1
|
Moghaddam A, Bahrami M, Mirzadeh M, Khatami M, Simorgh S, Chimehrad M, Kruppke B, Bagher Z, Mehrabani D, Khonakdar HA. Recent trends in bone tissue engineering: a review of materials, methods, and structures. Biomed Mater 2024; 19:042007. [PMID: 38636500 DOI: 10.1088/1748-605x/ad407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Bone tissue engineering (BTE) provides the treatment possibility for segmental long bone defects that are currently an orthopedic dilemma. This review explains different strategies, from biological, material, and preparation points of view, such as using different stem cells, ceramics, and metals, and their corresponding properties for BTE applications. In addition, factors such as porosity, surface chemistry, hydrophilicity and degradation behavior that affect scaffold success are introduced. Besides, the most widely used production methods that result in porous materials are discussed. Gene delivery and secretome-based therapies are also introduced as a new generation of therapies. This review outlines the positive results and important limitations remaining in the clinical application of novel BTE materials and methods for segmental defects.
Collapse
Affiliation(s)
| | - Mehran Bahrami
- Department of Mechanical Engineering and Mechanics, Lehigh University, 27 Memorial Dr W, Bethlehem, PA 18015, United States of America
| | | | - Mehrdad Khatami
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Chimehrad
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, FL, United States of America
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71345-1744, Iran
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
2
|
Yun C, Kim SH, Kim KM, Yang MH, Byun MR, Kim JH, Kwon D, Pham HTM, Kim HS, Kim JH, Jung YS. Advantages of Using 3D Spheroid Culture Systems in Toxicological and Pharmacological Assessment for Osteogenesis Research. Int J Mol Sci 2024; 25:2512. [PMID: 38473760 DOI: 10.3390/ijms25052512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Bone differentiation is crucial for skeletal development and maintenance. Its dysfunction can cause various pathological conditions such as rickets, osteoporosis, osteogenesis imperfecta, or Paget's disease. Although traditional two-dimensional cell culture systems have contributed significantly to our understanding of bone biology, they fail to replicate the intricate biotic environment of bone tissue. Three-dimensional (3D) spheroid cell cultures have gained widespread popularity for addressing bone defects. This review highlights the advantages of employing 3D culture systems to investigate bone differentiation. It highlights their capacity to mimic the complex in vivo environment and crucial cellular interactions pivotal to bone homeostasis. The exploration of 3D culture models in bone research offers enhanced physiological relevance, improved predictive capabilities, and reduced reliance on animal models, which have contributed to the advancement of safer and more effective strategies for drug development. Studies have highlighted the transformative potential of 3D culture systems for expanding our understanding of bone biology and developing targeted therapeutic interventions for bone-related disorders. This review explores how 3D culture systems have demonstrated promise in unraveling the intricate mechanisms governing bone homeostasis and responses to pharmacological agents.
Collapse
Affiliation(s)
- Chawon Yun
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sou Hyun Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Mok Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Min Hye Yang
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Mi Ran Byun
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Joung-Hee Kim
- Department of Medical Beauty Care, Dongguk University Wise, Gyeongju 38066, Republic of Korea
| | - Doyoung Kwon
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Huyen T M Pham
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyo-Sop Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Koung Ngeun S, Shimizu M, Kaneda M. Characterization of Rabbit Mesenchymal Stem/Stromal Cells after Cryopreservation. BIOLOGY 2023; 12:1312. [PMID: 37887022 PMCID: PMC10603895 DOI: 10.3390/biology12101312] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Adipose tissues (ADPs) are an alternative source for mesenchymal stem/stromal cells (MSCs), given that conventional bone marrow (BM) collection is painful and yields limited cell numbers. As the need for easily accessible MSCs grows, cryopreservation's role in regenerative medicine is becoming increasingly vital. However, limited research exists on the characteristics and functional properties of rabbit-derived MSCs from various anatomical sources before and after cryopreservation. We examined the effects of cryopreservation using Bambanker. We found that cryopreservation did not adversely affect the morphology, viability, and adipogenic or chondrogenic differentiation abilities of ADP MSCs or BM MSCs. However, there was a notable drop in the proliferation rate and osteogenic differentiation capability of BM MSCs post-cryopreservation. Additionally, after cryopreservation, the surface marker gene expression of CD90 was not evident in ADP MSCs. As for markers, ADIPOQ can serve as an adipogenic marker for ADP MSCs. ACAN and CNMD can act as chondrogenic markers, but these two markers are not as effective post-cryopreservation on ADP MSCs, and osteogenic markers could not be validated. The study highlights that compared to BM MSCs, ADP MSCs retained a higher viability, proliferation rate, and differentiation potential after cryopreservation. As such, in clinical MSC use, we must consider changes in post-cryopreservation cell functions.
Collapse
Affiliation(s)
- Sai Koung Ngeun
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| | - Miki Shimizu
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| |
Collapse
|
4
|
Kim DY, Park G, Hong HS, Kim S, Son Y. Platelet-Derived Growth Factor-BB Priming Enhances Vasculogenic Capacity of Bone Marrow-Derived Endothelial Precursor Like Cells. Tissue Eng Regen Med 2023; 20:695-704. [PMID: 37266845 PMCID: PMC10352207 DOI: 10.1007/s13770-023-00546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/25/2023] [Accepted: 04/12/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Human endothelial progenitor cells (EPCs) were first identified in the peripheral blood and later in the cord blood and bone marrow (BM) with different vascularization capacity and different surface marker profiles. However, their identity and functional roles in neovascularization have not been clearly demonstrated in vivo and in vitro. METHODS Characterization of BM-EPC like cells were performed by fluorescence-activated cell sorting, immunofluorescence staining, enzyme-linked immunosorbent assay, Matrigel tube formation assay, and western blot analysis. RESULTS BM-EPC like cells were identified by selective adhesion to fibronectin and collagen from BM mononuclear cells, which generate fast-growing colonies with spindle morphology, express surface markers of CD105, vWF, UEA-I lectin binding, secrete HGF, VEGF, TGF-beta1 but can be distinguished from circulating EPC and endothelial cells by no expression of surface markers such as CD31, CD309, CD45, and CD34. These BM-EPC like cells shared many cell surface markers of BM-mesenchymal stem cells (MSC) but also can be distinguished by their vasculogenic property and other unique surface markers. Furthermore, the vasculogenic capacity of BM-EPC like cells were enhanced by co-culture of BM-MSC or PDGF-BB priming. PDGF-BB stimulated cell migration, proliferation, and secretion of laminin β-1, which was proposed as one of the mechanisms involved in the better vascularization of BM-EPC like cells. CONCLUSION PDGF-BB priming may be applied to improve the potency and function of BM-EPC like cells as vasculogenic cell therapy for the ischemic vascular repair.
Collapse
Affiliation(s)
- Do Young Kim
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 South Korea
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea
| | - Gabee Park
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 South Korea
- Elphis Cell Therapeutics Inc, Yongin, Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea
- KHU Institute of Regenerative Medicine, KHU Hospital, Seoul, Korea
| | - Suna Kim
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 South Korea
| | - Youngsook Son
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 South Korea
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea
- KHU Institute of Regenerative Medicine, KHU Hospital, Seoul, Korea
- Elphis Cell Therapeutics Inc, Yongin, Korea
| |
Collapse
|
5
|
Duranova H, Valkova V, Olexikova L, Radochova B, Balazi A, Chrenek P, Vasicek J. Rabbit Endothelial Progenitor Cells Derived From Peripheral Blood and Bone Marrow: An Ultrastructural Comparative Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-11. [PMID: 35297367 DOI: 10.1017/s143192762200037x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present study was designed to compare the ultrastructure of early endothelial progenitor cells (EPCs) derived from rabbit peripheral blood (PB-EPCs) and bone marrow (BM-EPCs). After the cells had been isolated and cultivated up to passage 3, microphotographs obtained from transmission electron microscope were evaluated from qualitative and quantitative (unbiased stereological approaches) points of view. Our results revealed that both cell populations displayed almost identical ultrastructural characteristics represented by abundant cellular organelles dispersed in the cytoplasm. Moreover, the presence of very occasionally occurring mature endothelial-specific Weibel–Palade bodies (WPBs) confirmed their endothelial lineage origin. The more advanced stage of their differentiation was also demonstrated by the relatively low nucleus/cytoplasm (N/C) ratios (0.41 ± 0.19 in PB-EPCs; 0.37 ± 0.25 in BM-EPCs). Between PB-EPCs and BM-EPCs, no differences in proportions of cells occupied by nucleus (28.13 ± 8.97 versus 25.10 ± 11.48%), mitochondria (3.71 ± 1.33 versus 4.23 ± 1.00%), and lipid droplets (0.65 ± 1.01 versus 0.36 ± 0.40%), as well as in estimations of the organelles surface densities were found. The data provide the first quantitative evaluation of the organelles of interest in PB-EPCs and BM-EPCs, and they can serve as a research framework for understanding cellular function.
Collapse
Affiliation(s)
- Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, Nitra94976, Slovak Republic
| | - Veronika Valkova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, Nitra94976, Slovak Republic
| | - Lucia Olexikova
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, Lužianky951 41, Slovak Republic
| | - Barbora Radochova
- Laboratory of Biomathematics, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, Prague 4CZ-14220, Czech Republic
| | - Andrej Balazi
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, Lužianky951 41, Slovak Republic
| | - Peter Chrenek
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, Lužianky951 41, Slovak Republic
- Faculty of Biotechnology and Food Science, Institute of Biotechnology, Slovak University of Agriculture, Tr. A. Hlinku 2, Nitra94976, Slovak Republic
| | - Jaromir Vasicek
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, Lužianky951 41, Slovak Republic
- Faculty of Biotechnology and Food Science, Institute of Biotechnology, Slovak University of Agriculture, Tr. A. Hlinku 2, Nitra94976, Slovak Republic
| |
Collapse
|
6
|
Effects of adipose-derived stromal cells and endothelial progenitor cells on adipose transplant survival and angiogenesis. PLoS One 2022; 17:e0261498. [PMID: 35025920 PMCID: PMC8758088 DOI: 10.1371/journal.pone.0261498] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/03/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A paracrine mechanism is thought to mediate the proangiogenic capacity of adipose-derived stromal/stem cells (ASCs). However, the precise mechanism by which ASCs promote the formation of blood vessels by endothelial progenitor cells (EPCs) is unclear. METHODS The EPCs-ASCs cocultures prepared in different ratios were subjected to tube formations assay to verify whether ASCs could directly participate in the tube genesis. The supernatant from cultured ASCs was used to stimulate EPCs to evaluate the effects on the angiogenic property of EPCs, as well as capacity for migration and invasion. A coculture model with transwell chamber were used to explore the regulation of angiogenesis markers expression in EPCs by ASCs. We then mixed ASCs with EPCs and transplanted them with adipose tissue into nude mice to evaluate the effects on angiogenesis in adipose tissue grafts. RESULTS In the EPCs-ASCs cocultures, the tube formation was significantly decreased as the relative abundance of ASCs increased, while the ASCs was found to migrate and integrated into the agglomerates formed by EPCs. The supernatant from ASCs cultures promoted the migration and invasion of EPCs and the ability to form capillary-like structures. The expression of multiple angiogenesis markers in EPCs were significantly increased when cocultured with ASCs. In vivo, ASCs combined with EPC promoted vascularization in the fat transplant. Immunofluorescence straining of Edu and CD31 indicated that the Edu labeled EPC did not directly participate in the vascularization inside the fat tissue. CONCLUSIONS ADSC can participate in the tube formation of EPC although it cannot form canonical capillary structures. Meanwhile, Soluble factors secreted by ASCs promotes the angiogenic potential of EPCs. ASCs paracrine signaling appears to promote angiogenesis by increasing the migration and invasion of EPCs and simultaneously upregulating the expression of angiogenesis markers in EPCs. The results of in vivo experiments showed that ASCs combined with EPCs significantly promote the formation of blood vessels in the fat implant. Remarkably, EPCs may promote angiogenesis by paracrine regulation of endogenous endothelial cells (ECs) rather than direct participation in the formation of blood vessels.
Collapse
|
7
|
Suryani L, Foo JKR, Cardilla A, Dong Y, Muthukumaran P, Hassanbhai A, Wen F, Simon DT, Iandolo D, Yu N, Ng KW, Teoh SH. Effects of Pulsed Electromagnetic Field Intensity on Mesenchymal Stem Cells. Bioelectricity 2021. [DOI: 10.1089/bioe.2021.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Luvita Suryani
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jyong Kiat Reuben Foo
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Angelysia Cardilla
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yibing Dong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Padmalosini Muthukumaran
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ammar Hassanbhai
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Feng Wen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Daniel T. Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Donata Iandolo
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- UMR5510 MATEIS, CNRS, INSA-Lyon, University of Lyon, Lyon, France
- Mines Saint-Etienne, INSERM, U1059 SAINBIOSE, Saint-Étienne, France
| | - Na Yu
- National Dental Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Environmental Chemistry & Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Swee-Hin Teoh
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Singapore, Singapore
| |
Collapse
|
8
|
Yang X, Wang Y, Zhou Y, Chen J, Wan Q. The Application of Polycaprolactone in Three-Dimensional Printing Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2021; 13:polym13162754. [PMID: 34451293 PMCID: PMC8400029 DOI: 10.3390/polym13162754] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/25/2021] [Accepted: 08/12/2021] [Indexed: 02/05/2023] Open
Abstract
Bone tissue engineering commonly encompasses the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the propagation of cells to regenerate damaged tissues or organs. 3D printing technology has been extensively applied to allow direct 3D scaffolds manufacturing. Polycaprolactone (PCL) has been widely used in the fabrication of 3D scaffolds in the field of bone tissue engineering due to its advantages such as good biocompatibility, slow degradation rate, the less acidic breakdown products in comparison to other polyesters, and the potential for loadbearing applications. PCL can be blended with a variety of polymers and hydrogels to improve its properties or to introduce new PCL-based composites. This paper describes the PCL used in developing state of the art of scaffolds for bone tissue engineering. In this review, we provide an overview of the 3D printing techniques for the fabrication of PCL-based composite scaffolds and recent studies on applications in different clinical situations. For instance, PCL-based composite scaffolds were used as an implant surgical guide in dental treatment. Furthermore, future trend and potential clinical translations will be discussed.
Collapse
Affiliation(s)
- Xiangjun Yang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.W.); (Y.Z.)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuting Wang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.W.); (Y.Z.)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ying Zhou
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.W.); (Y.Z.)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyu Chen
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.W.); (Y.Z.)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.C.); (Q.W.)
| | - Qianbing Wan
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.W.); (Y.Z.)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.C.); (Q.W.)
| |
Collapse
|
9
|
Vašíček J, Baláži A, Bauer M, Svoradová A, Tirpáková M, Tomka M, Chrenek P. Molecular Profiling and Gene Banking of Rabbit EPCs Derived from Two Biological Sources. Genes (Basel) 2021; 12:genes12030366. [PMID: 33806502 PMCID: PMC7998175 DOI: 10.3390/genes12030366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have been broadly studied for several years due to their outstanding regenerative potential. Moreover, these cells might be a valuable source of genetic information for the preservation of endangered animal species. However, a controversy regarding their characterization still exists. The aim of this study was to isolate and compare the rabbit peripheral blood- and bone marrow-derived EPCs with human umbilical vein endothelial cells (HUVECs) in terms of their phenotype and morphology that could be affected by the passage number or cryopreservation as well as to assess their possible neuro-differentiation potential. Briefly, cells were isolated and cultured under standard endothelial conditions until passage 3. The morphological changes during the culture were monitored and each passage was analyzed for the typical phenotype using flow cytometry, quantitative real–time polymerase chain reaction (qPCR) and novel digital droplet PCR (ddPCR), and compared to HUVECs. The neurogenic differentiation was induced using a commercial kit. Rabbit cells were also cryopreserved for at least 3 months and then analyzed after thawing. According to the obtained results, both rabbit EPCs exhibit a spindle-shaped morphology and high proliferation rate. The both cell lines possess same stable phenotype: CD14−CD29+CD31−CD34−CD44+CD45−CD49f+CD73+CD90+CD105+CD133−CD146−CD166+VE-cadherin+VEGFR-2+SSEA-4+MSCA-1−vWF+eNOS+AcLDL+ALDH+vimentin+desmin+α-SMA+, slightly different from HUVECs. Moreover, both induced rabbit EPCs exhibit neuron-like morphological changes and expression of neuronal markers ENO2 and MAP2. In addition, cryopreserved rabbit cells maintained high viability (>85%) and endothelial phenotype after thawing. In conclusion, our findings suggest that cells expanded from the rabbit peripheral blood and bone marrow are of the endothelial origin with a stable marker expression and interesting proliferation and differentiation capacity.
Collapse
Affiliation(s)
- Jaromír Vašíček
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (M.B.); (A.S.); (M.T.)
- Department of Biochemistry and Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- Correspondence: (J.V.); (P.C.); Tel.: +421-37-654-6600 (J.V.); +421-37-641-4274 (P.C.)
| | - Andrej Baláži
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (M.B.); (A.S.); (M.T.)
| | - Miroslav Bauer
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (M.B.); (A.S.); (M.T.)
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nábrežie mládeže 91, 949 74 Nitra, Slovakia
| | - Andrea Svoradová
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (M.B.); (A.S.); (M.T.)
| | - Mária Tirpáková
- Department of Biochemistry and Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- AgroBioTech Research Center, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Marián Tomka
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (M.B.); (A.S.); (M.T.)
| | - Peter Chrenek
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (M.B.); (A.S.); (M.T.)
- Department of Biochemistry and Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- Correspondence: (J.V.); (P.C.); Tel.: +421-37-654-6600 (J.V.); +421-37-641-4274 (P.C.)
| |
Collapse
|
10
|
Mikael PE, Golebiowska AA, Kumbar SG, Nukavarapu SP. Evaluation of Autologously Derived Biomaterials and Stem Cells for Bone Tissue Engineering. Tissue Eng Part A 2020; 26:1052-1063. [PMID: 32375566 PMCID: PMC7580602 DOI: 10.1089/ten.tea.2020.0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/16/2020] [Indexed: 11/12/2022] Open
Abstract
Despite progress, clinical translation of tissue engineering (TE) products/technologies is limited. A significant effort is underway to develop biomaterials and cells through a minimally modified process for clinical translation of TE products. Recently, bone marrow aspirate (BMA) was identified as an autologous source of cells for TE applications and is currently being tested in clinical therapies, but the isolation methods need improvement to avoid potential for contamination and increase progenitor cell yield. To address these issues, we reproducibly processed human peripheral blood (PB) and BMA to develop autologously derived biomaterials and cells. We demonstrated PB-derived biomaterial/gel cross-linking and fibrin gel formation with varied gelation times as well as biocompatibility through support of human bone marrow-derived stem cell survival and growth in vitro. Next, we established a plastic culture-free process that concentrates and increases the yield of CD146+/CD271+ early mesenchymal progenitor cells in BMA (concentrated BMA [cBMA]). cBMA exhibited increased colony formation and multipotency (including chondrogenic differentiation) in vitro compared with standard BMA. PB-derived gels encapsulated with cBMA also demonstrated increased cell proliferation and enhanced mineralization when assessed for bone TE in vitro. This strategy can potentially be developed for use in any tissue regeneration application; however, bone regeneration was used as a test bed for this study.
Collapse
Affiliation(s)
- Paiyz E. Mikael
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | | | - Sangamesh G. Kumbar
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut, USA
| | - Syam P. Nukavarapu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut, USA
| |
Collapse
|
11
|
Chopra H, Han Y, Zhang C, Pow EHN. CD133 +CD34 + cells can give rise to EPCs: A comparative rabbit and human study. Blood Cells Mol Dis 2020; 86:102487. [PMID: 32920463 DOI: 10.1016/j.bcmd.2020.102487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Hitesh Chopra
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Yuanyuan Han
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Chengfei Zhang
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Edmond Ho Nang Pow
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
12
|
He T, Hausdorf J, Chevalier Y, Klar RM. Trauma induced tissue survival in vitro with a muscle-biomaterial based osteogenic organoid system: a proof of concept study. BMC Biotechnol 2020; 20:8. [PMID: 32005149 PMCID: PMC6995208 DOI: 10.1186/s12896-020-0602-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The translation from animal research into the clinical environment remains problematic, as animal systems do not adequately replicate the human in vivo environment. Bioreactors have emerged as a good alternative that can reproduce part of the human in vivo processes at an in vitro level. However, in vitro bone formation platforms primarily utilize stem cells only, with tissue based in vitro systems remaining poorly investigated. As such, the present pilot study explored the tissue behavior and cell survival capability within a new in vitro skeletal muscle tissue-based biomaterial organoid bioreactor system to maximize future bone tissue engineering prospects. RESULTS Three dimensional printed β-tricalcium phosphate/hydroxyapatite devices were either wrapped in a sheet of rat muscle tissue or first implanted in a heterotopic muscle pouch that was then excised and cultured in vitro for up to 30 days. Devices wrapped in muscle tissue showed cell death by day 15. Contrarily, devices in muscle pouches showed angiogenic and limited osteogenic gene expression tendencies with consistent TGF-ß1, COL4A1, VEGF-A, RUNX-2, and BMP-2 up-regulation, respectively. Histologically, muscle tissue degradation and fibrin release was seen being absorbed by devices acting possibly as a support for new tissue formation in the bioceramic scaffold that supports progenitor stem cell osteogenic differentiation. CONCLUSIONS These results therefore demonstrate that the skeletal muscle pouch-based biomaterial culturing system can support tissue survival over a prolonged culture period and represents a novel organoid tissue model that with further adjustments could generate bone tissue for direct clinical transplantations.
Collapse
Affiliation(s)
- Tao He
- Department of Orthopedics, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany. .,Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jörg Hausdorf
- Department of Orthopedics, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany
| | - Yan Chevalier
- Department of Orthopedics, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany
| | - Roland M Klar
- Department of Orthopedics, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany.
| |
Collapse
|
13
|
Continuous Passive Motion Promotes and Maintains Chondrogenesis in Autologous Endothelial Progenitor Cell-Loaded Porous PLGA Scaffolds during Osteochondral Defect Repair in a Rabbit Model. Int J Mol Sci 2019; 20:ijms20020259. [PMID: 30634691 PMCID: PMC6358980 DOI: 10.3390/ijms20020259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Continuous passive motion (CPM) is widely used after total knee replacement. In this study, we investigated the effect of CPM combined with cell-based construct-transplantation in osteochondral tissue engineering. We created osteochondral defects (3 mm in diameter and 3 mm in depth) in the medial femoral condyle of 36 knees and randomized them into three groups: ED (empty defect), EPC/PLGA (endothelial progenitor cells (EPCs) seeded in the poly lactic-co-glycolic acid (PLGA) scaffold), or EPC/PLGA/CPM (EPC/PLGA scaffold complemented with CPM starting one day after transplantation). We investigated the effects of CPM and the EPC/PLGA constructs on tissue restoration in weight-bearing sites by histological observation and micro-computed tomography (micro-CT) evaluation 4 and 12 weeks after implantation. After CPM, the EPC/PLGA construct exhibited early osteochondral regeneration and prevention of subchondral bone overgrowth and cartilage degeneration. CPM did not alter the microenvironment created by the construct; it up-regulated the expression of the extracellular matrix components (glycosaminoglycan and collagen), down-regulated bone formation, and induced the biosynthesis of lubricin, which appeared in the EPC/PLGA/CPM group after 12 weeks. CPM can provide promoting signals during osteochondral tissue engineering and achieve a synergistic effect when combined with EPC/PLGA transplantation, so it should be considered a non-invasive treatment to be adopted in clinical practices.
Collapse
|
14
|
Pirosa A, Gottardi R, Alexander PG, Tuan RS. Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Res Ther 2018; 9:112. [PMID: 29678192 PMCID: PMC5910611 DOI: 10.1186/s13287-018-0847-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of veritable in-vitro models of bone tissue is essential to understand the biology of bone and its surrounding environment, to analyze the pathogenesis of bone diseases (e.g., osteoporosis, osteoarthritis, osteomyelitis, etc.), to develop effective therapeutic drug screening, and to test potential therapeutic strategies. Dysregulated interactions between vasculature and bone cells are often related to the aforementioned pathologies, underscoring the need for a bone model that contains engineered vasculature. Due to ethical restraints and limited prediction power of animal models, human stem cell-based tissue engineering has gained increasing relevance as a candidate approach to overcome the limitations of animals and to serve as preclinical models for drug testing. Since bone is a highly vascularized tissue, the concomitant development of vasculature and mineralized matrix requires a synergistic interaction between osteogenic and endothelial precursors. A number of experimental approaches have been used to achieve this goal, such as the combination of angiogenic factors and three-dimensional scaffolds, prevascularization strategies, and coculture systems. In this review, we present an overview of the current models and approaches to generate in-vitro stem cell-based vascularized bone, with emphasis on the main challenges of vasculature engineering. These challenges are related to the choice of biomaterials, scaffold fabrication techniques, and cells, as well as the type of culturing conditions required, and specifically the application of dynamic culture systems using bioreactors.
Collapse
Affiliation(s)
- Alessandro Pirosa
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
- Ri.MED Foundation, Via Bandiera 11, Palermo, 90133 Italy
| | - Peter G. Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| |
Collapse
|
15
|
Wang H, Cheng H, Tang X, Chen J, Zhang J, Wang W, Li W, Lin G, Wu H, Liu C. The synergistic effect of bone forming peptide-1 and endothelial progenitor cells to promote vascularization of tissue engineered bone. J Biomed Mater Res A 2017; 106:1008-1021. [PMID: 29115001 DOI: 10.1002/jbm.a.36287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/06/2017] [Accepted: 11/02/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Huaixi Wang
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Hao Cheng
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Xiangyu Tang
- Department of Radiology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Jingyuan Chen
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Jun Zhang
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Wei Wang
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Wenkai Li
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Guanlin Lin
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Hua Wu
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Chaoxu Liu
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| |
Collapse
|
16
|
Friedrich CC, Lin Y, Krannich A, Wu Y, Vacanti JP, Neville CM. Enhancing engineered vascular networks in vitro and in vivo: The effects of IGF1 on vascular development and durability. Cell Prolif 2017; 51. [PMID: 29110360 DOI: 10.1111/cpr.12387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Creation of functional, durable vasculature remains an important goal within the field of regenerative medicine. Engineered biological vasculature has the potential to restore or improve human tissue function. We hypothesized that the pleotropic effects of insulin-like growth factor 1 (IGF1) would enhance the engineering of capillary-like vasculature. MATERIALS AND METHODS The impact of IGF1 upon vasculogenesis was examined in in vitro cultures for a period of up to 40 days and as subcutaneous implants within immunodeficient mice. Co-cultures of human umbilical vein endothelial cells and human bone marrow-derived mesenchymal stem cells in collagen-fibronectin hydrogels were supplemented with either recombinant IGF1 protein or genetically engineered cells to provide sustained IGF1. Morphometric analysis was performed on the vascular networks that formed in four concentrations of IGF1. RESULTS IGF1 supplementation significantly enhanced de novo vasculogenesis both in vitro and in vivo. Effects were long-term as they lasted the duration of the study period, and included network density, vessel length, and diameter. Bifurcation density was not affected. However, the highest concentrations of IGF1 tested were either ineffective or even deleterious. Sustained IGF1 delivery was required in vivo as the inclusion of recombinant IGF1 protein had minimal impact. CONCLUSION IGF1 supplementation can be used to produce neovasculature with significantly enhanced network density and durability. Its use is a promising methodology for engineering de novo vasculature to support regeneration of functional tissue.
Collapse
Affiliation(s)
- Claudia C Friedrich
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.,Department of Anesthesiology and Intensive Care Medicine, Campus Virchow Klinikum and Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yunfeng Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Orthopaedics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Alexander Krannich
- Department of Biostatistics, Clinical Research Unit, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yinan Wu
- Department of Biostatistics, Clinical Research Unit, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Joseph P Vacanti
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Craig M Neville
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.,Department of Orthopaedics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Kuss MA, Wu S, Wang Y, Untrauer JB, Li W, Lim JY, Duan B. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture. J Biomed Mater Res B Appl Biomater 2017; 106:1788-1798. [PMID: 28901689 DOI: 10.1002/jbm.b.33994] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/25/2017] [Accepted: 08/28/2017] [Indexed: 01/11/2023]
Abstract
Vascularization is a fundamental prerequisite for large bone construct development and remains one of the main challenges of bone tissue engineering. Our current study presents the combination of 3D printing technique with a hydrogel-based prevascularization strategy to generate prevascularized bone constructs. Human adipose derived mesenchymal stem cells (ADMSC) and human umbilical vein endothelial cells (HUVEC) were encapsulated within our bioactive hydrogels, and the effects of culture conditions on in vitro vascularization were determined. We further generated composite constructs by forming 3D printed polycaprolactone/hydroxyapatite scaffolds coated with cell-laden hydrogels and determined how the co-culture affected vascularization and osteogenesis. It was demonstrated that 3D co-cultured ADMSC-HUVEC generated capillary-like networks within the porous 3D printed scaffold. The co-culture systems promoted in vitro vascularization, but had no significant effects on osteogenesis. The prevascularized constructs were subcutaneously implanted into nude mice to evaluate the in vivo vascularization capacity and the functionality of engineered vessels. The hydrogel systems facilitated microvessel and lumen formation and promoted anastomosis of vascular networks of human origin with host murine vasculature. These findings demonstrate the potential of prevascularized 3D printed scaffolds with anatomical shape for the healing of larger bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1788-1798, 2018.
Collapse
Affiliation(s)
- Mitchell A Kuss
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shaohua Wu
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ying Wang
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jason B Untrauer
- Division of Oral and Maxillofacial Surgery, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Wenlong Li
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Jung Yul Lim
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
18
|
Dohle E, El Bagdadi K, Sader R, Choukroun J, James Kirkpatrick C, Ghanaati S. Platelet-rich fibrin-based matrices to improve angiogenesis in an in vitro co-culture model for bone tissue engineering. J Tissue Eng Regen Med 2017; 12:598-610. [PMID: 28509340 PMCID: PMC5888144 DOI: 10.1002/term.2475] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/19/2022]
Abstract
In the context of prevascularization strategies for tissue‐engineering purposes, co‐culture systems consisting of outgrowth endothelial cells (OECs) and primary osteoblasts (pOBs) have been established as a promising in vitro tool to study regeneration mechanisms and to identify factors that might positively influence repair processes such as wound healing or angiogenesis. The development of autologous injectable platelet‐rich fibrin (PRF), which can be generated from peripheral blood in a minimal invasive procedure, fulfils several requirements for clinically applicable cell‐based tissue‐engineering strategies. During this study, the established co‐culture system of OECs and pOBs was mixed with injectable PRF and was cultivated in vitro for 24 h or 7 days. The aim of this study was to analyse whether PRF might have a positive effect on wound healing processes and angiogenic activation of OECs in the co‐culture with regard to proinflammatory factors, adhesion molecules and proangiogenic growth factor expression. Histological cell detection revealed the formation of lumina and microvessel‐like structures in the PRF/co‐culture complexes after 7 days of complex cultivation. Interestingly, the angiogenic activation of OECs was accompanied by an upregulation of wound healing‐associated factors, as well as by a higher expression of the proangiogenic factor vascular endothelial growth factor, which was evaluated both on the mRNA level as well as on the protein level. Thus, PRF might positively influence wound healing processes, in particular angiogenesis, in the in vitro co‐culture, making autologous PRF‐based matrices a beneficial therapeutic tool for tissue‐engineering purposes by simply profiting from the PRF, which contains blood plasma, platelets and leukocytes.
Collapse
Affiliation(s)
- Eva Dohle
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Karima El Bagdadi
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Robert Sader
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Joseph Choukroun
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.,Pain Therapy Center, Nice, France
| | - C James Kirkpatrick
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.,Department of Biomaterials, Gothenburg, Sweden
| | - Shahram Ghanaati
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Narayanan G, Bhattacharjee M, Nair LS, Laurencin CT. Musculoskeletal Tissue Regeneration: the Role of the Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0036-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Endothelial progenitor cells in multiple myeloma neovascularization: a brick to the wall. Angiogenesis 2017; 20:443-462. [PMID: 28840415 DOI: 10.1007/s10456-017-9571-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of plasma cells in the bone marrow that leads to events such as bone destruction, anaemia and renal failure. Despite the several therapeutic options available, there is still no effective cure, and the standard survival is up to 4 years. The evolution from the asymptomatic stage of monoclonal gammopathy of undetermined significance to MM and the progression of the disease itself are related to cellular and molecular alterations in the bone marrow microenvironment, including the development of the vasculature. Post-natal vasculogenesis is characterized by the recruitment to the tumour vasculature of bone marrow progenitors, known as endothelial progenitor cells (EPCs), which incorporate newly forming blood vessels and differentiate into endothelial cells. Several processes related to EPCs, such as recruitment, mobilization, adhesion and differentiation, are tightly controlled by cells and molecules in the bone marrow microenvironment. In this review, the bone marrow microenvironment and the mechanisms associated to the development of the neovasculature promoted by EPCs are discussed in detail in both a non-pathological scenario and in MM. The latest developments in therapy targeting the vasculature and EPCs in MM are also highlighted. The identification and characterization of the pathways relevant to the complex setting of MM are of utter importance to identify not only biomarkers for an early diagnosis and disease progression monitoring, but also to reveal intervention targets for more effective therapy directed to cancer cells and the endothelial mediators relevant to neovasculature development.
Collapse
|
21
|
Kuss MA, Harms R, Wu S, Wang Y, Untrauer JB, Carlson MA, Duan B. Short-term hypoxic preconditioning promotes prevascularization in 3D bioprinted bone constructs with stromal vascular fraction derived cells. RSC Adv 2017; 7:29312-29320. [PMID: 28670447 PMCID: PMC5472052 DOI: 10.1039/c7ra04372d] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/26/2017] [Indexed: 12/13/2022] Open
Abstract
Reconstruction of complex, craniofacial bone defects often requires autogenous vascularized bone grafts, and still remains a challenge today. In order to address this issue, we isolated the stromal vascular fraction (SVF) from adipose tissues and maintained the phenotypes and the growth of endothelial lineage cells within SVF derived cells (SVFC) by incorporating an endothelial cell medium. We 3D bioprinted SVFC within our hydrogel bioinks and conditioned the constructs in either normoxia or hypoxia. We found that short-term hypoxic conditioning promoted vascularization-related gene expression, whereas long-term hypoxia impaired cell viability and vascularization. 3D bioprinted bone constructs composed of polycaprolactone/hydroxyapatite (PCL/HAp) and SVFC-laden hydrogel bioinks were then implanted into athymic mice, after conditioning in normoxic or short-term hypoxic environments, in order to determine the in vitro and in vivo vascularization and osteogenic differentiation of the constructs. Short-term hypoxic conditioning promoted microvessel formation in vitro and in vivo and promoted integration with existing host vasculature, but did not affect osteogenic differentiation of SVFC. These findings demonstrate the benefit of short-term hypoxia and the potential for utilization of SVFC and 3D bioprinting for generating prevascularized 3D bioprinted bone constructs. Furthermore, the ability to custom design complex anatomical shapes has promising applications for the regeneration of both large and small craniofacial bone defects.
Collapse
Affiliation(s)
- Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA. ; Tel: +1 402 559 9637
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Robert Harms
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA. ; Tel: +1 402 559 9637
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shaohua Wu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA. ; Tel: +1 402 559 9637
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ying Wang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA. ; Tel: +1 402 559 9637
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason B Untrauer
- Division of Oral & Maxillofacial Surgery, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mark A Carlson
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA. ; Tel: +1 402 559 9637
- Department of Surgery, University of Nebraska Medical Center and the VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA. ; Tel: +1 402 559 9637
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
22
|
Tuček L, Kočí Z, Kárová K, Doležalová H, Suchánek J. The Osteogenic Potential of Human Nondifferentiated and Pre-differentiated Mesenchymal Stem Cells Combined with an Osteoconductive Scaffold - Early Stage Healing. ACTA MEDICA (HRADEC KRÁLOVÉ) 2017; 60:12-18. [PMID: 28260604 DOI: 10.14712/18059694.2017.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Despite the huge research into stem cells and their regenerative properties for bone healing, there are still unanswered questions including the recipient's respond to the presence of the stem cells, the fate of stem cells inside the bone defect and the possible advantage in utilizing pre-differentiated cells. To address these problems, we used human multipotent mesenchymal stromal/stem cells (MSCs), GMP Grade, in a rat model of bone formation. In a "bioreactor concept" approach seven Wistar rats were implanted with 0.2 g of synthetic bone scaffold seeded with 2 × 106 MSCs, seven Wistar rats were implanted with 0.2 g of synthetic bone scaffold seeded with 1 × 106 predifferentiated osteoblasts and 1 × 106 pre-differentiated endothelial cells and 14 Wistar rats were implanted with 0.2 g of synthetic bone scaffold without seeded cells into an intramuscular pocket on the left side of their back. The right side of each rat was used as a control, and 0.2 g of synthetic bone scaffold was implanted into the intramuscular pocket alone. To see the early stage healing the samples were harvested 14 days after the implantation, MSCs were detected by positive DAPI and MTCO2 staining in 43% of all the samples implanted with MSCs, and no inflammation signs were present in any implanted animal. New vessels could be found in both groups implanted with MSCs, but not in the control group of animals. However, hematoxylin-eosin staining could not detect newly created bone within the implant in any of the groups. These results were in line with COLL1 staining, where we could detect positive staining only in three cases, all of which were implanted with un-differentiated MSCs. According to our findings, there were no benefits of using the pre-differentiated of MSC.
Collapse
Affiliation(s)
- Luboš Tuček
- Department of Dentistry, Charles University, Medical Faculty and University Hospital Hradec Králové, Czech Republic
| | - Zuzana Kočí
- Bioinova, Ltd, Prague, Czech Republic.,Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Czech Republic.,Institute of Experimental Medicine ASCR, Prague, Czech Republic
| | - Kristýna Kárová
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Czech Republic.,Institute of Experimental Medicine ASCR, Prague, Czech Republic
| | - Helena Doležalová
- Department of Dentistry, Charles University, Medical Faculty and University Hospital Hradec Králové, Czech Republic
| | - Jakub Suchánek
- Department of Dentistry, Charles University, Medical Faculty and University Hospital Hradec Králové, Czech Republic.
| |
Collapse
|
23
|
Mikael PE, Kim HS, Nukavarapu SP. Hybrid extracellular matrix design for cartilage-mediated bone regeneration. J Biomed Mater Res B Appl Biomater 2017; 106:300-309. [PMID: 28140522 DOI: 10.1002/jbm.b.33842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/18/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023]
Abstract
Recapitulating long bone repair through endochondral ossification (EO) is increasingly becoming a more popular approach. A successful EO Process depends greatly on the establishment of a healthy hypertrophic-cartilage template (HCT). The aim of this work is to design a hydrogel system, which closely mimics the extracellular matrix of HCT. We examined the combinatorial effect of two commonly used hydrogels for bone and cartilage regeneration strategies, hyaluronan (HA) and fibrin (FB), to induce HCT formation. Hydrogel combinations were evaluated using a clinically relevant cell source, human bone marrow mesenchymal stem cells (hBMSCs). The results establish that with increasing HA (50-90%) the chondrogenic and its subsequent hypertrophy trend improved, with 70:30 HA:FB combination showing the highest and most uniform expression of chondrogenic and hypertrophic stage specific markers. This combination also showed superior support for cell micro-aggregation and differentiation. Thus, 70:30 HA-FB matrix demonstrated a healthy formation of chondrogenic and hypertrophic stages with rich stage-specific ECM components. This study demonstrates that with the appropriate hydrogel design it is possible to develop effective tissue engineering therapies for bone defect repair and regeneration through endochondral ossification by establishing a healthy HCT. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 300-309, 2018.
Collapse
Affiliation(s)
- Paiyz E Mikael
- Materials Science & Engineering, University of Connecticut, Storrs, Connecticut, 06269.,Institute for Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, 06030
| | - Hyun S Kim
- Biomedical Engineering, University of Connecticut Health, Farmington, Connecticut, 06030
| | - Syam P Nukavarapu
- Materials Science & Engineering, University of Connecticut, Storrs, Connecticut, 06269.,Institute for Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, 06030.,Biomedical Engineering, University of Connecticut Health, Farmington, Connecticut, 06030.,Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut, 06030
| |
Collapse
|
24
|
Differentiation of osteoblast-like cells and ectopic bone formation induced by bone marrow stem cells transfected with chitosan nanoparticles containing plasmid-BMP2 sequences. Mol Med Rep 2017; 15:1353-1361. [DOI: 10.3892/mmr.2017.6128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/01/2016] [Indexed: 11/05/2022] Open
|
25
|
Abd Allah SH, Shalaby SM, El-Shal AS, El Nabtety SM, Khamis T, Abd El Rhman SA, Ghareb MA, Kelani HM. Breast milk MSCs: An explanation of tissue growth and maturation of offspring. IUBMB Life 2016; 68:935-942. [DOI: 10.1002/iub.1573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/26/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Somia H. Abd Allah
- Medical Biochemistry Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Sally M. Shalaby
- Medical Biochemistry Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Amal S. El-Shal
- Medical Biochemistry Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Sameh M. El Nabtety
- Pharmacology Department, Faculty of Veterinary Medicine; Zagazig University; Zagazig Egypt
| | - Tarek Khamis
- Pharmacology Department, Faculty of Veterinary Medicine; Zagazig University; Zagazig Egypt
| | - Shimaa A. Abd El Rhman
- Histology and Cell Biology Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Mahmoud A. Ghareb
- Gynecology & Obestetric Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Hesham M. Kelani
- ENT Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| |
Collapse
|
26
|
Van Pham P, Vu NB, Truong MTH, Huynh OT, Nguyen HT, Pham HL, Phan NK. Hepatocyte growth factor improves direct reprogramming of fibroblasts towards endothelial progenitor cells via ETV2 transduction. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Sugaya H, Mishima H, Gao R, Kaul SC, Wadhwa R, Aoto K, Li M, Yoshioka T, Ogawa T, Ochiai N, Yamazaki M. Fate of bone marrow mesenchymal stromal cells following autologous transplantation in a rabbit model of osteonecrosis. Cytotherapy 2016; 18:198-204. [PMID: 26794712 DOI: 10.1016/j.jcyt.2015.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Internalizing quantum dots (i-QDs) are a useful tool for tracking cells in vivo in models of tissue regeneration. We previously synthesized i-QDs by conjugating QDs with a unique internalizing antibody against a heat shock protein 70 family stress chaperone. In the present study, i-QDs were used to label rabbit mesenchymal stromal cells (MSCs) that were then transplanted into rabbits to assess differentiation potential in an osteonecrosis model. METHODS The i-QDs were taken up by bone marrow-derived MSCs collected from the iliac of 12-week-old Japanese white rabbits that were positive for cluster of differentiation (CD)81 and negative for CD34 and human leukocyte antigen DR. The average rate of i-QD internalization was 93.3%. At 4, 8, 12, and 24 weeks after transplantation, tissue repair was evaluated histologically and by epifluorescence and electron microscopy. RESULTS The i-QDs were detected at the margins of the drill holes and in the necrotized bone trabecular. There was significant colocalization of the i-QD signal in transplanted cells and markers of osteoblast and mineralization at 4, 8, and 12 weeks post-transplantation, while i-QDs were detected in areas of mineralization at 12 and 24 weeks post-transplantation. Moreover, i-QDs were observed in osteoblasts in regenerated tissue by electron microscopy, demonstrating that the tissue was derived from transplanted cells. CONCLUSION These results indicate that transplanted MSCs can differentiate into osteoblasts and induce tissue repair in an osteonecrosis model and can be tracked over the long term by i-QD labeling.
Collapse
Affiliation(s)
- Hisashi Sugaya
- Department of Orthopaedic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Hajime Mishima
- Department of Orthopaedic Surgery, University of Tsukuba, Ibaraki, Japan.
| | - Ran Gao
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Sunil C Kaul
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Katsuya Aoto
- Department of Orthopaedic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Meihua Li
- Department of Orthopaedic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Tomokazu Yoshioka
- Department of Orthopaedic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Takeshi Ogawa
- Department of Orthopaedic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Naoyuki Ochiai
- Department of Orthopaedic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
28
|
Amini AR, Xu TO, Chidambaram RM, Nukavarapu SP. Oxygen Tension-Controlled Matrices with Osteogenic and Vasculogenic Cells for Vascularized Bone Regeneration In Vivo. Tissue Eng Part A 2016; 22:610-20. [PMID: 26914219 PMCID: PMC4841084 DOI: 10.1089/ten.tea.2015.0310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/23/2016] [Indexed: 12/23/2022] Open
Abstract
Despite recent progress, segmental bone defect repair is still a significant challenge in orthopedic surgery. While bone tissue engineering approaches using biodegradable matrices along with bone/blood vessel forming cells offered improved possibilities, current regenerative strategies lack the ability to achieve vascularized bone regeneration in critical-sized/segmental bone defects. In this study, we introduced and evaluated a two-pronged approach for vascularized bone regeneration in vivo. The goal was to demonstrate vascularized bone formation using oxygen tension-controlled (OTC) matrices seeded with bone and blood vessel forming cells. OTC matrices were coimplanted with rabbit mesenchymal stem cells (MSCs) and peripheral blood-derived endothelial progenitor cells (PB-EPCs) to demonstrate the osteogenic and vasculogenic differentiation of these cells, postseeding on a matrix, especially deep inside the matrix pore structure. Matrices coimplanted with varied rabbit MSC and PB-EPC ratios (1:4, 1:1, and 4:1) were assessed in a nude mouse subcutaneous implantation model to determine a coimplantation ratio with superior osteogenic as well as vasculogenic properties. The implants were analyzed, at week 8, for endothelial (CD31 and Von Willebrand factor [vWF]) and osteogenic marker (RunX2 and Col I) staining qualitatively and collagen deposition and number of vessel formation quantitatively. Results from these experiments established MSC-to-PB-EPC ratio 1:1 as the best coimplantation ratio. OTC matrix with 1:1 coimplantation ratio was assessed for segmental bone defect repair in a rabbit critical-sized bone defect model. The group under investigation was OTC matrix, and the matrix was seeded with MSCs, EPCs, or MSCs:EPCs in a 1:1 ratio. Explants at week 12 were evaluated for bone defect repair via micro-CT and histology. Results from rabbit in vivo experiments show enhanced mineralization and vascularization for the 1:1 coimplantation group. Overall, the study establishes a two-pronged approach involving OTC matrix and effective progenitors for large-area and vascularized bone regeneration.
Collapse
Affiliation(s)
- Ami R. Amini
- Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston, Massachusetts
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut
| | - Thomas O. Xu
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Ramaswamy M. Chidambaram
- Center for Comparative Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Syam P. Nukavarapu
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, Connecticut
- Department of Materials Science & Engineering, University of Connecticut, Storrs, Connecticut
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
29
|
Eman RM, Meijer HA, Öner FC, Dhert WJ, Alblas J. Establishment of an Early Vascular Network Promotes the Formation of Ectopic Bone. Tissue Eng Part A 2016; 22:253-62. [DOI: 10.1089/ten.tea.2015.0227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Rhandy M. Eman
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henriette A.W. Meijer
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - F. Cumhur Öner
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter J.A. Dhert
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
Mou Y, Yue Z, Wang X, Li W, Zhang H, Wang Y, Li R, Sun X. OCT4 Remodels the Phenotype and Promotes Angiogenesis of HUVECs by Changing the Gene Expression Profile. Int J Med Sci 2016; 13:386-94. [PMID: 27226779 PMCID: PMC4879770 DOI: 10.7150/ijms.15057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/12/2016] [Indexed: 01/09/2023] Open
Abstract
It has been shown that forced expression of four mouse stem cell factors (OCT4, Sox2, Klf4, and c-Myc) changed the phenotype of rat endothelial cells to vascular progenitor cells. The present study aimed to explore whether the expression of OCT4 alone might change the phenotype of human umbilical vein endothelial cells (HUVECs) to endothelial progenitor cells and, if so, to examine the possible mechanism involved. A Matrigel-based in vitro angiogenesis assay was used to evaluate the angiogenesis of the cells; the gene expression profile was analyzed by an oligonucleotide probe-based gene array chip and validated by RT-QPCR. The cellular functions of the mRNAs altered by OCT4 were analyzed with Gene Ontology. We found that induced ectopic expression of mouse OCT4 in HUVECs significantly enhanced angiogenesis of the cells, broadly changed the gene expression profile and particularly increased the expression of CD133, CD34, and VEGFR2 (KDR) which are characteristic marker molecules for endothelial progenitor cells (EPCs). Furthermore by analyzing the cellular functions that were targeted by the mRNAs altered by OCT4 we found that stem cell maintenance and cell differentiation were among the top functional response targeted by up-regulated and down-regulated mRNAs upon forced expression of OCT4. These results support the argument that OCT4 remodels the phenotype of HUVECs from endothelial cells to EPCs by up-regulating the genes responsible for stem cell maintenance and down-regulating the genes for cell differentiation.
Collapse
Affiliation(s)
- Yan Mou
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, P.R. China.; 3. The Second Hospital of Jilin University, Changchun, P.R. China
| | - Zhen Yue
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, P.R. China
| | - Xiaotong Wang
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, P.R. China
| | - Wenxue Li
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, P.R. China
| | - Haiying Zhang
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, P.R. China
| | - Yang Wang
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, P.R. China
| | - Ronggui Li
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, P.R. China
| | - Xin Sun
- 2. Life Science Research Center, Beihua University, Jilin, P.R. China
| |
Collapse
|
31
|
Wen L, Wang Y, Wen N, Yuan G, Wen M, Zhang L, Liu Q, Liang Y, Cai C, Chen X, Ding Y. Role of Endothelial Progenitor Cells in Maintaining Stemness and Enhancing Differentiation of Mesenchymal Stem Cells by Indirect Cell-Cell Interaction. Stem Cells Dev 2015; 25:123-38. [PMID: 26528828 DOI: 10.1089/scd.2015.0049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A hot issue in current research regarding stem cells for regenerative medicine is the retainment of the stemness and multipotency of stem cell. Endothelial progenitor cells (EPCs) are characterized by an angiogenic switch that induces angiogenesis and further ameliorates the local microenvironment in ischemic organs. This study investigated whether EPCs could modulate the multipotent and differential abilities of mesenchymal stem cells (MSCs) in vitro and in vivo. We established an EPC/MSC indirect Transwell coculture system and then examined the effects of EPCs on the regulation of MSC biological properties in vitro and bone formation in vivo. The in vitro studies showed that cocultured MSCs (coMSCs) display no overt changes in cell morphology but an enhanced MSC phenotype compared with monocultured MSCs (monoMSCs). Our studies regarding the cellular, molecular, and protein characteristics of coMSCs and monoMSCs demonstrated that EPCs greatly promote the proliferation and differentiation potentials of coMSCs under indirect coculture condition. The expression of the pluripotency factors OCT4, SOX2, Nanog, and Klf4 was also upregulated in coMSCs. Furthermore, coMSCs combined with fibrin glue showed improved bone regeneration when used to repair rat alveolar bone defects compared with monoMSC grafts in vivo. This study is the first to demonstrate that EPCs have dynamic roles in maintaining MSC stemness and regulating MSC differentiation potential.
Collapse
Affiliation(s)
- Li Wen
- 1 Department of Orthodontics, School of Stomatology, Fourth Military Medical University , Xi'an, China .,2 Institute of Stomatology, Chinese PLA General Hospital , Beijing, China
| | - Yu Wang
- 2 Institute of Stomatology, Chinese PLA General Hospital , Beijing, China .,3 Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Ning Wen
- 2 Institute of Stomatology, Chinese PLA General Hospital , Beijing, China
| | - Gongjie Yuan
- 4 Department of Orthodontics, Dalian Stomatological Hospital , Dalian, China
| | - Mingling Wen
- 5 Department of Pharmacy, Affiliated Hospital of Academy of Military Medical Sciences , Beijing, China
| | - Liang Zhang
- 6 Department of Stomatology, 323 Hospital of the People's Liberation Army , Xi'an, China
| | - Qian Liu
- 1 Department of Orthodontics, School of Stomatology, Fourth Military Medical University , Xi'an, China
| | - Yuan Liang
- 1 Department of Orthodontics, School of Stomatology, Fourth Military Medical University , Xi'an, China
| | - Chuan Cai
- 2 Institute of Stomatology, Chinese PLA General Hospital , Beijing, China
| | - Xin Chen
- 7 Department of General Dentistry, 174th Hospital of Chinese PLA , Xiamen, China
| | - Yin Ding
- 1 Department of Orthodontics, School of Stomatology, Fourth Military Medical University , Xi'an, China
| |
Collapse
|
32
|
Wei H, Zhao X, Yuan R, Dai X, Li Y, Liu L. Effects of PB-EPCs on Homing Ability of Rabbit BMSCs via Endogenous SDF-1 and MCP-1. PLoS One 2015; 10:e0145044. [PMID: 26660527 PMCID: PMC4682485 DOI: 10.1371/journal.pone.0145044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 11/29/2015] [Indexed: 01/07/2023] Open
Abstract
Traumas, infections, tumors, and some congenital malformations can lead to bone defects or even bone loss. The goal of the present study was to investigate whether inclusion of endothelial progenitor cells derived from peripheral blood (PB–EPCs) in cell-seeded partially deproteinized bone (PDPB) implants would stimulate recruitment of systemically injected bone marrow stromal cells (BMSCs) to the implant. Methods: BMSCs were injected intravenously with lentiviral expression vector expressing enhanced green fluorescent protein (eGFP) for tracing. Recruitment of eGFP-positive BMSCs was tested for the following implant configurations: 1) seeded with both BMSC and PB-EPC, 2) BMSC alone, 3) PB-EPC alone, and 4) unseeded PDPB. Protein and mRNA levels of endogenous stromal-derived factor-1 (SDF-1) and its receptor CXCR4, as well as monocyte chemotactic protein-1 (MCP-1) and its receptor CCR2, were evaluated on the 8th week. Immunohistochemical staining was performed to determine eGFP-positive areas at the defective sites. Masson’s trichrome staining was conducted to observe the distribution of collagen deposition and evaluate the extent of osteogenesis. Results: The mRNA and protein levels of SDF-1 and CXCR4 in the co-culture group were higher than those in other groups (p < 0.05) 8 weeks after the surgery. MCP-1 mRNA level in the co-culture group was also higher than that in the other groups (p < 0.05). Immunohistochemical assays revealed that the area covered by eGFP-positive cells was larger in the co-culture group than in the other groups (p < 0.05) after 4 weeks. Masson’s trichrome staining revealed better osteogenic potential of the co-culture group compared to the other groups (p < 0.05). Conclusion: These experiments demonstrate an association between PB-EPC and BMSC recruitment mediated by the SDF-1/CXCR4 axis that can enhance repair of bone defects.
Collapse
Affiliation(s)
- Hanxiao Wei
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
| | - Xian Zhao
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
| | - Ruihong Yuan
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
| | - Xiaoming Dai
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
| | - Yisong Li
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
| | - Liu Liu
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
- * E-mail:
| |
Collapse
|
33
|
Mikael PE, Xin X, Urso M, Jiang X, Wang L, Barnes B, Lichtler AC, Rowe DW, Nukavarapu SP. A potential translational approach for bone tissue engineering through endochondral ossification. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:3925-8. [PMID: 25570850 DOI: 10.1109/embc.2014.6944482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bone defect repair is a significant clinical challenge in orthopedic surgery. Despite tremendous efforts, the majority of the current bone tissue engineering strategies depend on bone formation via intramembranous ossification (IO), which often results in poor vascularization and limited-area bone regeneration. Recently, there has been increasing interest in exploring bone regeneration through a cartilage-mediated process similar to endochondral ossification (EO). This method is advantageous because long bones are originally developed through EO and moreover, vascularization is an inherent step of this process. Therefore, it may be possible to effectively employ the EO method for the repair and regeneration of large and segmental bone defects. Although a number of studies have demonstrated engineered bone formation through EO, there are no approaches aiming for their clinical translation. In this study, we propose a strategy modeled after the U.S. Food and Drug Administration (FDA) approved autologus chondrocyte implantation (ACI) procedure. In its implementation, we concentrated human bone marrow aspirate via a minimally manipulated process and demonstrated the potential of human bone marrow derived cells for in vitro pre-cartilage template formation and bone regeneration in vivo.
Collapse
|
34
|
Gugjoo MB, . A, Kinjavdeka P, Aithal HP, Matin Ansa M, Pawde AM, Sharma GT. Isolation, Culture and Characterization of New Zealand White Rabbit Mesenchymal Stem Cells Derived from Bone Marrow. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajava.2015.537.548] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Combination of granulocyte colony-stimulating factor and CXCR4 antagonist AMD3100 for effective harvest of endothelial progenitor cells from peripheral blood and in vitro formation of primitive endothelial networks. Cell Tissue Bank 2015. [DOI: 10.1007/s10561-015-9527-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Zigdon-Giladi H, Rudich U, Michaeli Geller G, Evron A. Recent advances in bone regeneration using adult stem cells. World J Stem Cells 2015; 7:630-640. [PMID: 25914769 PMCID: PMC4404397 DOI: 10.4252/wjsc.v7.i3.630] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/30/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
Bone is a highly vascularized tissue reliant on the close spatial and temporal association between blood vessels and bone cells. Therefore, cells that participate in vasculogenesis and osteogenesis play a pivotal role in bone formation during prenatal and postnatal periods. Nevertheless, spontaneous healing of bone fracture is occasionally impaired due to insufficient blood and cellular supply to the site of injury. In these cases, bone regeneration process is interrupted, which might result in delayed union or even nonunion of the fracture. Nonunion fracture is difficult to treat and have a high financial impact. In the last decade, numerous technological advancements in bone tissue engineering and cell-therapy opened new horizon in the field of bone regeneration. This review starts with presentation of the biological processes involved in bone development, bone remodeling, fracture healing process and the microenvironment at bone healing sites. Then, we discuss the rationale for using adult stem cells and listed the characteristics of the available cells for bone regeneration. The mechanism of action and epigenetic regulations for osteogenic differentiation are also described. Finally, we review the literature for translational and clinical trials that investigated the use of adult stem cells (mesenchymal stem cells, endothelial progenitor cells and CD34+ blood progenitors) for bone regeneration.
Collapse
|
37
|
Yang L, Wang Q, Peng L, Yue H, Zhang Z. Vascularization of repaired limb bone defects using chitosan-β-tricalcium phosphate composite as a tissue engineering bone scaffold. Mol Med Rep 2015; 12:2343-7. [PMID: 25902181 DOI: 10.3892/mmr.2015.3653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 07/21/2014] [Indexed: 11/06/2022] Open
Abstract
Ensuring histocompatibility in the tissue engineering of bones is a complex issue. The aim of this study was to observe the feasibility of chitosan-β-tricalcium phosphate composite in repairing limb bone defects, and to evaluate the therapeutic effects on osteogenesis. Beagle mesenchymal stem cells (MSCs) were divided into an experimental group that was cultured with an injectable form of chitosan-β-tricalcium phosphate composite and a control group. The effect of the composite on bone tissue growth was evaluated by MTT assay. In addition, 12-month-old beagles were subjected to 15-mm femur defects and subsequently implanted with scaffolds to observe the effects on osteogenesis and vascularization. The dogs were subdivided into two groups of five animals: Group A, which was implanted with scaffold-MSC compounds, and Group B, which was implanted with scaffolds alone. The dogs were observed on the 2nd, 4th, 8th and 12th weeks post-implantation. Scanning electron microscopy analysis revealed that the composite was compatible with MSCs, with similar outcomes in the control and experimental groups. MTT analysis additionally showed that the MSCs in the experimental group grew in a similar manner to those in the control group. The composite did not significantly affect the MSC growth or proliferation. In combination with MSCs, the scaffold materials were effective in the promotion of osteogenesis and vascularization. In conclusion, the chitosan-β-tricalcium phosphate composite was compatible with the MSCs and did not affect cellular growth or proliferation, therefore proving to be an effective injectable composite for tissue engineered bone. Simultaneous implantation of stem cells with a carrier composite proved to function effectively in the repair of bone defects.
Collapse
Affiliation(s)
- Le Yang
- Saint Petersburg State I.P. Pavlov Medical University, St. Petersburg 197101, Russia
| | - Qinghua Wang
- Department of Orthopedics, Hukou County Hospital of Traditional Chinese Medicine, Hukou, Jiangxi 332500, P.R. China
| | - Lihua Peng
- Department of Orthopedics, The People's Hospital of Bishan County, Bishan, Chongqing 402760, P.R. China
| | - Hong Yue
- Department of Orthopedics, Zibo Zhangdian Hospital of Traditional Chinese Medicine, Zibo, Shandong 255035, P.R. China
| | - Zhendong Zhang
- Department of Orthopedics, The 301 Military Hospital, Beijing 100853, P.R. China
| |
Collapse
|
38
|
Roux BM, Cheng MH, Brey EM. Engineering clinically relevant volumes of vascularized bone. J Cell Mol Med 2015; 19:903-14. [PMID: 25877690 PMCID: PMC4420594 DOI: 10.1111/jcmm.12569] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/29/2015] [Indexed: 12/15/2022] Open
Abstract
Vascularization remains one of the most important challenges that must be overcome for tissue engineering to be consistently implemented for reconstruction of large volume bone defects. An extensive vascular network is needed for transport of nutrients, waste and progenitor cells required for remodelling and repair. A variety of tissue engineering strategies have been investigated in an attempt to vascularize tissues, including those applying cells, soluble factor delivery strategies, novel design and optimization of bio-active materials, vascular assembly pre-implantation and surgical techniques. However, many of these strategies face substantial barriers that must be overcome prior to their ultimate translation into clinical application. In this review recent progress in engineering vascularized bone will be presented with an emphasis on clinical feasibility.
Collapse
Affiliation(s)
- Brianna M Roux
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines Jr. V.A. Hospital, Hines, IL, USA
| | | | | |
Collapse
|
39
|
Fu WL, Xiang Z, Huang FG, Gu ZP, Yu XX, Cen SQ, Zhong G, Duan X, Liu M. Coculture of Peripheral Blood-Derived Mesenchymal Stem Cells and Endothelial Progenitor Cells on Strontium-Doped Calcium Polyphosphate Scaffolds to Generate Vascularized Engineered Bone. Tissue Eng Part A 2015; 21:948-59. [PMID: 25298026 DOI: 10.1089/ten.tea.2014.0267] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Wei-Li Fu
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Fu-Guo Huang
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Zhi-Peng Gu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, P.R. China
| | - Xi-Xun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, P.R. China
| | - Shi-Qiang Cen
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Gang Zhong
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xin Duan
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ming Liu
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
40
|
In vitro co-culture strategies to prevascularization for bone regeneration: A brief update. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-014-0095-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
41
|
Yu P, Li Q, Liu Y, Zhang J, Seldeen K, Pang M. Pro-angiogenic efficacy of transplanting endothelial progenitor cells for treating hindlimb ischemia in hyperglycemic rabbits. J Diabetes Complications 2015; 29:13-9. [PMID: 25283487 DOI: 10.1016/j.jdiacomp.2014.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/02/2014] [Accepted: 09/05/2014] [Indexed: 01/17/2023]
Abstract
AIMS To evaluate the effectiveness of endothelial progenitor cells (EPCs) therapy in ischemia with or without hyperglycemia. METHODS Japanese White Rabbits were randomly assigned to three groups, group SH, hyperglycemia with sham therapy (n=10); group NE, normoglycemia with autologous EPCs transplantation therapy (n=12); and group HE, hyperglycemia with autologous EPCs transplantation therapy (n=12). Hyperglycemia was induced by injecting alloxan and sustained for 12weeks. Hindlimb ischemia was induced by complete excision of the femoral artery. Ex vivo-expanded EPCs were derived from autologous bone marrow and transplanted intermuscularily in the ischemic hindlimb. Fourteen days after transplantation, the indicators were determined. RESULTS There is no difference of the functions of ex vivo-expanded EPCs from autologous bone marrow between normoglycemic and hyperglycemic groups. We found significant improvement in both EPCs transplantation therapy groups compared to sham, in terms of the angiogenesis index (8.62±1.36, 11.12±2.23, 12.35±2.97), capillary density (7.06±0.91, 13.51±1.16, 13.90±2.78), capillary to muscle fiber ratio (0.68±0.09, 0.96±0.11,0.89±0.10), muscle VEGF expression (0.22±0.07, 0.41±0.08, 0.38±0.07ng/g). We found no significant differences between hyperglycemic and normoglycemic EPCs therapy groups except for 5 pro-angiogenic genes that were upregulated in HE as compared to NE. CONCLUSION Ex vivo expanded EPCs from autologous bone marrow transplantation is an effective therapeutic method for hindlimb ischemia in rabbits regardless of glycemic state.
Collapse
Affiliation(s)
- Ping Yu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qiang Li
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Ying Liu
- Daqing People's Hospital, the Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, China
| | - Jinchao Zhang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ken Seldeen
- Geriatrics Research Education and Clinical Center, Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - Manhui Pang
- Geriatrics Research Education and Clinical Center, Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| |
Collapse
|
42
|
Mitchell A, Fujisawa T, Newby D, Mills N, Cruden NL. Vascular injury and repair: a potential target for cell therapies. Future Cardiol 2015; 11:45-60. [DOI: 10.2217/fca.14.77] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ABSTRACT Whether due to atherosclerotic disease or mechanical intervention, vascular injury is a frequently encountered pathology in cardiovascular medicine. The past decade has seen growing interest in the role of circulating endothelial progenitor cells in vessel recovery postinjury. Despite this, the definition, origin and potential role of endothelial progenitor cells in vascular regeneration remains highly controversial. While animal work has shown early promise, evidence of a therapeutic role for endothelial progenitor cells in humans remains elusive. To date, clinical trials involving direct cell administration, growth factor therapy and endothelial cell capture stents have largely been disappointing, although this may in part reflect limitations in study design. This article will outline the pathophysiological mechanisms of vascular injury with an emphasis on endothelial progenitor cell biology and the potential therapeutic role of this exciting new field.
Collapse
Affiliation(s)
- Andrew Mitchell
- Centre for Cardiovascular Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Takeshi Fujisawa
- Scottish Centre for Regenerative Medicine; Edinburgh Bioquarter; 5 Little France Drive, Edinburgh, UK
| | - David Newby
- Centre for Cardiovascular Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Nicholas Mills
- Centre for Cardiovascular Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Nicholas L Cruden
- Centre for Cardiovascular Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| |
Collapse
|
43
|
Costa-Almeida R, Gomez-Lazaro M, Ramalho C, Granja PL, Soares R, Guerreiro SG. Fibroblast-endothelial partners for vascularization strategies in tissue engineering. Tissue Eng Part A 2014; 21:1055-65. [PMID: 25340984 DOI: 10.1089/ten.tea.2014.0443] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell-based approaches have emerged as a promising therapy to achieve successful vascularization in tissue engineering. Since fibroblasts activation and migration is required for physiological events relying on angiogenesis, we hypothesize herein that different fibroblasts exhibit distinct capacity to promote capillary-like structures assembly, by mature and progenitor endothelial cells (ECs). Outgrowth endothelial cells (OECs) were isolated from human umbilical cord blood samples and characterized by immunofluorescence and imaging flow cytometry for endothelial markers. Coculture systems were established using either human umbilical vein ECs (HUVECs) or OECs with fibroblasts, being evaluated at 7, 14, and 21 days of culture. Two types of human dermal fibroblasts (HDF) were used, namely neonatal human foreskin fibroblasts-1 (HFF-1) and juvenile HDF. OECs expressed EC markers and formed capillary-like structures. HFF-1 exhibited higher expression of transglutaminase-2, while HDF exhibited a higher expression of α-smooth muscle actin (α-SMA) and podoplanin, which were not observed for HFF-1. Formation of capillary-like structures was only observed in cocultures with HDF and not with HFF-1. No significant differences were found between HDF and OECs or HUVECs cocultures. These findings suggest that HDF is a preferential cell source for promoting vascularization, either using mature or progenitor ECs, probably due to their higher expression of α-SMA and podoplanin, and increased synthesis of extracellular matrix. This work opens new research possibilities regarding the use of specific fibroblast populations cocultured with ECs, as efficient partners for vascular development in regenerative medicine strategies.
Collapse
Affiliation(s)
- Raquel Costa-Almeida
- 1 Departamento de Bioquímica (U38-FCT), Faculdade de Medicina, Universidade do Porto , Porto, Portugal
| | | | | | | | | | | |
Collapse
|
44
|
Guerrero J, Oliveira H, Catros S, Siadous R, Derkaoui SM, Bareille R, Letourneur D, Amédée J. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis. Tissue Eng Part A 2014; 21:861-74. [PMID: 25333855 DOI: 10.1089/ten.tea.2014.0367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion.
Collapse
Affiliation(s)
- Julien Guerrero
- 1 Inserm, U1026, Tissue Bioengineering, University of Bordeaux , Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
CD34/CD133 enriched bone marrow progenitor cells promote neovascularization of tissue engineered constructs in vivo. Stem Cell Res 2014; 13:465-77. [DOI: 10.1016/j.scr.2014.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 08/22/2014] [Accepted: 10/13/2014] [Indexed: 12/12/2022] Open
|
46
|
Jin L, Ji S, Shen M, Zhang J, Han J, Ni J. Expansion, characterization, and differentiation of rabbit bone marrow-derived mesenchymal stem cells in serum-free medium. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.929026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
47
|
Jin GZ, Park JH, Lee EJ, Wall IB, Kim HW. Utilizing PCL microcarriers for high-purity isolation of primary endothelial cells for tissue engineering. Tissue Eng Part C Methods 2014; 20:761-8. [PMID: 24552418 DOI: 10.1089/ten.tec.2013.0348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endothelial cells (ECs) are widely used in research, both for fundamental vascular biology research and for exploring strategies to create engineered vascularized tissues. Primary isolation often results in contamination from fibroblasts and vascular smooth muscle cells that can potentially affect function, particularly during the initial expansion period needed to establish the cell culture. In the current study, we explored the use of microcarriers to selectively isolate ECs from the lumen of intact vessels to enhance the purity during the isolation procedure. First, rat aortic explant culture was performed and after 2 weeks of culture, flow cytometry revealed that only 60% of the expanded cell population was positive for the endothelial marker CD31. Then, we employed a strategy to selectively isolate ECs and improve their purity by introducing microcarriers to the lumen of intact aorta. After 10 days, microcarriers were carefully removed and placed in cell culture dishes and at 15 days, a large near confluent layer of primary ECs populated the dish. Flow cytometry revealed that >90% of the expanded cells expressed CD31. Moreover, the cells were capable of forming tubule-like structures when plated onto Matrigel, confirming their function also. The highly modular and transportable nature of microcarriers has significant potential for isolating ECs at high purity, with minimal contamination.
Collapse
Affiliation(s)
- Guang-Zhen Jin
- 1 Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan, Republic of Korea
| | | | | | | | | |
Collapse
|
48
|
Shah QA, Tan X, Bi S, Liu X, Hu S. Differential characteristics and in vitro angiogenesis of bone marrow- and peripheral blood-derived endothelial progenitor cells: evidence from avian species. Cell Prolif 2014; 47:290-8. [PMID: 24824967 DOI: 10.1111/cpr.12111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES This study was conducted to compare phenotypes and in vitro angiogenic capacity of putative endothelial progenitor cells (EPCs) derived from bone marrow (BM) and peripheral blood (PB), from an avian species. MATERIALS AND METHODS Mononuclear cells were isolated from chicken BM and PB (BMMNCs and PBMNCs) and cultured in EGM-2 medium. Cells at days 7-14 were used for the experiments. Expression of progenitor and endothelial markers, number of Dil-ac-LDL/lectin dual-positive cells and adipogenic and osteogenic differentiation were determined. Migration and in vitro angiogenic ability between BMMNC- and PBMNC-derived cells were compared. RESULTS PBMNCs developed typical EPC appearance, with initial spindle shape followed by a cobblestone form, whereas BMMNC-derived cells retained their constitutive spindle-like morphology throughout the study. Cells derived from both sources expressed CD133, CD31 and VEGFR-2, although PBMNCs-derived cells had lower CD133 expression. Nevertheless, number of Dil-ac-LDL/lectin dual-positive cells did not differ between groups. Adipogenic and osteogenic lineages were verified in BMMNC- but not in PBMNC-derived cells. PBMNC-derived cells formed tubular networks on Matrigel. However, BMMNC-derived cells formed few tube-like structures, which were not morphologically comparable to those developed by their counterparts. CONCLUSION Our results suggest that so called EPCs derived from BMMNCs are not 'true' EPCs, supporting previous findings on mammals that BM may not serve as an optimal isolation source of EPCs.
Collapse
Affiliation(s)
- Q A Shah
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | |
Collapse
|
49
|
Brandl A, Yuan Q, Boos AM, Beier JP, Arkudas A, Kneser U, Horch RE, Bleiziffer O. A novel early precursor cell population from rat bone marrow promotes angiogenesis in vitro. BMC Cell Biol 2014; 15:12. [PMID: 24666638 PMCID: PMC3987126 DOI: 10.1186/1471-2121-15-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 03/21/2014] [Indexed: 11/10/2022] Open
Abstract
Background Some studies demonstrated therapeutic angiogenesis attributable to the effects of endothelial progenitor cells (EPC), others have reported disappointing results. This may be due to the fact that EPC populations used in these contradictory studies were selected and defined by highly variable and differing experimental protocols. Indeed, the isolation and reliable characterization of ex vivo differentiated EPC raises considerable problems due to the fact there is no biomarker currently available to specifically identify EPC exclusively. On the other hand traditional differentiation of primary immature bone marrow cells towards the endothelial lineage is a time-consuming process of up to 5 weeks. To circumvent these shortcomings, we herein describe a facile method to isolate and enrich a primary cell population from rat bone marrow, combining differential attachment methodology with cell sorting technology. Results The combination of these techniques enabled us to obtain a pure population of early endothelial precursor cells that show homogenous upregulation of CD31 and VEGF-R2 and that are positive for CD146. These cells exhibited typical sprouting on Matrigel™. Additionally, this population displayed endothelial tube formation when resuspended in Matrigel™ as well as in fibrin glue, demonstrating its functional angiogenic capacity. Moreover, these cells stained positive for DiI-ac-LDL and FITC-UEA, two markers that are commonly considered to stain differentiating EPCs. Based upon these observations in this study we describe a novel and time-saving method for obtaining a pure endothelial precursor cell population as early as 2–3 weeks post isolation that exhibits endothelial abilities in vitro and which still might have retained its early endothelial lineage properties. Conclusion The rapid isolation and the high angiogenic potential of these syngeneic cells might facilitate and accelerate the pre-vascularization of transplanted tissues and organs also in a human setting in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Oliver Bleiziffer
- Department of Plastic and Hand Surgery, Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nuremberg, Krankenhausstrasse 12, Erlangen 91054, Germany.
| |
Collapse
|
50
|
Oxygen-tension controlled matrices for enhanced osteogenic cell survival and performance. Ann Biomed Eng 2014; 42:1261-70. [PMID: 24570389 DOI: 10.1007/s10439-014-0990-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 02/17/2014] [Indexed: 02/07/2023]
Abstract
The success of a clinically-applicable bone tissue engineering construct for large area bone defects depends on its ability to allow for homogeneous bone regeneration throughout the construct. Insufficient vascularization, and consequently inadequate oxygen tension, throughout constructs has been largely cited as the most significant obstacle facing successful bone regeneration in large area defects. The development of constructs that support bone and vessel-forming cell growth and function throughout the scaffold structure are desired for large-area bone defect repair. Here, we developed oxygen tension-controlled matrices that support more homogenous oxygen levels throughout the constructs. Specifically, we examined polylactic co-glycolic acid (PLGA) scaffolds with optimized pore distribution and the percent pore volumes, and demonstrated significantly decreased oxygen and pH gradient from the exterior of the construct to the interior after long-term cell culture in vitro. We confirmed the ability of these optimized constructs to support the cellular survival via live/dead assay. In addition, we examined their ability to support the maintenance of two clinically relevant progenitor cell populations for bone tissue engineering and vascularization, namely mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs), and confirmed the expression of key bone and vascular markers via immunofluorescence.
Collapse
|