1
|
Freiberger RN, López CAM, Palma MB, Cevallos C, Sviercz FA, Jarmoluk P, García MN, Quarleri J, Delpino MV. HIV Modulates Osteoblast Differentiation via Upregulation of RANKL and Vitronectin. Pathogens 2024; 13:800. [PMID: 39338991 PMCID: PMC11435243 DOI: 10.3390/pathogens13090800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Bone loss is a prevalent characteristic among people with HIV (PWH). We focused on mesenchymal stem cells (MSCs) and osteoblasts, examining their susceptibility to different HIV strains (R5- and X4-tropic) and the subsequent effects on bone tissue homeostasis. Our findings suggest that MSCs and osteoblasts are susceptible to R5- and X4-tropic HIV but do not support productive HIV replication. HIV exposure during the osteoblast differentiation process revealed that the virus could not alter mineral and organic matrix deposition. However, the reduction in runt-related transcription factor 2 (RUNX2) transcription, the increase in the transcription of nuclear receptor activator ligand kappa B (RANKL), and the augmentation of vitronectin deposition strongly suggested that X4- and R5-HIV could affect bone homeostasis. This study highlights the HIV ability to alter MSCs' differentiation into osteoblasts, critical for maintaining bone and adipose tissue homeostasis and function.
Collapse
Affiliation(s)
- Rosa Nicole Freiberger
- Laboratorio de Inmunopatología Viral, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1121, Argentina
| | - Cynthia Alicia Marcela López
- Laboratorio de Inmunopatología Viral, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1121, Argentina
| | - María Belén Palma
- Cátedra de Citología, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fleni, Consejo de Investigaciones Científicas y Técnicas (CONICET), Escobar 1625, Argentina
| | - Cintia Cevallos
- Laboratorio de Inmunopatología Viral, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1121, Argentina
| | - Franco Agustin Sviercz
- Laboratorio de Inmunopatología Viral, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1121, Argentina
| | - Patricio Jarmoluk
- Laboratorio de Inmunopatología Viral, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1121, Argentina
| | - Marcela Nilda García
- Cátedra de Citología, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Jorge Quarleri
- Laboratorio de Inmunopatología Viral, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1121, Argentina
| | - M Victoria Delpino
- Laboratorio de Inmunopatología Viral, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1121, Argentina
| |
Collapse
|
2
|
Sviercz FA, Jarmoluk P, Cevallos CG, López CAM, Freiberger RN, Guano A, Adamczyk A, Ostrowski M, Delpino MV, Quarleri J. Massively HIV-1-infected macrophages exhibit a severely hampered ability to differentiate into osteoclasts. Front Immunol 2023; 14:1206099. [PMID: 37404829 PMCID: PMC10315468 DOI: 10.3389/fimmu.2023.1206099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction Osteoclasts play a crucial role in bone resorption, and impairment of their differentiation can have significant implications for bone density, especially in individuals with HIV who may be at risk of altered bone health. The present study aimed to investigate the effects of HIV infection on osteoclast differentiation using primary human monocyte-derived macrophages as precursors. The study focused on assessing the impact of HIV infection on cellular adhesion, cathepsin K expression, resorptive activity, cytokine production, expression of co-receptors, and transcriptional regulation of key factors involved in osteoclastogenesis. Methods Primary human monocyte-derived macrophages were utilized as precursors for osteoclast differentiation. These precursors were infected with HIV, and the effects of different inoculum sizes and kinetics of viral replication were analyzed. Subsequently, osteoclastogenesis was evaluated by measuring cellular adhesion, cathepsin K expression, and resorptive activity. Furthermore, cytokine production was assessed by monitoring the production of IL-1β, RANK-L, and osteoclasts. The expression levels of co-receptors CCR5, CD9, and CD81 were measured before and after infection with HIV. The transcriptional levels of key factors for osteoclastogenesis (RANK, NFATc1, and DC-STAMP) were examined following HIV infection. Results Rapid, massive, and productive HIV infection severely impaired osteoclast differentiation, leading to compromised cellular adhesion, cathepsin K expression, and resorptive activity. HIV infection resulted in an earlier production of IL-1β concurrent with RANK-L, thereby suppressing osteoclast production. Infection with a high inoculum of HIV increased the expression of the co-receptor CCR5, as well as the tetraspanins CD9 and CD81, which correlated with deficient osteoclastogenesis. Massive HIV infection of osteoclast precursors affected the transcriptional levels of key factors involved in osteoclastogenesis, including RANK, NFATc1, and DC-STAMP. Conclusions The effects of HIV infection on osteoclast precursors were found to be dependent on the size of the inoculum and the kinetics of viral replication. These findings underscore the importance of understanding the underlying mechanisms to develop novel strategies for the prevention and treatment of bone disorders in individuals with HIV.
Collapse
|
3
|
Denys A, Norman A, Perrien DS, Suva LJ, Simon L, McDaniel LS, Ferguson T, Pedersen K, Welsh D, Molina PE, Ronis MJJ. Impact of Alcohol on Bone Health in People Living With HIV: Integrating Clinical Data From Serum Bone Markers With Morphometric Analysis in a Non-Human Primate Model. JBMR Plus 2023; 7:e10703. [PMID: 36699637 PMCID: PMC9850440 DOI: 10.1002/jbm4.10703] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
People living with HIV (PLWH) represent a vulnerable population to adverse musculoskeletal outcomes due to HIV infection, antiretroviral therapy (ART), and at-risk alcohol use. Developing measures to prevent skeletal degeneration in this group requires a grasp of the relationship between alcohol use and low bone mass in both the PLWH population and its constituents as defined by sex, age, and race. We examined the association of alcohol use with serum biochemical markers of bone health in a diverse cohort of PLWH enrolled in the New Orleans Alcohol Use in HIV (NOAH) study. To explore the effects of alcohol on bone in the context of HIV and ART and the role of estrogen, we conducted a parallel, translational study using simian immunodeficiency virus (SIV)+/ART+ female rhesus macaques divided into four groups: vehicle (Veh)/Sham; chronic binge alcohol (CBA)/Sham; Veh/ovariectomy (OVX); and CBA/OVX. Clinical data showed that both osteocalcin (Ocn) and procollagen type I N-propeptide (PINP) levels were inversely associated with multiple measures of alcohol consumption. Age (>50 years) significantly increased susceptibility to alcohol-associated suppression of bone formation in both female and male PLWH, with postmenopausal status appearing as an additional risk factor in females. Serum sclerostin (Scl) levels correlated positively with measures of alcohol use and negatively with Ocn. Micro-CT analysis of the macaque tibias revealed that although both CBA and OVX independently decreased trabecular number and bone mineral density, only OVX decreased trabecular bone volume fraction and impacted cortical geometry. The clinical data implicate circulating Scl in the pathogenesis of alcohol-induced osteopenia and suggest that bone morphology can be significantly altered in the absence of net change in osteoblast function as measured by serum markers. Inclusion of sophisticated tools to evaluate skeletal strength in clinical populations will be essential to understand the impact of alcohol-induced changes in bone microarchitecture. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alexandra Denys
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Allison Norman
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Daniel S Perrien
- Division of Clinical Pharmacology in the Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTXUSA
| | - Liz Simon
- Comprehensive Alcohol Research CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Lee S McDaniel
- Comprehensive Alcohol Research CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Tekeda Ferguson
- Comprehensive Alcohol Research CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Kim Pedersen
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - David Welsh
- Comprehensive Alcohol Research CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Patricia E Molina
- Comprehensive Alcohol Research CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
- Department of PhysiologyLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Martin JJ Ronis
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
- Comprehensive Alcohol Research CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
| |
Collapse
|
4
|
La Polla R, Testard MC, Garcia O, Goumaidi A, Legras-Lachuer C, de Saint-Vis B. Involvement of the Wnt pathway in BVDV cytopathogenic strain replication in primary bovine cells. Virol J 2022; 19:134. [PMID: 35986298 PMCID: PMC9389679 DOI: 10.1186/s12985-022-01863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Bovine viral diarrhea virus 1 (BVDV-1) of the pestivirus genus is an economically crippling virus in the cattle industry; this positive RNA virus causes mucosal disease resulting in reproductive losses and other disease syndromes. The pathogenesis mechanism of the disease caused by BVDV infection is not well understood; for a better understanding of in vivo host BVDV-1 interactions, we conducted a transcriptomic study of infected cells at different times post-infection.
Methods We compared the permissiveness and cellular response of a BVDV-1 cytopathogenic strain on Madin-Darby Bovine Kidney cells (MDBK) and bovine lung primary cells, a model closer to in vivo infection. Then a RNAseq analysis was realized on the infected bovine lung primary cells, at 10 hpi and 30 hpi (hours post-infection), to identify transcriptomic signatures. Results RNAseq analysis on BVDV-1 infected bovine primary cells showed 2,759 and 5,376 differentially expressed genes at respectively 10 hpi and 30 hpi with an absolute Fold Change ≥ 2. Among the different pathways deregulated, data analysis revealed a deregulation of Wnt signaling pathway, a conserved process that play a critical role in embryogenesis, cellular proliferation, and differentiation as well as in viral responses against viruses such as Influenza or Hepatitis C. We demonstrated here that the deregulation of the Wnt/βcatenin signaling pathway plays a role in viral replication of BVDV cp strain. Interestingly, we showed that the inhibition of this Wnt pathway using two inhibitors, FZM1 and iCRT14, induced a delay in onset of the establishment of a cytopathic effect of primary cells. Conclusions Thereby, this study highlighted a role of the Wnt signaling pathway in the BVDV-1 viral replication in bovine cells, suggesting an interesting option to explore as a new therapeutic target.
Collapse
|
5
|
Lebeau G, Ah-Pine F, Daniel M, Bedoui Y, Vagner D, Frumence E, Gasque P. Perivascular Mesenchymal Stem/Stromal Cells, an Immune Privileged Niche for Viruses? Int J Mol Sci 2022; 23:ijms23148038. [PMID: 35887383 PMCID: PMC9317325 DOI: 10.3390/ijms23148038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a critical role in response to stress such as infection. They initiate the removal of cell debris, exert major immunoregulatory activities, control pathogens, and lead to a remodeling/scarring phase. Thus, host-derived ‘danger’ factors released from damaged/infected cells (called alarmins, e.g., HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (LPS, single strand RNA) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of growth factors and chemoattractant molecules that influence immune cell recruitment and stem cell mobilization. MSC, in an ultimate contribution to tissue repair, may also directly trans- or de-differentiate into specific cellular phenotypes such as osteoblasts, chondrocytes, lipofibroblasts, myofibroblasts, Schwann cells, and they may somehow recapitulate their neural crest embryonic origin. Failure to terminate such repair processes induces pathological scarring, termed fibrosis, or vascular calcification. Interestingly, many viruses and particularly those associated to chronic infection and inflammation may hijack and polarize MSC’s immune regulatory activities. Several reports argue that MSC may constitute immune privileged sanctuaries for viruses and contributing to long-lasting effects posing infectious challenges, such as viruses rebounding in immunocompromised patients or following regenerative medicine therapies using MSC. We will herein review the capacity of several viruses not only to infect but also to polarize directly or indirectly the functions of MSC (immunoregulation, differentiation potential, and tissue repair) in clinical settings.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Franck Ah-Pine
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Service Anatomo-Pathologie, CHU de la Réunion, 97400 Saint-Denis, France
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Yosra Bedoui
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Damien Vagner
- Service de Médecine Interne, CHU de la Réunion, 97400 Saint-Denis, France;
| | - Etienne Frumence
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
- Correspondence:
| |
Collapse
|
6
|
Sobh MM, Abdalbary M, Elnagar S, Nagy E, Elshabrawy N, Abdelsalam M, Asadipooya K, El-Husseini A. Secondary Osteoporosis and Metabolic Bone Diseases. J Clin Med 2022; 11:2382. [PMID: 35566509 PMCID: PMC9102221 DOI: 10.3390/jcm11092382] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Fragility fracture is a worldwide problem and a main cause of disability and impaired quality of life. It is primarily caused by osteoporosis, characterized by impaired bone quantity and or quality. Proper diagnosis of osteoporosis is essential for prevention of fragility fractures. Osteoporosis can be primary in postmenopausal women because of estrogen deficiency. Secondary forms of osteoporosis are not uncommon in both men and women. Most systemic illnesses and organ dysfunction can lead to osteoporosis. The kidney plays a crucial role in maintaining physiological bone homeostasis by controlling minerals, electrolytes, acid-base, vitamin D and parathyroid function. Chronic kidney disease with its uremic milieu disturbs this balance, leading to renal osteodystrophy. Diabetes mellitus represents the most common secondary cause of osteoporosis. Thyroid and parathyroid disorders can dysregulate the osteoblast/osteoclast functions. Gastrointestinal disorders, malnutrition and malabsorption can result in mineral and vitamin D deficiencies and bone loss. Patients with chronic liver disease have a higher risk of fracture due to hepatic osteodystrophy. Proinflammatory cytokines in infectious, autoimmune, and hematological disorders can stimulate osteoclastogenesis, leading to osteoporosis. Moreover, drug-induced osteoporosis is not uncommon. In this review, we focus on causes, pathogenesis, and management of secondary osteoporosis.
Collapse
Affiliation(s)
- Mahmoud M. Sobh
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Mohamed Abdalbary
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40506, USA
| | - Sherouk Elnagar
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Eman Nagy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Nehal Elshabrawy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Mostafa Abdelsalam
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Kamyar Asadipooya
- Division of Endocrinology, University of Kentucky, Lexington, KY 40506, USA;
| | - Amr El-Husseini
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
7
|
Ross RD, Sharma A, Shi Q, Hoover DR, Weber KM, Tien PC, French AL, Al-Harthi L, Yin MT. Circulating sclerostin is associated with bone mineral density independent of HIV-serostatus. Bone Rep 2020; 12:100279. [PMID: 32455152 PMCID: PMC7235609 DOI: 10.1016/j.bonr.2020.100279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/14/2023] Open
Abstract
Background Low bone mineral density (BMD) is commonly observed in people living with HIV (PLWH), however the cause for this BMD loss remains unclear. Sclerostin, a bone-derived antagonist to the Wnt/β-catenin-pathway, suppresses bone remodeling and is positively associated with BMD. The goal of the current study was to investigate associations between sclerostin and BMD in a cohort of HIV-seropositive and demographically-matched seronegative women. Methods This cross-sectional analysis used a subset of early postmenopausal women enrolled in the Women's Interagency HIV Study (WIHS). BMD was assessed at the lumbar spine, total hip, femoral neck, and distal and ultradistal radius via dual energy x-ray absorptiometry (DXA). Circulating sclerostin was assessed via commercial ELISAs. Univariate and multivariate linear regression modeling tested associations between sclerostin and BMD after adjusting for a variety of BMD-modifying variables. Results HIV-seropositive women had significantly reduced BMD at all skeletal sites compared to HIV-seronegative women. There was no difference in sclerostin levels according to HIV-serostatus (0.25 vs 0.27 ng/mL in HIV-seronegative and HIV-seropositive, respectively, p = 0.71). Circulating sclerostin was positively associated with BMD at all sites in both univariate and multivariate models adjusting for HIV status, age, BMI, and race, although the coefficients of association were attenuated in HIV-seropositive women. The positive association between sclerostin and BMD among seropositive women remained statistically significant after adjusting for ART or tenofovir disoproxil fumarate (TDF) use. Conclusions The current study suggests that circulating sclerostin is a biomarker for bone mass for both HIV seronegative and seropositive women using and not using ART. The lower coefficients of association between sclerostin and BMD by HIV status may suggest HIV-induced alternation in osteocyte function.
Collapse
Affiliation(s)
- Ryan D. Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, United States of America
- Corresponding author.
| | - Anjali Sharma
- State University of New York, Downstate, Brooklyn, NY, United States of America
| | - Qiuhu Shi
- New York Medical College, Valhalla, NY, United States of America
| | - Donald R. Hoover
- Department of Statistics and Institute for Health Health Care Policy and Aging Research Rutgers University, Piscataway, NJ, United States of America
| | - Kathleen M. Weber
- Cook County Health/CORE Center and Hektoen Institute of Medicine, Chicago, IL, United States of America
| | - Phyllis C. Tien
- Department of Medicine, University of California, San Francisco and Medical Service, Department of Veteran Affairs Medical Center, San Francisco, CA, United States of America
| | - Audrey L. French
- Department of Medicine, Stroger Hospital of Cook County/CORE Center, Rush University, Chicago, IL, United States of America
| | - Lena Al-Harthi
- Department of Microbial Pathogens and immunity, Rush University Medical Center, Chicago, IL, United States of America
| | - Michael T. Yin
- Columbia University Medical Center, New York, NY, United States of America
| |
Collapse
|
8
|
Mascarau R, Bertrand F, Labrousse A, Gennero I, Poincloux R, Maridonneau-Parini I, Raynaud-Messina B, Vérollet C. HIV-1-Infected Human Macrophages, by Secreting RANK-L, Contribute to Enhanced Osteoclast Recruitment. Int J Mol Sci 2020; 21:ijms21093154. [PMID: 32365752 PMCID: PMC7246503 DOI: 10.3390/ijms21093154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
HIV-1 infection is frequently associated with low bone density, which can progress to osteoporosis leading to a high risk of fractures. Only a few mechanisms have been proposed to explain the enhanced osteolysis in the context of HIV-1 infection. As macrophages are involved in bone homeostasis and are critical host cells for HIV-1, we asked whether HIV-1-infected macrophages could participate in bone degradation. Upon infection, human macrophages acquired some osteoclast features: they became multinucleated, upregulated the osteoclast markers RhoE and β3 integrin, and organized their podosomes as ring superstructures resembling osteoclast sealing zones. However, HIV-1-infected macrophages were not fully differentiated in osteoclasts as they did not upregulate NFATc-1 transcription factor and were unable to degrade bone. Investigating whether infected macrophages participate indirectly to virus-induced osteolysis, we showed that they produce RANK-L, the key osteoclastogenic cytokine. RANK-L secreted by HIV-1-infected macrophages was not sufficient to stimulate multinucleation, but promoted the protease-dependent migration of osteoclast precursors. In conclusion, we propose that, by stimulating RANK-L secretion, HIV-1-infected macrophages contribute to create a microenvironment that favors the recruitment of osteoclasts, participating in bone disorders observed in HIV-1 infected patients.
Collapse
Affiliation(s)
- Rémi Mascarau
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
| | - Florent Bertrand
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
| | - Arnaud Labrousse
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
| | - Isabelle Gennero
- Centre de Physiopathologie de Toulouse-Purpan, INSERM-CNRS UMR 1043, Université Toulouse III Paul Sabatier, 31024 Toulouse, France;
- Institut Fédératif de Biologie, Centre Hospitalier Universitaire Toulouse, 31059 Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), 31077 Toulouse, France
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), Buenos Aires C1425AUM, Argentina
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), 31077 Toulouse, France
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), Buenos Aires C1425AUM, Argentina
| | - Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), 31077 Toulouse, France
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), Buenos Aires C1425AUM, Argentina
- Correspondence: (B.R.-M.); (C.V.)
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), 31077 Toulouse, France
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), Buenos Aires C1425AUM, Argentina
- Correspondence: (B.R.-M.); (C.V.)
| |
Collapse
|
9
|
Delpino MV, Quarleri J. Influence of HIV Infection and Antiretroviral Therapy on Bone Homeostasis. Front Endocrinol (Lausanne) 2020; 11:502. [PMID: 32982960 PMCID: PMC7493215 DOI: 10.3389/fendo.2020.00502] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV)/AIDS pandemic represents the most significant global health challenge in modern history. This infection leads toward an inflammatory state associated with chronic immune dysregulation activation that tilts the immune-skeletal interface and its deep integration between cell types and cytokines with a strong influence on skeletal renewal and exacerbated bone loss. Hence, reduced bone mineral density is a complication among HIV-infected individuals that may progress to osteoporosis, thus increasing their prevalence of fractures. Highly active antiretroviral therapy (HAART) can effectively control HIV replication but the regimens, that include tenofovir disoproxil fumarate (TDF), may accelerate bone mass density loss. Molecular mechanisms of HIV-associated bone disease include the OPG/RANKL/RANK system dysregulation. Thereby, osteoclastogenesis and osteolytic activity are promoted after the osteoclast precursor infection, accompanied by a deleterious effect on osteoblast and its precursor cells, with exacerbated senescence of mesenchymal stem cells (MSCs). This review summarizes recent basic research data on HIV pathogenesis and its relation to bone quality. It also sheds light on HAART-related detrimental effects on bone metabolism, providing a better understanding of the molecular mechanisms involved in bone dysfunction and damage as well as how the HIV-associated imbalance on the gut microbiome may contribute to bone disease.
Collapse
Affiliation(s)
- María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- *Correspondence: María Victoria Delpino
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Jorge Quarleri
| |
Collapse
|
10
|
Sadie-Van Gijsen H. The Regulation of Marrow Fat by Vitamin D: Molecular Mechanisms and Clinical Implications. Curr Osteoporos Rep 2019; 17:405-415. [PMID: 31749086 DOI: 10.1007/s11914-019-00546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE OF REVIEW To review the available literature regarding a possible relationship between vitamin D and bone marrow adipose tissue (BMAT), and to identify future avenues of research that warrant attention. RECENT FINDINGS Results from in vivo animal and human studies all support the hypothesis that vitamin D can suppress BMAT expansion. This is achieved by antagonizing adipogenesis in bone marrow stromal cells, through inhibition of PPARγ2 activity and stimulation of pro-osteogenic Wnt signalling. However, our understanding of the functions of BMAT is still evolving, and studies on the role of vitamin D in modulating BMAT function are lacking. In addition, many diseases and chronic conditions are associated with low vitamin D status and low bone mineral density (BMD), but BMAT expansion has not been studied in these patient populations. Vitamin D suppresses BMAT expansion, but its role in modulating BMAT function is poorly understood.
Collapse
Affiliation(s)
- Hanel Sadie-Van Gijsen
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Francie van Zijl Drive, PO Box 241, Parow, Cape Town, 8000, South Africa.
| |
Collapse
|
11
|
Miranda TS, Napimoga MH, Feres M, Marins LM, da Cruz DF, da Silva HDP, Duarte PM. Antagonists of Wnt/β-catenin signalling in the periodontitis associated with type 2 diabetes and smoking. J Clin Periodontol 2018; 45:293-302. [DOI: 10.1111/jcpe.12854] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Tamires S. Miranda
- Dental Research Division; Department of Periodontology; Guarulhos University; São Paulo Brazil
| | - Marcelo H. Napimoga
- Laboratory of Immunology and Molecular Biology; São Leopoldo Mandic Institute and Research Center; Campinas Brazil
| | - Magda Feres
- Dental Research Division; Department of Periodontology; Guarulhos University; São Paulo Brazil
| | - Letícia M. Marins
- Dental Research Division; Department of Periodontology; Guarulhos University; São Paulo Brazil
| | - Daniele F. da Cruz
- Dental Research Division; Department of Periodontology; Guarulhos University; São Paulo Brazil
| | - Hélio Doyle P. da Silva
- Dental Research Division; Department of Periodontology; Guarulhos University; São Paulo Brazil
| | - Poliana M. Duarte
- Dental Research Division; Department of Periodontology; Guarulhos University; São Paulo Brazil
| |
Collapse
|
12
|
Ahmad AN, Ahmad SN, Ahmad N. HIV Infection and Bone Abnormalities. Open Orthop J 2017; 11:777-784. [PMID: 28979590 PMCID: PMC5620402 DOI: 10.2174/1874325001711010777] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 12/31/2022] Open
Abstract
More than 36 million people are living with human immunodeficiency virus (HIV) infection worldwide and 50% of them have access to antiretroviral therapy (ART). While recent advances in HIV therapy have reduced the viral load, restored CD4 T cell counts and decreased opportunistic infections, several bone-related abnormalities such as low bone mineral density (BMD), osteoporosis, osteopenia, osteomalacia and fractures have emerged in HIV-infected individuals. Of all classes of antiretroviral agents, HIV protease inhibitors used in ART combination showed a higher frequency of osteopenia, osteoporosis and low BMD in HIV-infected patients. Although the mechanisms of HIV and/or ART associated bone abnormalities are not known, it is believed that the damage is caused by a complex interaction of T lymphocytes with osteoclasts and osteoblasts, likely influenced by both HIV and ART. In addition, infection of osteoclasts and bone marrow stromal cells by HIV, including HIV Gp120 induced apoptosis of osteoblasts and release of proinflammatory cytokines have been implicated in impairment of bone development and maturation. Several of the newer antiretroviral agents currently used in ART combination, including the widely used tenofovir in different formulations show relative adverse effects on BMD. In this context, switching the HIV-regimen from tenofovir disoproxil fumarate (TDF) to tenofovir alafenamide (TAF) showed improvement in BMD of HIV-infected patients. In addition, inclusion of integrase inhibitor in ART combination is associated with improved BMD in patients. Furthermore, supplementation of vitamin D and calcium with the initiation of ART may mitigate bone loss. Therefore, levels of vitamin D and calcium should be part of the evaluation of HIV-infected patients.
Collapse
Affiliation(s)
- Aamir N Ahmad
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, AZ, USA
| | - Shahid N Ahmad
- Department of Internal Medicine, University of South Dakota Sanford School of Medicine, Rapid City, South Dakota, USA
| | - Nafees Ahmad
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, AZ, USA
| |
Collapse
|
13
|
HIV-1 gp120 Upregulates Brain-Derived Neurotrophic Factor (BDNF) Expression in BV2 Cells via the Wnt/β-Catenin Signaling Pathway. J Mol Neurosci 2017; 62:199-208. [PMID: 28560687 DOI: 10.1007/s12031-017-0931-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/08/2017] [Indexed: 01/11/2023]
Abstract
HIV-1 gp120 plays a critical role in the pathogenesis of HIV-associated pain, but the underlying molecular mechanisms are incompletely understood. This study aims to determine the effect and possible mechanism of HIV-1 gp120 on BDNF expression in BV2 cells (a murine-derived microglial cell line). We observed that gp120 (10 ng/ml) activated BV2 cells in cultures and upregulated proBDNF/mBDNF. Furthermore, gp120-treated BV2 also accumulated Wnt3a and β-catenin, suggesting the activation of the Wnt/β-catenin pathway. We demonstrated that activation of the pathway by Wnt3a upregulated BDNF expression. In contrast, inhibition of the Wnt/β-catenin pathway by either DKK1 or IWR-1 attenuated BDNF upregulation induced by gp120 or Wnt3a. These findings collectively suggest that gp120 stimulates BDNF expression in BV2 cells via the Wnt/β-catenin signaling pathway.
Collapse
|
14
|
Abstract
Human immunodeficiency virus (HIV) infection is an established risk factor for low bone mineral density (BMD) and subsequent fracture, and treatment with combination antiretroviral therapy (cART) leads to additional BMD loss, particularly in the first 1-2 years of therapy. The prevalence of low BMD and fragility fracture is expected to increase as the HIV-infected population ages with successful treatment with cART. Mechanisms of bone loss in the setting of HIV infection are likely multifactorial, and include viral, host, and immune effects, as well as direct and indirect effects of cART, particularly tenofovir disoproxil fumarate (TDF) and the protease inhibitors (PIs). Emerging data indicate that BMD loss following cART initiation can be mitigated by prophylaxis with either long-acting bisphosphonates or vitamin D and calcium supplementation. In addition, newer antiretrovirals, particularly the integrase strand transfer inhibitors and tenofovir alafenamide (TAF), are associated with less intense bone loss than PIs and TDF. However, further studies are needed to establish optimal bone sparing cART regimens, appropriate screening intervals, and preventive measures to address the rising prevalence of fragility bone disease in the HIV population.
Collapse
|
15
|
Manavalan JS, Arpadi S, Tharmarajah S, Shah J, Zhang CA, Foca M, Neu N, Bell DL, Nishiyama KK, Kousteni S, Yin MT. Abnormal Bone Acquisition With Early-Life HIV Infection: Role of Immune Activation and Senescent Osteogenic Precursors. J Bone Miner Res 2016; 31:1988-1996. [PMID: 27283956 PMCID: PMC5399769 DOI: 10.1002/jbmr.2883] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 12/30/2022]
Abstract
Chronic immune activation associated with human immunodeficiency virus (HIV) infection may have negative consequences on bone acquisition in individuals infected with HIV early in life. Bone mineral density (BMD) and microarchitecture were characterized in 38 HIV-infected men on antiretroviral therapy (18 perinatally-infected, 20 adolescence-infected) and 20 uninfected men age 20 to 25 years by dual-energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HRpQCT). Flow cytometry was utilized to measure CD4+/CD8+ activation (HLADR+CD38+) and senescence (CD28-CD57+) and to quantify circulating osteogenic precursor (COP) cells in peripheral blood mononuclear cells using antibodies to RUNX2 and osteocalcin (OCN). Telomere lengths were measured in sorted COP cells using qPCR. DXA-derived areal BMD Z-scores and HRpQCT-derived volumetric BMD (vBMD) measures were lower in HIV-infected than uninfected men. Proportion of activated and senescent CD4+ and CD8+ T cells were higher in HIV-infected than uninfected men. The percentage of COP cells (mean ± SE) was lower in HIV-infected than uninfected (0.19% ± 0.02% versus 0.43% ± 0.06%; p < 0.0001) men, and also lower in perinatally-infected than adolescence-infected men (0.15% ± 0.02% versus 0.22% ± 0.03%; p < 0.04). A higher proportion of COP cells correlated with higher bone stiffness, a measure of bone strength, whereas a higher proportion of activated CD4+ T cells correlated with lower BMD and stiffness and lower proportion of COP cells. T cell activation with HIV-infection was associated with decreased numbers of osteogenic precursors as well as lower peak bone mass and bone strength. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- John S Manavalan
- Department of Medicine, Columbia University Medical Center, New York, NY
| | - Stephen Arpadi
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | | | - Jayesh Shah
- Department of Medicine, Columbia University Medical Center, New York, NY
| | - Chiyuan A Zhang
- Department of Medicine, University of California, San Francisco, CA
| | - Marc Foca
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Natalie Neu
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - David L Bell
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Kyle K Nishiyama
- Department of Medicine, Columbia University Medical Center, New York, NY
| | - Stavroula Kousteni
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| | - Michael T Yin
- Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
16
|
Le Douce V, Forouzanfar F, Eilebrecht S, Van Driessche B, Ait-Ammar A, Verdikt R, Kurashige Y, Marban C, Gautier V, Candolfi E, Benecke AG, Van Lint C, Rohr O, Schwartz C. HIC1 controls cellular- and HIV-1- gene transcription via interactions with CTIP2 and HMGA1. Sci Rep 2016; 6:34920. [PMID: 27725726 PMCID: PMC5057145 DOI: 10.1038/srep34920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Among many cellular transcriptional regulators, Bcl11b/CTIP2 and HGMA1 have been described to control the establishment and the persistence of HIV-1 latency in microglial cells, the main viral reservoir in the brain. In this present work, we identify and characterize a transcription factor i.e. HIC1, which physically interacts with both Bcl11b/CTIP2 and HMGA1 to co-regulate specific subsets of cellular genes and the viral HIV-1 gene. Our results suggest that HIC1 represses Tat dependent HIV-1 transcription. Interestingly, this repression of Tat function is linked to HIC1 K314 acetylation status and to SIRT1 deacetylase activity. Finally, we show that HIC1 interacts and cooperates with HGMA1 to regulate Tat dependent HIV-1 transcription. Our results also suggest that HIC1 repression of Tat function happens in a TAR dependent manner and that this TAR element may serve as HIC1 reservoir at the viral promoter to facilitate HIC1/TAT interaction.
Collapse
Affiliation(s)
- Valentin Le Douce
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France.,University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France.,Institut des Hautes Etudes Scientifiques-Centre National de la Recherche Scientifique, 35 route de Chartres, 91440 Bures sur Yvette, France
| | - Faezeh Forouzanfar
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France
| | - Sebastian Eilebrecht
- Institut Universitaire de France, Paris, France.,Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Benoit Van Driessche
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, Heidelberg 69120, Germany
| | - Amina Ait-Ammar
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France
| | - Roxane Verdikt
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, Heidelberg 69120, Germany
| | - Yoshihito Kurashige
- CNRS UMR 7224, Université Pierre et Marie Curie, 7 quai Saint Bernard, 75005 Paris, France
| | - Céline Marban
- CNRS UMR 7224, Université Pierre et Marie Curie, 7 quai Saint Bernard, 75005 Paris, France
| | - Virginie Gautier
- Institut des Hautes Etudes Scientifiques-Centre National de la Recherche Scientifique, 35 route de Chartres, 91440 Bures sur Yvette, France
| | - Ermanno Candolfi
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France
| | - Arndt G Benecke
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium.,UCD Centre for Research in Infectious Diseases (CRID) School of Medicine and Medical Science University College Dublin, Ireland
| | - Carine Van Lint
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, Heidelberg 69120, Germany
| | - Olivier Rohr
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France.,University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France.,Inserm UMR 1121 Faculté de Chirurgie Dentaire Pavillon Leriche 1, place de l'Hôpital Strasbourg, France
| | - Christian Schwartz
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France.,University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France
| |
Collapse
|
17
|
van Zuylen WJ, Rawlinson WD, Ford CE. The Wnt pathway: a key network in cell signalling dysregulated by viruses. Rev Med Virol 2016; 26:340-55. [PMID: 27273590 DOI: 10.1002/rmv.1892] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/04/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022]
Abstract
Viruses are obligate parasites dependent on host cells for survival. Viral infection of a cell activates a panel of pattern recognition receptors that mediate antiviral host responses to inhibit viral replication and dissemination. Viruses have evolved mechanisms to evade and subvert this antiviral host response, including encoding proteins that hijack, mimic and/or manipulate cellular processes such as the cell cycle, DNA damage repair, cellular metabolism and the host immune response. Currently, there is an increasing interest whether viral modulation of these cellular processes, including the cell cycle, contributes to cancer development. One cellular pathway related to cell cycle signalling is the Wnt pathway. This review focuses on the modulation of this pathway by human viruses, known to cause (or associated with) cancer development. The main mechanisms where viruses interact with the Wnt pathway appear to be through (i) epigenetic modification of Wnt genes; (ii) cellular or viral miRNAs targeting Wnt genes; (iii) altering specific Wnt pathway members, often leading to (iv) nuclear translocation of β-catenin and activation of Wnt signalling. Given that diverse viruses affect this signalling pathway, modulating Wnt signalling could be a generalised critical process for the initiation or maintenance of viral pathogenesis, with resultant dysregulation contributing to virus-induced cancers. Further study of this virus-host interaction may identify options for targeted therapy against Wnt signalling molecules as a means to reduce virus-induced pathogenesis and the downstream consequences of infection. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wendy J van Zuylen
- Serology and Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - William D Rawlinson
- Serology and Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Caroline E Ford
- Metastasis Research Group, School of Women's and Children's Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
18
|
Mora S, Puzzovio M, Giacomet V, Fabiano V, Maruca K, Capelli S, Nannini P, Lombardi G, Zuccotti GV. Sclerostin and DKK-1: two important regulators of bone metabolism in HIV-infected youths. Endocrine 2015; 49:783-90. [PMID: 25596857 DOI: 10.1007/s12020-015-0527-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/08/2015] [Indexed: 12/17/2022]
Abstract
Reduced bone mineral density (BMD) and altered bone metabolism are common findings in HIV-infected patients. Increased bone formation has been described both in HIV-infected adults and children. Wnt ligands promote bone formation by stimulating osteoblast differentiation and their survival. Sclerostin and dickkopf factor 1 (DKK-1), Wnt antagonists, are important negative regulators of bone formation. We studied 86 HIV-infected patients whose ages ranged from 5.7 to 27.9 years. Patients were all on antiretroviral therapy, but seven who were naïve to treatment. Bone alkaline phosphatase (BAP), sclerostin, and DKK-1 were measured in serum by enzyme immunoassay. BMD was measured by dual-energy X-ray absorptiometry at the lumbar spine and in the whole skeleton. Biochemical indexes were also measured in 143 healthy controls (age range 4.5-27.4 years). HIV-infected patients had lower than normal BMD (spine P < 0.005, and whole skeleton P < 0.03). BAP measurements were significantly higher in HIV-infected patients than controls (P ≤ 0.05). Sclerostin and DKK-1 concentrations were markedly lower than in controls (P ≤ 0.0006, and P ≤ 0.03, respectively). The serum concentration of both analytes of patients naïve to antiretroviral treatment was not different from that of treated patients. No correlations were found between sclerostin, DKK-1, and bone mineral measurements. Our data confirm the alteration of bone metabolism pathways in HIV-infected individuals. The lower concentration of Wnt antagonists is consistent with the increased bone formation markers.
Collapse
Affiliation(s)
- Stefano Mora
- Laboratory of Pediatric Endocrinology, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, MI, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shi X, Sims MD, Hanna MM, Xie M, Gulick PG, Zheng YH, Basson MD, Zhang P. Neutropenia during HIV infection: adverse consequences and remedies. Int Rev Immunol 2014; 33:511-36. [PMID: 24654626 DOI: 10.3109/08830185.2014.893301] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neutropenia frequently occurs in patients with Human immunodeficiency virus (HIV) infection. Causes for neutropenia during HIV infection are multifactoral, including the viral toxicity to hematopoietic tissue, the use of myelotoxic agents for treatment, complication with secondary infections and malignancies, as well as the patient's association with confounding factors which impair myelopoiesis. An increased prevalence and severity of neutropenia is commonly seen in advanced stages of HIV disease. Decline of neutrophil phagocytic defense in combination with the failure of adaptive immunity renders the host highly susceptible to developing fatal secondary infections. Neutropenia and myelosuppression also restrict the use of many antimicrobial agents for treatment of infections caused by HIV and opportunistic pathogens. In recent years, HIV infection has increasingly become a chronic disease because of progress in antiretroviral therapy (ART). Prevention and treatment of severe neutropenia becomes critical for improving the survival of HIV-infected patients.
Collapse
|