - Shike Hou
- School of Disaster Medical Research, Tianjin University, Tianjin 300072, China
| | - Qi Lv
- School of Disaster Medical Research, Tianjin University, Tianjin 300072, China
| | - Huanhuan Cui
- School of Disaster Medical Research, Tianjin University, Tianjin 300072, China
| | - Xue Wang
- Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Yuxin Zhang
- Medical Team of the Third Detachment of Beijing Armed Police Corp, Beijing 100000, China
| | - Haojun Fan
- School of Disaster Medical Research, Tianjin University, Tianjin 300072, China
| | - Hui Ding
- School of Disaster Medical Research, Tianjin University, Tianjin 300072, China.,The Second Hospital Affiliated Shaanxi University of Chinese Medicine, Shaanxi province, Xianyang 710054, China
| |
Collapse
|
10
|
Ye Y, Peng Y, He P, Zhang Q, Xu D. Urinary miRNAs as biomarkers for idiopathic osteonecrosis of femoral head: A multicentre study. J Orthop Translat 2020; 26:54-59. [PMID: 33437623 PMCID: PMC7773953 DOI: 10.1016/j.jot.2020.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/15/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives Urinary microRNAs (miRNAs) have shown great diagnostic and prognostic values for multiple diseases. The profile of urinary miRNAs in patients with idiopathic osteonecrosis of femoral head (ONFH) is currently unclear. Methods We first randomly chose ten patients with each Association Research Circulation Osseous (ARCO) stage (I, II, III and IV) and ten healthy participants from the entire cohorts for initial screening. The miRNA polymerase chain reaction (PCR) array was then performed to identify the differentially abundant miRNAs in urine of these participants. We then verified the findings in the entire cohort. Clinical features including age, gender, bone mass index (BMI), lesion size and stages were recorded. We then analysed the association between the level of urinary miRNAs and clinical features. Results Our data indicated that there were 13 differentially abundant miRNAs among all groups. Urinary miR-150 demonstrated the highest diagnostic value among all candidates. Urinary miR-185 and miR-133a increased by ARCO staging. The levels of urinary miR-4824 abruptly decreased after femoral head collapse (ARCO stage III and IV). Urinary miR-144 was the only marker that correlated with lesion size. Conclusions The levels of urinary miRNAs are valuable biomarkers for idiopathic ONFH. Given the noninvasive nature of this test, it is potentially useful for diagnosis and monitoring of idiopathic ONFH progression. The translational potential of this article This article gives novel methods for ONFH diagnosis and progression monitoring in a convenient and non-invasive way.
Collapse
Affiliation(s)
- Yongheng Ye
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Yue Peng
- Department of Otorhinolaryngology Head and Neck Surgery, Zhuhai People's Hospital, Zhuhai, Guangdong Province, 519000, China
| | - Peiheng He
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Qinqin Zhang
- Department of Thyroid and Breast Surgery, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541002, China
| | - Dongliang Xu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| |
Collapse
|
11
|
Hong G, Han X, He W, Xu J, Sun P, Shen Y, Wei Q, Chen Z. Analysis of circulating microRNAs aberrantly expressed in alcohol-induced osteonecrosis of femoral head. Sci Rep 2019; 9:18926. [PMID: 31831773 PMCID: PMC6908598 DOI: 10.1038/s41598-019-55188-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/22/2019] [Indexed: 01/05/2023] Open
Abstract
Serum miRNAs are potential biomarkers for predicting the progress of bone diseases, but little is known about miRNAs in alcohol-induced osteonecrosis of femoral head (AIONFH). This study evaluated disease-prevention value of specific serum miRNA expression profiles in AIONFH. MiRNA PCR Panel was taken to explore specific miRNAs in serum of AIONFH cases. The top differentially miRNAs were further validated by RT-qPCR assay in serum and bone tissues of two independent cohorts. Their biofunction and target genes were predicted by bioinformatics databases. Target genes related with angiogenesis and osteogenesis were quantified by RT-qPCR in necrotic bone tissue. Our findings demonstrated that multiple miRNAs were evaluated to be differentially expressed with high dignostic values. MiR-127-3p, miR-628-3p, and miR-1 were downregulated, whereas miR-885-5p, miR-483-3p, and miR-483-5p were upregulated in serum and bone samples from the AIONFH patients compared to those from the normal control individuals (p < 0.01). The predicted target genes of the indicated miRNAs quantified by qRT-PCR, including IGF2, PDGFA, RUNX2, PTEN, and VEGF, were presumed to be altered in necrotic bone tissue of AIONFH patients. The presence of five altered miRNAs in AIONFH patients may serve as non-invasive biomarkers and potential therapeutic targets for the early diagnosis of AIONFH.
Collapse
Affiliation(s)
- Guoju Hong
- Devision of Orthopeadic Surgery, the University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Xiaorui Han
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510641, P.R. China
| | - Wei He
- Department of Orthopedic, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
- Hip Preserving Ward, No. 3 Orthopaedic Region, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Jiake Xu
- School of Biomedical Sciences, the University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Ping Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, P.R. China
| | - Yingshan Shen
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Qiushi Wei
- Department of Orthopedic, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
- Hip Preserving Ward, No. 3 Orthopaedic Region, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
| | - Zhenqiu Chen
- Department of Orthopedic, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
- Hip Preserving Ward, No. 3 Orthopaedic Region, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
| |
Collapse
|
12
|
Li Z, Li X, Shen J, Zhang L, Chan MTV, Wu WKK. Emerging roles of non-coding RNAs in scoliosis. Cell Prolif 2019; 53:e12736. [PMID: 31828859 PMCID: PMC7046479 DOI: 10.1111/cpr.12736] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Scoliosis, a complex three‐dimensional deformity of the spine with the Cobb angle (a measure of the spinal lateral curvature) >10 degree, encompasses a spectrum of pathologies, including congenital, idiopathic, syndromic and neuromuscular aetiologies. The pathogenesis is multifactorial involving both environmental and genetic factors but the exact cellular and molecular mechanisms of disease development remain largely unknown. Emerging evidence showed that non‐coding RNAs (ncRNAs), namely microRNAs, long ncRNAs and circular RNAs, are deregulated in many orthopaedic diseases, including scoliosis. Importantly, these deregulated ncRNAs functionally participate in the initiation and progression of scoliosis. Here, we review recent progress in ncRNA research on scoliosis.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingye Li
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, Beijing, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Digestive Diseases, Centre for Gut Microbiota Research, Institute of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
13
|
Wang C, Sun W, Ling S, Wang Y, Wang X, Meng H, Li Y, Yuan X, Li J, Liu R, Zhao D, Lu Q, Wang A, Guo Q, Lu S, Tian H, Li Y, Peng J. AAV-Anti-miR-214 Prevents Collapse of the Femoral Head in Osteonecrosis by Regulating Osteoblast and Osteoclast Activities. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:841-850. [PMID: 31739209 PMCID: PMC6861671 DOI: 10.1016/j.omtn.2019.09.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 02/07/2023]
Abstract
Osteonecrosis of the femoral head, an intractable but common disease that eventually triggers collapse of the femoral head, is characterized by increased osteoclast activity and markedly decreased osteoblast activity in the necrotic region of the femoral head. MicroRNA (miRNA)-214 (miR-214) may play important roles in vertebrate skeletal development by inhibiting osteoblast function by targeting activating transcription factor 4 (ATF4) and promoting osteoclast function via phosphatase and tensin homolog (PTEN). This study revealed significantly increased levels of miR-214 in necrotic regions, with commensurate changes in the numbers of its target cells (both osteoblasts and osteoclasts). To investigate whether targeting miR-214 could prevent femoral head collapse, we constructed an adeno-associated virus (AAV)-associated anti-miR-214 (AAV-anti-miR-214) and evaluated its function in vivo. AAV-anti-miR-214 promoted osteoblast activity and diminished osteoclast activity, effectively preventing collapse of the femoral head in a rat model of osteonecrosis.
Collapse
Affiliation(s)
- Cheng Wang
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China; Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Xin Wang
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Haoye Meng
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China; The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shanxi, China
| | - Xueling Yuan
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ruoxi Liu
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Qiang Lu
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Aiyuan Wang
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Shibi Lu
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Hua Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China.
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
| | - Jiang Peng
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
14
|
Liao W, Ning Y, Xu HJ, Zou WZ, Hu J, Liu XZ, Yang Y, Li ZH. BMSC-derived exosomes carrying microRNA-122-5p promote proliferation of osteoblasts in osteonecrosis of the femoral head. Clin Sci (Lond) 2019; 133:1955-1975. [PMID: 31387936 DOI: 10.1042/cs20181064] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 01/06/2023]
Abstract
Mesenchymal stem cells (MSCs) with multipotential differentiation capacity can differentiate into bone cells under specific conditions and can be used to treat osteonecrosis (ON) of the femoral head (ONFH) through cell transplantation. The current study aims to explore the role of bone marrow (BM) MSCs (BMSCs)-derived exosomes carrying microRNA-122-5p (miR-122-5p) in ONFH rabbit models.First, rabbit models with ONFH were established. ONFH-related miRNAs were screened using the Gene Expression Omnibus (GEO) database. A gain-of-function study was performed to investigate the effect of miR-122-5p on osteoblasts and BMSCs and effects of exosomes carrying miR-122-5p on ONFH. Co-culture experiments for osteoblasts and BMSCs were performed to examine the role of exosomal miR-122-5p in osteoblast proliferation and osteogenesis. The target relationship between miR-122-5p and Sprouty2 (SPRY2) was tested.MiR-122, significantly decreased in ONFH in the GSE89587 expression profile, was screened. MiR-122-5p negatively regulated SPRY2 and elevated the activity of receptor tyrosine kinase (RTK), thereby promoting the proliferation and differentiation of osteoblasts. In vivo experiments indicated that bone mineral density (BMD), trabecular bone volume (TBV), and mean trabecular plate thickness (MTPT) of femoral head were increased after over-expressing miR-122-5p in exosomes. Significant healing of necrotic femoral head was also observed.Exosomes carrying over-expressed miR-122-5p attenuated ONFH development by down-regulating SPRY2 via the RTK/Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Findings in the present study may provide miR-122-5p as a novel biomarker for ONFH treatment.
Collapse
Affiliation(s)
- Wen Liao
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430074, P.R. China
| | - Yu Ning
- Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Hai-Jia Xu
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430074, P.R. China
| | | | - Jing Hu
- Wuhan Sports University, Wuhan 430079, P.R. China
| | - Xiang-Zhong Liu
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430074, P.R. China
| | - Yi Yang
- Wuhan Sports University, Wuhan 430079, P.R. China
| | - Zhang-Hua Li
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430074, P.R. China
| |
Collapse
|
15
|
Xu W, Li J, Tian H, Wang R, Feng Y, Tang J, Jia J. MicroRNA‑186‑5p mediates osteoblastic differentiation and cell viability by targeting CXCL13 in non‑traumatic osteonecrosis. Mol Med Rep 2019; 20:4594-4602. [PMID: 31702033 PMCID: PMC6797973 DOI: 10.3892/mmr.2019.10710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/19/2019] [Indexed: 01/28/2023] Open
Abstract
MicroRNAs (miRs) serve varying and important roles in the pathogenesis of non‑traumatic osteonecrosis (ON). However, the role miR‑186‑5p serves in the pathogenesis of osteonecrosis remains unknown and the clinical outcome of ON is still uncertain. The aim of the present study was to determine the expression characteristics, biological function and molecular mechanisms of miR‑186‑5p, which is associated with cancer development and progression, in osteoblastic differentiation and cell viability. The results of the present study showed that the expression levels of miR‑186‑5p were significantly higher in clinical non‑traumatic ON compared with osteoarthritis samples (P=0.0001). An inverse association was observed between miR‑186‑5p and CXCL13 expression levels. Furthermore, miR‑186‑5p inhibited phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signaling, downregulated osteoblast‑specific markers and reduced the viability and differentiation of human mesenchymal stem cells from bone marrow (HMSC‑bm) through targeting CXCL13. Increasing expression of CXCL13 in HMSC‑bm cells partially restored miR‑186‑5p‑mediated inhibition. In conclusion, abrogation of PI3K/AKT signaling triggered by miR‑186‑5p/CXCL13 may contribute to ON pathogenesis. These results highlight the possible clinical value of miR‑186‑5p in treatment for non‑traumatic ON.
Collapse
Affiliation(s)
- Weihua Xu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hongtao Tian
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ruoyu Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Tang
- Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jie Jia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
16
|
Hosseinpour S, He Y, Nanda A, Ye Q. MicroRNAs Involved in the Regulation of Angiogenesis in Bone Regeneration. Calcif Tissue Int 2019; 105:223-238. [PMID: 31175386 DOI: 10.1007/s00223-019-00571-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) as a newly founded and thriving non-coding endogenous class of molecules which regulate many cellular pathways after transcription have been extensively investigated in regenerative medicine. In this systematic review, we sought to analyze miRNAs-mediated therapeutic approaches for influencing angiogenesis in bone tissue/bone regeneration. An electronic search in MEDLINE, Scopus, EMBASE, Cochrane library, web of science, and google scholar with no time limit were done on English publications. All types of original articles which a miRNA for angiogenesis in bone regeneration were included in our review. In the process of reviewing, we used PRISMA guideline and, SYRCLE's and science in risk assessment and policy tools for analyzing risk of bias. Among 751 initial retrieved records, 16 studies met the inclusion criteria and were fully assessed in this review. 275 miRNAs, one miRNA 195~497 cluster, and one Cysteine-rich 61 short hairpin RNA were differentially expressed during bone regeneration with 24 predicted targets reported in these studies. Among these miRNAs, miRNA-7b, -9, -21, -26a, -27a, -210, -378, -195~497 cluster, -378 and -675 positively promoted both angiogenesis and osteogenesis, whereas miRNA-10a, -222 and -494 inhibited both processes. The most common target was vasculoendothelial growth factor-signaling pathway. Recent evidence has demonstrated that miRNAs actively participated in angio-osteogenic coupling that can improve their therapeutic potentials for the treatment of bone-related diseases and bone regeneration. However, there is still need for further research to unravel the exact mechanisms.
Collapse
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, The University of Queensland, Herston, Brisbane, QLD, 4006, Australia
| | - Yan He
- School of Dentistry, The University of Queensland, Herston, Brisbane, QLD, 4006, Australia
| | - Ashwin Nanda
- School of Dentistry, The University of Queensland, Herston, Brisbane, QLD, 4006, Australia
| | - Qingsong Ye
- School of Dentistry, The University of Queensland, Herston, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
17
|
Synovial Fluid MicroRNA-210 as a Potential Biomarker for Early Prediction of Osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7165406. [PMID: 31467907 PMCID: PMC6699254 DOI: 10.1155/2019/7165406] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 07/17/2019] [Indexed: 01/28/2023]
Abstract
Early detection and treatment are critical in the management of osteoarthritis (OA). OA is closely associated with angiogenesis and the inhibition of angiogenesis presents a novel therapeutic approach to reduce inflammation and pain in OA. Recent reports suggest that circulating microRNAs (miRNAs) have great potential as biomarkers for the diagnosis and prognosis in OA. In this study, we aimed to explore the clinical significance of miR-210 in synovial fluid samples from 10 healthy volunteers and 20 early-stage OA and 20 late-stage OA patients. miR-210 expression was assessed by real-time RT-PCR. VEGF protein levels were examined by ELISA. The results show that miR-210 is significantly upregulated in early-stage OA and late-stage OA patients compared with healthy individuals. Higher levels of VEGF are also found in OA compared with the control. Moreover, miR-210 levels are positively correlated with VEGF levels, suggesting that miR-210 might contribute to OA development through promoting VEGF expression and angiogenesis. In conclusion, upregulation of miR-210 in synovial fluid may occur in the early stage of OA and can be a useful biomarker for early diagnosis of OA.
Collapse
|
18
|
Yang Z, Peng Y, Yang S. MicroRNA-146a regulates the transformation from liver fibrosis to cirrhosis in patients with hepatitis B via interleukin-6. Exp Ther Med 2019; 17:4670-4676. [PMID: 31086599 DOI: 10.3892/etm.2019.7490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 10/08/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to measure the expression of microRNA (miR)-146a in liver tissues, peripheral blood mononuclear cells (PMBC) and serum from patients with Hepatitis B and either liver fibrosis or cirrhosis, as well as to determine the regulatory mechanism of miR-146a. A total of 36 patients with Hepatitis B and liver fibrosis and 25 patients with hepatitis B and liver cirrhosis admitted to Linyi People's Hospital (Shandong, China) between June 2012 and February 2016 were included in the present study. Reverse transcription-quantitative polymerase chain reaction was performed to determine the expression of miR-146a and interleukin (IL)-6 mRNA in the liver tissue, PBMCs and serum. Western blotting was used to assess the expression of IL-6 in liver tissues and PBMCs. An enzyme-linked immunosorbent assay was conducted to measure IL-6 levels in serum. To identify the direct interaction between IL-6 and miR-146a, a dual luciferase reporter assay was performed. IL-6 mRNA expression in liver tissues, PBMCs and serum from patients with liver cirrhosis was significantly higher than that from patients with liver fibrosis (P<0.05). Furthermore, IL-6 expression in liver tissues and PBMCs from patients with liver cirrhosis was enhanced and levels of IL-6 protein in the serum of patients with liver cirrhosis were significantly elevated compared with patients with liver fibrosis (P<0.05). By contrast, levels of miR-146a in liver tissues, PBMCs and serum from patients with liver cirrhosis were significantly downregulated (P<0.05) compared with patients with liver fibrosis. miR-146a regulated the expression of IL-6 by binding to its 3'-untranslated region. Thus, in the transformation from liver fibrosis to cirrhosis, the upregulation of IL-6 in liver tissues, PBMCs and serum may be associated with the downregulation of miR-146a. miR-146a directly targets IL-6, which may regulate the occurrence and immune responses of Hepatitis B.
Collapse
Affiliation(s)
- Zhaohui Yang
- Department of Infection, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Yulong Peng
- Department of Infection, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Suxian Yang
- Department of Infection, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
19
|
Xu HJ, Liao W, Liu XZ, Hu J, Zou WZ, Ning Y, Yang Y, Li ZH. Down-regulation of exosomal microRNA-224-3p derived from bone marrow-derived mesenchymal stem cells potentiates angiogenesis in traumatic osteonecrosis of the femoral head. FASEB J 2019; 33:8055-8068. [PMID: 30964699 DOI: 10.1096/fj.201801618rrr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Traumatic osteonecrosis of the femoral head (ONFH) is a condition leading to the collapse of the femoral head, and the primary treatment is a total hip replacement, which has a poor prognosis. The current study was conducted with the aim of investigating the role of exosomes from bone marrow-derived mesenchymal stem cells (BM-MSCs) carrying microRNA-224-3p (miR-224-3p) in traumatic ONFH. Initially, a microarray analysis was performed to screen the differentially expressed genes and miRs associated with traumatic ONFH. Patients with traumatic and nontraumatic ONFH were enrolled, and HUVECs were obtained. The BM-MSCs-derived exosomes were purified and characterized, after which HUVECs were cocultured with exosomes. The functional role of miR-224-3p in traumatic ONFH was determined using ectopic expression, depletion, and reporter assay experiments. Endothelial cell proliferation, migration, invasion abilities, and angiogenesis were evaluated. Based on microarray analysis, miR-224-3p was found to be down-regulated, whereas focal adhesion kinase family interacting protein of 200 kDa (FIP200) was up-regulated in ONFH. Traumatic ONFH exosomes resulted in the up-regulation of FIP200 and down-regulation of miR-224-3p. FIP200 was confirmed to be a target gene of miR-224-3p. Exosomes were internalized by vascular endothelial cells. The down-regulation of exosomal miR-224-3p was observed to promote endothelial cell proliferation, migration, invasion abilities, angiogenesis, and FIP200 expression. In addition, FIP200 overexpression promoted angiogenesis. In summary, the results highly indicated that lower miR-224-3p levels in exosomes derived from BM-MSCs promote angiogenesis of traumatic ONFH by up-regulating FIP200. The present study provides a potential strategy for the treatment of traumatic ONFH.-Xu, H.-J., Liao, W., Liu, X.-Z., Hu, J., Zou, W.-Z., Ning, Y., Yang, Y., Li, Z.-H. Down-regulation of exosomal microRNA-224-3p derived from bone marrow-derived mesenchymal stem cells potentiates angiogenesis in traumatic osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Hai-Jia Xu
- Department of Orthopaedics, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan, China
| | - Wen Liao
- Department of Orthopaedics, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan, China
| | - Xiang-Zhong Liu
- Department of Orthopaedics, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan, China
| | - Jing Hu
- Wuhan Sports University, Wuhan, China
| | | | - Yu Ning
- Hubei University of Chinese Medicine, Wuhan, China
| | - Yi Yang
- Wuhan Sports University, Wuhan, China
| | - Zhang-Hua Li
- Department of Orthopaedics, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Wang A, Ren M, Wang J. The pathogenesis of steroid-induced osteonecrosis of the femoral head: A systematic review of the literature. Gene 2018; 671:103-109. [DOI: 10.1016/j.gene.2018.05.091] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
|
21
|
Wei B, Wei W, Wang L, Zhao B. Differentially Expressed MicroRNAs in Conservatively Treated Nontraumatic Osteonecrosis Compared with Healthy Controls. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9015758. [PMID: 29977921 PMCID: PMC5994295 DOI: 10.1155/2018/9015758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/06/2018] [Accepted: 02/05/2018] [Indexed: 01/01/2023]
Abstract
Deregulation of microRNAs (miRNAs) contributes to nontraumatic osteonecrosis of the femoral head (ONFH-N), but the differentially expressed circulating miRNAs in patients with ONFH-N receiving nonsurgical therapy are unknown. This study aimed to determine the miRNAs expression profile of patients with ONFH-N receiving conservative treatments. This was a case-control prospective study of 43 patients with ONFH-N and 43 participants without ONFH-N, enrolled from 10/2014 to 10/2016 at the Department of Orthopedics of the Linyi People's Hospital (China). The two groups were matched for age, gender, and living area. Microarray analysis and quantitative RT-PCR were used to examine the differentially expressed miRNAs. Bioinformatics was used to predict miRNA target genes and signaling pathways. Microarray and quantitative RT-PCR revealed that nine miRNAs were downregulated and five miRNAs were upregulated in ONFH-N (n = 3) compared with controls (n = 3). Bioinformatics showed that calcium-mediated signaling pathway, regulation of calcium ion transmembrane transporter activity, cytoskeletal protein binding, and caveolae macromolecular signaling complex were probably regulated by the identified differentially expressed miRNAs. In the remaining 80 subjects (n = 40/group), miR-335-5p was downregulated (P = 0.01) and miR-100-5p was upregulated (P = 0.02) in ONFH-N compared with controls. In conclusion, some miRNAs are differentially expressed in conservatively treated ONFH-N compared with controls. Those miRNAs could contribute to the pathogenesis of ONFH-N.
Collapse
Affiliation(s)
- Biaofang Wei
- Department of Orthopedics, Linyi People's Hospital, Linyi, China
| | - Wei Wei
- Department of Orthopedics, First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Wang
- Department of Surgery, Shandong Medical College, Linyi, China
| | - Baoxiang Zhao
- Department of Orthopedics, Linyi People's Hospital, Linyi, China
| |
Collapse
|
22
|
Huang Z, Cheng C, Wang J, Liu X, Wei H, Han Y, Yang S, Wang X. Icariin regulates the osteoblast differentiation and cell proliferation of MC3T3-E1 cells through microRNA-153 by targeting Runt-related transcription factor 2. Exp Ther Med 2018; 15:5159-5166. [PMID: 29904399 PMCID: PMC5996701 DOI: 10.3892/etm.2018.6127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/03/2018] [Indexed: 12/02/2022] Open
Abstract
Osteoporosis has become one of the most serious public health problems. Icariin, miR-153 and Runt-related transcription factor 2 (Runx2) have been demonstrated to regulate cell proliferation and differentiation in multiple cells. The aim of the present experiments was to investigate the potential mechanism underlying osteoblast differentiation and cell proliferation of MC3T3-E1 cells treated with icariin. Cell Counting kit-8, alkaline phosphatase (ALP) activity and alizarin red S assays, as well as reverse transcription-quantitative polymerase chain reaction and western blot analysis, were performed to examine whether icariin promoted osteoblast differentiation and cell proliferation in MC3T3-E1 cells. Subsequently, miR-153 target and pathway prediction, and functional analysis were assessed. The results demonstrated that icariin promoted proliferation, mineral content and ALP activity in MC3T3-E1 cells. In addition, miR-153 and Runx2 expression levels were increased following treatment with icariin. Luciferase assay revealed that miR-153 significantly upregulate the luciferase activity of wild-type (Wt) Runx2 3′-untranslated region. Furthermore, the group treated with a combination of miR-153 mimics and icariin exhibited a significantly higher expression of Runx2 in comparison with the miR-153 mimic-treated alone group. Finally, icariin reversed the potential effect of miR-153 inhibitor in MC3T3-E1 cells. In conclusion, icariin exerted a strong osteoblast differentiation effect in MC3T3-E1 cells through the miR-153/Runx2 pathway. The current study provided evidence suggesting that icariin should be considered as an effective candidate for the management of osteoporosis.
Collapse
Affiliation(s)
- Zengfa Huang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Cheng Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xianzhe Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hui Wei
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yu Han
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shuhua Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiang Wang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
23
|
Differential expression of miR-195-5p in collapse of steroid-induced osteonecrosis of the femoral head. Oncotarget 2018; 8:42638-42647. [PMID: 28498798 PMCID: PMC5522094 DOI: 10.18632/oncotarget.17333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Background Femoral head collapse is a key reference point for determining a treatment regimen of femoral head osteonecrosis. However, there are no effective preventive measures and the efficacy of hip-preserving surgery is unsatisfactory due to the unclear mechanism of collapse. This study aimed to identify and validate miRNAs differentially expressed in collapse and non-collapse areas of the osteonecrotic femoral head, and to predict the target genes and pathways of these miRNAs. Results Nine samples passed the quality control test. A total of 2085 differentially expressed miRNAs were detected, among which 433 miRNAs showed differential expression in the T1 group compared to the W1 group; 344 miRNAs showed differential expression in the T2 group compared to the W2 group; 107 miRNAs showed differential expression in the T3 group compared to the W3 group. After combining data from all three patients, 10 miRNAs showed differential expression in the collapse area (T1+T2+T3) compared to the non-collapse area (W1+W2+W3). Compared to the normal area, has-miR-195-5p showed the most significant downregulation. Expression results from RT-PCR revealed that the expression of hsa-miR-195-5p in the collapse area (T1+T2+T3) was significantly lower than that in the non-collapse area (W1+W2+W3) and normal area (Z1+Z2+Z3). 157 genes were perdicted as the target gene of hsa-miR-195-5p. Materials and Methods Femoral heads of three patients (2 males and 1 female) treated by total hip arthroplasty surgery for steroid-induced femoral head osteonecrosis were selected based on inclusion and exclusion criteria. Bone tissue samples were obtained from the collapse area (T), non-collapse area (W), and normal area (Z) according to the anatomical structure of osteonecrotic femoral heads. Total RNA was extracted from the samples and the microarray chip was scanned. miRNAs showing differential expressions of more than 1.5-fold were selected and was validated by RT-PCR. TargetScan, mirBase and miRanda bioinformatics software was used to predict target genes and identify possible pathways involving these genes. Conclusions miR-195-5p showed the most significant difference in the collapse area of osteonecrotic femoral heads, suggesting that collapse may be related to the downregulation of miR-195-5p.
Collapse
|
24
|
Yue J, Wan F, Zhang Q, Wen P, Cheng L, Li P, Guo W. Effect of glucocorticoids on miRNA expression spectrum of rat femoral head microcirculation endothelial cells. Gene 2018; 651:126-133. [DOI: 10.1016/j.gene.2018.01.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/24/2017] [Accepted: 01/16/2018] [Indexed: 01/08/2023]
|
25
|
Li Z, Jiang C, Li X, Wu WKK, Chen X, Zhu S, Ye C, Chan MTV, Qian W. Circulating microRNA signature of steroid-induced osteonecrosis of the femoral head. Cell Prolif 2017; 51. [PMID: 29205600 DOI: 10.1111/cpr.12418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Steroid-induced osteonecrosis of the femoral head (ONFH) is a common orthopaedic disease of which early detection remains clinically challenging. Accumulating evidences indicated that circulating microRNAs (miRNAs) plays vital roles in the development of several bone diseases. However, the association between circulating miRNAs and steroid-induced ONFH remains elusive. MATERIALS AND METHODS miRNA microarray was performed to identify the differentially abundant miRNAs in the serums of systemic lupus erythematosus (SLE) patients with steroid-induced ONFH as compared with SLE control and healthy control group. We predicted the potential functions of these differentially abundant miRNAs using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and reconstructed the regulatory networks of miRNA-mRNA interactions. RESULTS Our data indicated that there were 11 differentially abundant miRNAs (2 upregulated and 9 downregulated) between SLE-ONFH group and healthy control group and 42 differentially abundant miRNAs (14 upregulated and 28 downregulated) between SLE-ONFH group and SLE control group. We also predicted the potential functions of these differentially abundant miRNAs using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and reconstructed the regulatory networks of miRNA-mRNA interactions. CONCLUSIONS These findings corroborated the idea that circulating miRNAs play significant roles in the development of ONFH and may serve as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Jiang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Xingye Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, Beijing, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shibai Zhu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chanhua Ye
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenwei Qian
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Li Z, Yang B, Weng X, Tse G, Chan MTV, Wu WKK. Emerging roles of MicroRNAs in osteonecrosis of the femoral head. Cell Prolif 2017; 51. [PMID: 29131454 DOI: 10.1111/cpr.12405] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is one of the most common orthopaedic diseases. The exact pathogenic mechanism of ONFH is still unknown. MicroRNAs (miRNAs) are a class of non-coding RNAs that negatively modulate gene expression at post-transcriptional level. An increasing number of studies have shown that miRNAs play crucial roles in different physiological processes, including development, cell proliferation, differentiation and metabolism. Recently, multiple studies demonstrated that miRNAs are involved in the pathogenesis of ONFH. In this review, we summarize dysregulated miRNAs and their functions in ONFH. Furthermore, we discuss their potential clinical applications for diagnosis and treatment of ONFH.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Yang
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xisheng Weng
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gary Tse
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong.,State Key Laboratory of Digestive Disease and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
27
|
Dong Y, Li T, Li Y, Ren S, Fan J, Weng X. MicroRNA-23a-3p inhibitor decreases osteonecrosis incidence in a rat model. Mol Med Rep 2017; 16:9331-9336. [PMID: 29039554 PMCID: PMC5779994 DOI: 10.3892/mmr.2017.7808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
The mechanism of steroid-associated femoral head necrosis remains unclear. The present study investigated the role of microRNA-23a-3p (miR-23a-3p) in the incidence of osteonecrosis in a rat model. An miR-23a-3p mimic, an inhibitor and a negative control were transfected into bone mesenchymal stem cells using a lentiviral vector, and then injected into the steroid-induced femoral head necrosis model. Osteonecrosis incidence was assessed by micro computed tomography and histopathology. Low-density lipoprotein receptor-related protein 5 (LRP-5) expression was assessed by immunohistochemistry. The results demonstrated the incidence of osteonecrosis decreased in the miR-23a-3p inhibitor group compared with the miR-23a-3p mimic group (18.2% vs. 75%; P<0.05). The ratio of bone volume/total volume and trabecular thickness were significantly increased in the miR-23a-3p inhibitor group compared with the miR-23a mimic group. The expression level of LRP-5 was higher in the miR-23a-3p inhibitor group. The present study indicated that miR may provide a novel and alternative approach for understanding the mechanism underlying steroid-associated necrosis of the femoral head.
Collapse
Affiliation(s)
- Yulei Dong
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Tao Li
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yulong Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Shaoda Ren
- Center of Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Basic Medical Sciences and School of Basic Medicine, Beijing 100005, P.R. China
| | - Junfen Fan
- Center of Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Basic Medical Sciences and School of Basic Medicine, Beijing 100005, P.R. China
| | - Xisheng Weng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| |
Collapse
|
28
|
Knockdown of microRNA-203 alleviates LPS-induced injury by targeting MCL-1 in C28/I2 chondrocytes. Exp Cell Res 2017; 359:171-178. [DOI: 10.1016/j.yexcr.2017.07.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Accepted: 07/29/2017] [Indexed: 01/22/2023]
|
29
|
Abdul-Maksoud RS, Sediq AM, Kattaia AAA, Elsayed WSH, Ezzeldin N, Abdel Galil SM, Ibrahem RA. Serum miR-210 and miR-155 expression levels as novel biomarkers for rheumatoid arthritis diagnosis. Br J Biomed Sci 2017; 74:209-213. [DOI: 10.1080/09674845.2017.1343545] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- RS Abdul-Maksoud
- Faculty of Medicine, Medical Biochemistry Department, Zagazig University, Zagazig, Egypt
| | - AM Sediq
- Faculty of Medicine, Clinical and Chemical Pathology Department, Zagazig University, Zagazig, Egypt
| | - AAA Kattaia
- Faculty of Medicine, Histology and Cell Biology Department, Zagazig University, Zagazig, Egypt
| | - WSH Elsayed
- Faculty of Medicine, Pathology Department, Zagazig University, Zagazig, Egypt
| | - N Ezzeldin
- Faculty of Medicine, Rheumatology and Rehabilitation Department, Zagazig University, Zagazig, Egypt
| | - SM Abdel Galil
- Faculty of Medicine, Rheumatology and Rehabilitation Department, Zagazig University, Zagazig, Egypt
| | - RA Ibrahem
- Faculty of Medicine, Public Health and Community Medicine Department, Menoufia University, Menoufia, Egypt
| |
Collapse
|
30
|
Abstract
Younger patients are affected more often by osteonecrosis than by osteoarthritis, and osteonecrosis has significantly greater long-term morbidity. Corticosteroids are the most common cause of nontraumatic osteonecrosis. The femoral head is the most common site of osteonecrosis. In rare instances, osteonecrosis of the jaw has been associated with bisphosphonate exposure. This phenomenon is more common with repeated intravenous infusions of bisphosphonates. Case reports of osteonecrosis of the jaw in association with other medications, such as denosumab, have been reported. The final common pathway in the pathogenesis of osteonecrosis is disruption of blood supply to a segment of bone. Abnormalities in lipid metabolism, bone homeostasis, regulation of apoptosis, coagulopathies, innate immunity, and oxidative stress may play a role in the pathogenesis of osteonecrosis. Epigenetics may alter the predisposition to develop osteonecrosis. MRI is currently the optimal test for early diagnosis and identification of the extent of osteonecrosis. Nonsurgical treatment of osteonecrosis does not change the natural history of the disease. Although surgical treatment of femoral head osteonecrosis has many variations, most symptomatic patients eventually require total hip arthroplasty. Knowledge of risk factors and early detection are crucial to the successful management of osteonecrosis. Because of the lack of successful treatment options, new modes of management focus on the prevention of osteonecrosis.
Collapse
|
31
|
Yang Y, Zhang J, Xia T, Li G, Tian T, Wang M, Wang R, Zhao L, Yang Y, Lan K, Zhou W. MicroRNA-210 promotes cancer angiogenesis by targeting fibroblast growth factor receptor-like 1 in hepatocellular carcinoma. Oncol Rep 2016; 36:2553-2562. [PMID: 27666683 DOI: 10.3892/or.2016.5129] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/21/2016] [Indexed: 11/05/2022] Open
Abstract
Hypoxia drives cancer to become more aggressive, particularly angiogenesis, and the corresponding mechanisms still need to be further investigated. In hepatocellular carcinoma (HCC), the master hypoxia-induced microRNA (miRNA) miR-210 is upregulated in HCC and participates in HCC progression, but its roles in hypoxia-induced HCC angiogenesis are still unknown. Moreover, the correlation between miR-210 expression and HCC clinical progression also needs elucidation. In the present study, we found that miR-210 expression was progressively increased from normal liver and adjacent non-tumor tissues, to incipient and advanced tumor tissues. In HCC patients, high miR-210 expression was significantly correlated with poor prognosis, both tumor-free survival and overall survival. Moreover, miR-210 expression in HCC was significantly positively correlated with microvascular density. Both in vitro and in vivo studies determined that miR-210 promoted HCC angiogenesis, and the corresponding mechanism was identified to be the direct targeting and inhibition of fibroblast growth factor receptor-like 1 (FGFRL1) expression. Thus, we suggest a new prognosis predictor for HCC patients, and determined the roles of hypoxic miR-210 in HCC angiogenesis.
Collapse
Affiliation(s)
- Yun Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Jin Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Tian Xia
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Gaiyun Li
- The Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Tao Tian
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Mengchao Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Ruoyu Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Linghao Zhao
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Ke Lan
- The Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| |
Collapse
|
32
|
Li P, Sun N, Zeng J, Zeng Y, Fan Y, Feng W, Li J. Differential expression of miR-672-5p and miR-146a-5p in osteoblasts in rats after steroid intervention. Gene 2016; 591:69-73. [PMID: 27378744 DOI: 10.1016/j.gene.2016.06.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Apoptosis of osteoblasts and osteocytes is one cause of steroid-induced osteonecrosis of the femoral head; however, the molecular mechanism of steroid affecting osteoblasts at the genetic level is unclear. The aim of the present work is to examine differential expression of osteoblasts in rats after steroid intervention and to verify expression by real-time polymerase chain reaction (RT-PCR). METHODS Primary culture, passaging and identification of osteoblasts of SD neonatal rats were conducted; osteoblasts were divided into two groups, the control group, and the steroid group. Total RNA was extracted separately, and quality control was performed; by means of RNA labeling and microarray hybridization, data were collected and then standardized to ascertain differences in miRNA expression between the two groups. The gene expression spectrum was analyzed. Obvious differential expression of miR-672-5p and miR-146a-5p was verified by RT-PCR. Miranda, microcosm and mirdb bioinformatics software were used to predict target genes. RESULTS Compared with the control group, morphologically, the osteoblasts in the steroid group were more irregular and showed various shapes. The number of miRNAs (fold change >2) in the steroid group was six. Four miRNAs were upregulated and two miRNAs were downregulated. In particular, upregulated miR-672-5p expression and downregulated miR-146a-5p expression were significant. RT-PCR results showed that the 2(-△△) CT value of miR-672-5p in the steroid group was 3.743-fold of that in the control group, and the 2(-△△) CT value of miR-146a-5p in the steroid group was 0.322-fold of that in the control group. Angptl4, Ccdc51, Ssbp3 and RGD1306991 were predicted as the target gene of miR-672-5p, while Hrp12 was that of miR-146a-5p. CONCLUSION Expression profiles of miR-672-5p and miR-146a-5p had the most significant changes in the osteoblasts of rats with steroid intervention, which may provide a new viewpoint to pathogenesis of osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Pengfei Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nan Sun
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianchun Zeng
- Deparment of orthopedics, The First Affiliated Hospital of Guangzhou university of Chinese Medicine, Guangzhou, China
| | - Yirong Zeng
- Deparment of orthopedics, The First Affiliated Hospital of Guangzhou university of Chinese Medicine, Guangzhou, China
| | - Yueguang Fan
- Deparment of orthopedics, The First Affiliated Hospital of Guangzhou university of Chinese Medicine, Guangzhou, China.
| | - Wenjun Feng
- Deparment of orthopedics, The First Affiliated Hospital of Guangzhou university of Chinese Medicine, Guangzhou, China
| | - Jie Li
- Deparment of orthopedics, The First Affiliated Hospital of Guangzhou university of Chinese Medicine, Guangzhou, China
| |
Collapse
|
33
|
Involvement of MicroRNA-210 Demethylation in Steroid-associated Osteonecrosis of the Femoral Head. Sci Rep 2016; 6:20046. [PMID: 26805628 PMCID: PMC4726266 DOI: 10.1038/srep20046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is an important event in steroid-associated osteonecrosis of the femoral head (SONFH). Here we performed miRNA microarray with SONFH tissues (ONs) and the adjacent normal tissues (NLs) to select the angiogenic miRNA. The results showed that miR-210 was differentially expressed in SONFH versus normal tissues. Unexpectedly, its specific transcription factor, hypoxia-inducible factor-1α, was shown of no significant changes in ONs compared with NLs. Further Bisulfite sequencing revealed that miR-210 is embedded in a CpG island and miR-210 gene has 2 CpG sites with lower methylation percentage in ONs compared with NLs. Additionally, ONs with lower miR-210 gene methylation exhibited higher miR-210 expression. Next, we found that the endothelial cells treated with demethylating agents could significantly increase the expression of miR-210, along with promoted cell viability and differentiation. Some angiogenic genes (VEGF, bFGF, TNF-α and PCNA) were up-regulated as well. In addition, the supernatant of the cells after demethylation treatment displayed an enhanced ability of recruiting new microvessels in vivo. Taken together, our study not only provides novel insights into the regulation of angiogenesis in this disease, but also reveals a therapeutic opportunity for treatment of SONFH patients with demethylating agents.
Collapse
|
34
|
Liu XD, Cai F, Liu L, Zhang Y, Yang AL. MicroRNA-210 is involved in the regulation of postmenopausal osteoporosis through promotion of VEGF expression and osteoblast differentiation. Biol Chem 2015; 396:339-47. [PMID: 25503465 DOI: 10.1515/hsz-2014-0268] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/05/2014] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) are small non-protein-codingRNAs that function as negative gene expression regulators. miRNA-210 (miR-210) has recently been recognized in the pathogenesis of osteonecrosis associated with angiogenesis. Herein we aimed to explore the clinical significance of miR-210 treatment for postmenopausal osteoporosis. The expression of miR-210 was detected in bone marrow mesenchymal stem cells (BMSCs) in vitro and miR-210 significantly promoted the expression of vascular edothelial growth factor (VEGF) in BMSCs in a time-dependent manner (p<0.05). And miR-210 suppressed PPARγ expression but increased the expression of ALP and osterix, demonstrating that miR-210 inhibited adipocyte differentiation and promoted osteoblast differentiation of BMSCs in vitro. The protein expression of hypoxia-inducible factor 1 alpha (HIF-1α) and VEGF in 17β-estradiol (E2) treated osteoblasts were significantly increased in a dose- and time-dependent manner (p<0.05). And E2 inducted the VEGF expression through the PI3K/AKT signaling pathway in osteoblasts. Taken together, these data implied that miR-210 played an important role in ameliorating the estrogen deficiency caused-postmenopausal osteoporosis through promotion the VEGF expression and osteoblast differentiation.
Collapse
|
35
|
Therapeutic Effects of Ribunucleinate (Ribonucleotides) in Immuno-Inflammatory and Arthritic Diseases. ACTA ACUST UNITED AC 2015; 70:35-89. [PMID: 26462364 DOI: 10.1007/978-3-0348-0927-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ribonucleic acids from different organs and from yeast have been used for the treatment of chronic and degenerative diseases in the context of naturopathic medicine in the last 60 years. This chapter provides general information about ribonucleinates as therapeutic agents. Past and present pharmacological and clinical investigations are discussed in the field of the central nervous system, sensory organs, cancer and degenerative diseases of joints and vertebra.
Collapse
|
36
|
Wei B, Wei W. Identification of aberrantly expressed of serum microRNAs in patients with hormone-induced non-traumatic osteonecrosis of the femoral head. Biomed Pharmacother 2015; 75:191-5. [PMID: 26298803 PMCID: PMC7127261 DOI: 10.1016/j.biopha.2015.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/26/2015] [Indexed: 02/09/2023] Open
Abstract
Objective The non-translation RNA-microRNA (miRNA) has been demonstrated to correlate to various disease occurrence in body. Serum miRNA was gradually considered as molecular markers for disease diagnosis. This study was designed to analyze differential serum miRNAs level in hormone-induced non-traumatic osteonecrosis of the femoral head (hormone-NOFH) patients. Methods We selected 30 patients with hormone-NOFH as case group, and 30 healthy volunteers were recruited as control group. miRCURYTM LNA miRNA chip and quantitative RT-PCR were used to examine differential miRNAs expression. Correlation assay was performed between miRNAs and NOFH trait. Results We found that 9 miRNAs were upregulated while 3 miRNAs were downregulated in hormone-TOFH patient serum by result of miRNA chip. QRT-PCR assay revealed that the level of miR-423-5p was significantly increased and miR-10a-5p was significantly decreased. Using Spearman correlation analysis, we observed that miR-423-5p serum level is positive association to FHC levels whereas miR-10a-5p has no association with FHC levels. Furthermore, miR-423-5p is negatively correlated to its downstream molecule-adiponectin. Conclusion We report a miRNA profile of hormone-NOFH and provide a new perspective to understand this intricate disease. This novel information suggests the potential roles of miR-423-5p in the diagnosis, prognosis biomarkers, or therapy targets of hormone-NOFH.
Collapse
Affiliation(s)
- Biaofang Wei
- Department of Orthopaedic, Linyi People's Hospital, Linyi 276000, China
| | - Wei Wei
- Department of Orthopaedic, First School of Clinical Medicine, Guangzhou University of Chinese Medicine, No. 16 Jichang Rd., Guangzhou 510405, China.
| |
Collapse
|
37
|
MiR-210 inhibits NF-κB signaling pathway by targeting DR6 in osteoarthritis. Sci Rep 2015; 5:12775. [PMID: 26244598 PMCID: PMC4525484 DOI: 10.1038/srep12775] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/01/2015] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is characterized by degradation of articular cartilage and joint inflammation. MicroRNAs have been proved to play an important role in the regulation of chondrogenesis. Previous study showed that microRNA-210 (miR-210) was probably associated with osteoarthritis, while the function of miR-210 in osteoarthritis still remains unknown. The aim of the present study was to investigate the protective effect of miR-210 on osteoarthritis. In the in vitro study, miR-210 level in chondrocytes was decreased after treatment with lipopolysaccharide (LPS). Transfection with miR-210 mimic inhibited LPS-induced pro-inflammatory cytokines production, cell viability reduction and cell apoptosis. Results of luciferase activity assay showed that miR-210 targeted 3′-UTR of death receptor 6 (DR6) to inhibit its expression. MiR-210 mimic and DR6 siRNA transfection inhibited the activation of NF-κB pathway and cell apoptosis of chondrocytes. For the in vivo study, OA model was established on rats by anterior cruciate ligament transection (ACLT). MiR-210 expression is reduced in OA rats. MiR-210 over-expressing lentivirus was injected into the OA rats. Cytokines production, and NF-κB and DR6 expression in OA rats was inhibited by miR-210 overexpression. The results demonstrated that miR-210 decreased inflammation in articular cavity in OA rats by targeting DR6 and inhibiting NF-κB signaling pathway.
Collapse
|
38
|
Identification of differentially expressed microRNAs involved in non-traumatic osteonecrosis through microRNA expression profiling. Gene 2015; 565:22-9. [DOI: 10.1016/j.gene.2015.03.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 01/27/2015] [Accepted: 03/10/2015] [Indexed: 12/19/2022]
|
39
|
Narasaraju T, Shukla D, More S, Huang C, Zhang L, Xiao X, Liu L. Role of microRNA-150 and glycoprotein nonmetastatic melanoma protein B in angiogenesis during hyperoxia-induced neonatal lung injury. Am J Respir Cell Mol Biol 2015; 52:253-61. [PMID: 25054912 DOI: 10.1165/rcmb.2013-0021oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glycoprotein nonmetastatic melanoma protein B (GPNMB), a transmembrane protein, has been reported to have an important role in tissue repair and angiogenesis. Recently, we have demonstrated that hyperoxia exposure down-regulates microRNA (miR)-150 expression and concurrent induction of its target gene, GPNMB, in neonatal rat lungs. This study aimed to test the hypothesis that soluble GPNMB (sGPNMB) promotes angiogenesis in the hyperoxic neonatal lungs. Wild-type (WT) or miR-150 knockout (KO) neonates, exposed to 95% O2 for 3, 6, and 10 days, were evaluated for lung phenotypes, GPNMB protein expression in the lungs, and sGPNMB levels in the bronchoalveolar lavage. Angiogenic effects of sGPNMB were examined both in vitro and in vivo. After a 6-day exposure, similar analyses were performed in WT and miR-150 KO neonates during recovery at 7, 14, and 21 days. miR-150 KO neonates displayed an increased capillary network, decreased inflammation, and less alveolar damage compared with WT neonates after hyperoxia exposure. The early induction of GPNMB and sGPNMB were found in miR-150 KO neonates. The recombinant GPNMB, which contained a soluble portion of GPNMB, promoted endothelial tube formation in vitro and enhanced angiogenesis in vivo. The increased capillaries in the hyperoxic lungs of miR-150 KO neonates appeared dysmorphic. They were abnormally enlarged in size and occasionally laid at subepithelial regions in the alveoli. However, the lung architecture returned to normal during recovery, suggesting that abnormal vascularity during hyperoxia does not affect postnatal lung development. GPNMB plays an important role in angiogenesis during hyperoxia injury. Treatment with GPNMB may offer a novel therapeutic approach in reducing pathologic complications in bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Telugu Narasaraju
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | | | | | | | | | | | | |
Collapse
|
40
|
Yuan HF, Von Roemeling C, Gao HD, Zhang J, Guo CA, Yan ZQ. Analysis of altered microRNA expression profile in the reparative interface of the femoral head with osteonecrosis. Exp Mol Pathol 2015; 98:158-63. [PMID: 25612520 DOI: 10.1016/j.yexmp.2015.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 11/28/2022]
Abstract
The reparative reaction is considered to be important during the occurrence of collapse in the femoral head with osteonecrosis (ONFH), but little is known about the long-term reparative process. The aim of this study was to determine and analyze the altered microRNA expression profile in the reparative interface of ONFH, and further validate the expression of the involved genes in the predicted pathways. Microarray analysis was performed comparing the reparative interface of patients with ONFH and normal tissue of patients with fresh femoral neck fracture (FNF) and partly validated by real-time PCR. Potential target genes of differentially expressed miRNAs were predicted by TargetScan and miRanda, and the target genes were used for further bioinformatics analysis such as Gene Ontology and Pathway assay. The filtered miRNAs and genes in the predict pathways were further examined by real-time PCR in another 6 independent ONFH patients. Among the 2578 miRNAs identified, 17 were consistently differentially expressed, 12 of which are up-regulated and 5 down-regulated. GO classification showed that the predicted target genes of these miRNAs are involved in signal transduction, cell differentiation, methylation, cell growth and apoptosis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) classification indicated that these genes play a role in angiogenesis and Wnt signaling pathways. The expression of miR-34a and miR-146a and genes in the predict pathways were significantly up-regulated. This study presented a global view of miRNA expression in the reparative interface of osteonecrosis. In addition, our data provided novel and robust information for further researches in the pathogenesis and molecular events of ONFH.
Collapse
Affiliation(s)
- Heng-feng Yuan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cancer Biology, Mayo Clinic, FL, USA
| | | | - Hui-di Gao
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chang-an Guo
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zuo-qin Yan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Greco S, Gaetano C, Martelli F. HypoxamiR regulation and function in ischemic cardiovascular diseases. Antioxid Redox Signal 2014; 21:1202-19. [PMID: 24053126 PMCID: PMC4142792 DOI: 10.1089/ars.2013.5403] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE MicroRNAs (miRNAs) are deregulated and play a causal role in numerous cardiovascular diseases, including myocardial infarction, coronary artery disease, hypertension, heart failure, stroke, peripheral artery disease, kidney ischemia-reperfusion. RECENT ADVANCES One crucial component of ischemic cardiovascular diseases is represented by hypoxia. Indeed, hypoxia is a powerful stimulus regulating the expression of a specific subset of miRNAs, named hypoxia-induced miRNAs (hypoxamiR). These miRNAs are fundamental regulators of the cell responses to decreased oxygen tension. Certain hypoxamiRs seem to have a particularly pervasive role, such as miR-210 that is virtually induced in all ischemic diseases tested so far. However, its specific function may change according to the physiopathological context. CRITICAL ISSUES The discovery of HypoxamiR dates back 6 years. Thus, despite a rapid growth in knowledge and attention, a deeper insight of the molecular mechanisms underpinning hypoxamiR regulation and function is needed. FUTURE DIRECTIONS An extended understanding of the function of hypoxamiR in gene regulatory networks associated with cardiovascular diseases will allow the identification of novel molecular mechanisms of disease and indicate the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Simona Greco
- 1 Molecular Cardiology Laboratory , IRCCS-Policlinico San Donato, Milan, Italy
| | | | | |
Collapse
|
42
|
MiR-17-5p modulates osteoblastic differentiation and cell proliferation by targeting SMAD7 in non-traumatic osteonecrosis. Exp Mol Med 2014; 46:e107. [PMID: 25060766 PMCID: PMC4119212 DOI: 10.1038/emm.2014.43] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/19/2014] [Accepted: 05/02/2014] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) have recently been recognized to have a role in human orthopedic disorders. The objective of our study was to explore the expression profile and biological function of miRNA-17-5p (miR-17-5p), which is well known to be related to cancer cell proliferation and invasion, in osteoblastic differentiation and in cell proliferation. The expression levels of miR-17-5p in the femoral head mesenchymal stem cells of 20 patients with non-traumatic osteonecrosis (ON) and 10 patients with osteoarthritis (OA) were examined by quantitative reverse transcription-PCR (qRT-PCR). Furthermore, the interaction between miR-17-5p and SMAD7 was observed. We found that in non-traumatic ON samples the level of mature miR-17-5p was significantly lower than that of OA samples (P=0.0002). By targeting SMAD7, miR-17-5p promoted nuclear translocation of β-catenin, enhanced expression of COL1A1 and finally facilitated the proliferation and differentiation of HMSC-bm cells. We also demonstrated that restoring expression of SMAD7 in HMSC-bm cells partially reversed the function of miR-17-5p. Together, our data suggested a theory that dysfunction of a network containing miR-17-5p, SMAD7 and β-catenin could contribute to ON pathogenesis. The present study prompts the potential clinical value of miR-17-5p in non-traumatic ON.
Collapse
|
43
|
LU YUCHENG, HENG XUEYUAN, YU JIXU, SU QUANPING, GUAN XIANGHONG, YOU CUIPING, WANG LONG, CHE FENGYUAN. miR-137 regulates the migration of human umbilical vein endothelial cells by targeting ephrin-type A receptor 7. Mol Med Rep 2014; 10:1475-80. [DOI: 10.3892/mmr.2014.2319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 03/04/2014] [Indexed: 11/06/2022] Open
|
44
|
Qin Q, Furong W, Baosheng L. Multiple functions of hypoxia-regulated miR-210 in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:50. [PMID: 24909053 PMCID: PMC4060094 DOI: 10.1186/1756-9966-33-50] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 06/01/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally. miRNAs can be induced by a variety of stresses such as hypoxia, and are involved in diverse biological processes including differentiation, cell proliferation, cell death, and tumorigenesis. Hypoxia, a common feature of tumor microenvironment, can induce a number of miRNAs expression. miRNA-210 (miR-210) is one of the hypoxia-regulated-miRNAs, which has been investigated extensively in cancer. However, paradoxically opposing results were documented regarding whether it is an oncogene or a tumor suppressor, and whether it is a positive or negative prognostic biomarker. In the present review, we focus on the following investigations of miR-210: 1) its functions of as an oncogene, 2) its functions as a tumor suppressor, 3) its functions in mitochondrial metabolism, and finally, the diagnostic and prognostic value of miR-210 in cancer researches.
Collapse
Affiliation(s)
| | | | - Li Baosheng
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jiyan Road 440, Jinan 250117, P,R, China.
| |
Collapse
|
45
|
Shah A, Ahmad A. Role of MicroRNA in Mesenchymal Stem Cells Differentiation Into Osteoblasts. RAZAVI INTERNATIONAL JOURNAL OF MEDICINE 2013. [DOI: 10.17795/rijm14849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
46
|
Role of MicroRNA in Mesenchymal Stem Cells Differentiation Into Osteoblasts. RAZAVI INTERNATIONAL JOURNAL OF MEDICINE 2013. [DOI: 10.5812/rijm.14849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|