1
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
2
|
Ma L, Wang W, Xu G, Li H, Liu F, Shao H, Zhang X, Ma Y, Li G, Li H, Gao S, Ling P. Connexin 43 in the function and homeostasis of osteocytes: a narrative review. ANNALS OF JOINT 2023; 9:10. [PMID: 38529291 PMCID: PMC10929443 DOI: 10.21037/aoj-23-65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/29/2023] [Indexed: 03/27/2024]
Abstract
Background and Objective Connexin 43 (Cx43) is the main gap junction (GJ) protein and hemichannel protein in bone tissue. It is involved in the formation of hemichannels and GJs and establishes channels that can communicate directly to exchange substances and signals, affecting the structure and function of osteocytes. CX43 is very important for the normal development of bone tissue and the establishment and balance of bone reconstruction. However, the molecular mechanisms by which CX43 regulates osteoblast function and homeostasis have been less well studied, and this article provides a review of research in this area. Methods We searched the PubMed, EMBASE, Cochrane Library, and Web of Science databases for studies published up to June 2023 using the keywords Connexin 43/Cx43 and Osteocytes. Screening of literatures according to inclusion and exclusion guidelines and summarized the results. Key Content and Findings Osteocytes, osteoblasts, and osteoclasts all express Cx43 and form an overall network through the interaction between GJs. Cx43 is not only involved in the mechanical response of bone tissue but also in the regulation of signal transduction, which could provide new molecular markers and novel targets for the treatment of certain bone diseases. Conclusions Cx43 is expressed in osteoblasts, osteoclasts, and osteoclasts and plays an important role in regulating the function, signal transduction, and mechanotransduction of osteocytes. This review offers a new contribution to the literature by summarizing the relationship between Cx43, a key protein of bone tissue, and osteoblasts.
Collapse
Affiliation(s)
- Liang Ma
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenzhao Wang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guixuan Xu
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Joint Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fei Liu
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Huarong Shao
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Xiuhua Zhang
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yuxia Ma
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gang Li
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Li
- Department of Operating Room, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuzhong Gao
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peixue Ling
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| |
Collapse
|
3
|
Hoppock GA, Buettmann EG, Denisco JA, Goldscheitter GM, Condyles SN, Juhl OJ, Friedman MA, Zhang Y, Donahue HJ. Connexin 43 and cell culture substrate differentially regulate OCY454 osteocytic differentiation and signaling to primary bone cells. Am J Physiol Cell Physiol 2023; 325:C907-C920. [PMID: 37602413 PMCID: PMC10635658 DOI: 10.1152/ajpcell.00220.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
Connexin 43 (Cx43), the predominate gap junction protein in bone, is essential for intercellular communication and skeletal homeostasis. Previous work suggests that osteocyte-specific deletion of Cx43 leads to increased bone formation and resorption; however, the cell-autonomous role of osteocytic Cx43 in promoting increased bone remodeling is unknown. Recent studies using three-dimensional (3D) culture substrates in OCY454 cells suggest that 3D cultures may offer increased bone remodeling factor expression and secretion, such as sclerostin and receptor activator of nuclear factor-κB ligand (RANKL). In this study, we compared culturing OCY454 osteocytes on 3D Alvetex scaffolds with traditional 2D tissue culture, both with [wild-type (WT)] and without Cx43 (Cx43 KO). Conditioned media from OCY454 cell cultures were used to determine soluble signaling to differentiate primary bone marrow cells into osteoblasts and osteoclasts. OCY454 cells cultured on 3D portrayed a mature osteocytic phenotype, relative to cells on 2D, shown by increased osteocytic gene expression and reduced cell proliferation. In contrast, OCY454 differentiation based on these same markers was not affected by Cx43 deficiency in 3D. Interestingly, increased sclerostin secretion was found in 3D cultured WT cells compared with that of Cx43 KO cells. Conditioned media from Cx43 KO cells promoted increased osteoblastogenesis and osteoclastogenesis, with maximal effects from 3D cultured Cx43 KO cells. These results suggest that Cx43 deficiency promotes increased bone remodeling in a cell-autonomous manner with minimal changes in osteocyte differentiation. Finally, 3D cultures appear better suited to study mechanisms from Cx43-deficient OCY454 osteocytes in vitro due to their ability to promote osteocyte differentiation, limit proliferation, and increase bone remodeling factor secretion.NEW & NOTEWORTHY 3D cell culture of OCY454 cells promoted increased differentiation compared with traditional 2D culture. Although Cx43 deficiency did not affect OCY454 differentiation, it resulted in increased signaling, promoting osteoblastogenesis and osteoclastogenesis. Our results suggest that Cx43 deficiency promotes increased bone remodeling in a cell-autonomous manner with minimal changes in osteocyte differentiation. Also, 3D cultures appear better suited to study mechanisms in Cx43-deficient OCY454 osteocytes.
Collapse
Affiliation(s)
- Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Joseph A Denisco
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Galen M Goldscheitter
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Sebastian N Condyles
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Otto J Juhl
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Yue Zhang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
4
|
Chai H, Huang Q, Jiao Z, Wang S, Sun C, Geng D, Xu W. Osteocytes Exposed to Titanium Particles Inhibit Osteoblastic Cell Differentiation via Connexin 43. Int J Mol Sci 2023; 24:10864. [PMID: 37446062 DOI: 10.3390/ijms241310864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Periprosthetic osteolysis (PPO) induced by wear particles is the most severe complication of total joint replacement; however, the mechanism behind PPO remains elusive. Previous studies have shown that osteocytes play important roles in wear-particle-induced osteolysis. In this study, we investigated the effects of connexin 43 (Cx43) on the regulation of osteocyte-to-osteoblast differentiation. We established an in vivo murine model of calvarial osteolysis induced by titanium (Ti) particles. The osteolysis characteristic and osteogenesis markers in the osteocyte-selective Cx43 (CKO)-deficient and wild-type (WT) mice were observed. The calvarial osteolysis induced by Ti particles was partially attenuated in CKO mice. The expression of β-catenin and osteogenesis markers increased significantly in CKO mice. In vitro, the osteocytic cell line MLO-Y4 was treated with Ti particles. The co-culturing of MLO-Y4 cells with MC3T3-E1 osteoblastic cells was used to observe the effects of Ti-treated osteocytes on osteoblast differentiation. When Cx43 of MLO-Y4 cells was silenced or overexpressed, β-catenin was detected. Additionally, co-immunoprecipitation detection of Cx43 and β-catenin binding in MLO-Y4 cells and MC3T3-E1 cells was performed. Finally, β-catenin expression in MC3T3-E1 cells and osteoblast differentiation were evaluated after 18α-glycyrrhetinic acid (18α-GA) was used to block the intercellular communication of Cx43 between MLO-Y4 and MC3T3-E1 cells. Ti particles increased Cx43 expression and decreased β-catenin expression in MLO-Y4 cells. The silencing of Cx43 increased the β-catenin expression, and the over-expression of Cx43 decreased the β-catenin expression. In the co-culture model, Ti treatment of MLO-Y4 cells inhibited the osteoblastic differentiation of MC3T3-E1 cells and Cx43 silencing in MLO-Y4 cells attenuated the inhibitory effects on osteoblastic differentiation. With Cx43 silencing in the MLO-Y4 cells, the MC3T3-E1 cells, co-cultured alongside MLO-Y4, displayed decreased Cx43 expression, increased β-catenin expression, activation of Runx2, and promotion of osteoblastic differentiation in vitro co-culture. Finally, Cx43 expression was found to be negatively correlated to the activity of the Wnt signaling pathway, mostly through the Cx43 binding of β-catenin from its translocation to the nucleus. The results of our study suggest that Ti particles increased Cx43 expression in osteocytes and that osteocytes may participate in the regulation of osteoblast function via the Cx43 during PPO.
Collapse
Affiliation(s)
- Hao Chai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Qun Huang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zixue Jiao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shendong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chunguang Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
5
|
Hoppock GA, Buettmann EG, Denisco JA, Goldscheitter GM, Condyles SN, Juhl OJ, Friedman MA, Zhang Y, Donahue HJ. Connexin 43 and Cell Culture Substrate Differentially Regulate OCY454 Osteocytic Differentiation and Signaling to Primary Bone Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546276. [PMID: 37425674 PMCID: PMC10326966 DOI: 10.1101/2023.06.23.546276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Connexin 43 (Cx43), the predominate gap junction protein in bone, is essential for intercellular communication and skeletal homeostasis. Previous work suggests osteocyte-specific deletion of Cx43 leads to increased bone formation and resorption, however the cell-autonomous role of osteocytic Cx43 in promoting increased bone remodeling is unknown. Recent studies using 3D culture substrates in OCY454 cells suggest 3D cultures may offer increased bone remodeling factor expression and secretion, such as sclerostin and RANKL. In this study, we compared culturing OCY454 osteocytes on 3D Alvetex scaffolds to traditional 2D tissue culture, both with (WT) and without Cx43 (Cx43 KO). Conditioned media from OCY454 cell cultures was used to determine soluble signaling to differentiate primary bone marrow stromal cells into osteoblasts and osteoclasts. OCY454 cells cultured on 3D portrayed a mature osteocytic phenotype, relative to cells on 2D, shown by increased osteocytic gene expression and reduced cell proliferation. In contrast, OCY454 differentiation based on these same markers was not affected by Cx43 deficiency in 3D. Interestingly, increased sclerostin secretion was found in 3D cultured WT cells compared to Cx43 KO cells. Conditioned media from Cx43 KO cells promoted increased osteoblastogenesis and increased osteoclastogenesis, with maximal effects from 3D cultured Cx43 KO cells. These results suggest Cx43 deficiency promotes increased bone remodeling in a cell autonomous manner with minimal changes in osteocyte differentiation. Finally, 3D cultures appear better suited to study mechanisms from Cx43-deficient OCY454 osteocytes in vitro due to their ability to promote osteocyte differentiation, limit proliferation, and increase bone remodeling factor secretion. New and Noteworthy 3D cell culture of OCY454 cells promoted increased differentiation compared to traditional 2D culture. While Cx43 deficiency did not affect OCY454 differentiation, it resulted in increased signaling, promoting osteoblastogenesis and osteoclastogenesis. Our results suggest Cx43 deficiency promotes increased bone remodeling in a cell autonomous manner with minimal changes in osteocyte differentiation. Also, 3D cultures appear better suited to study mechanisms in Cx43-deficient OCY454 osteocytes.
Collapse
|
6
|
Abstract
Although osteoblasts and osteocytes are descended from the same lineage, they each have unique and essential roles in bone. Targeting gene deletion to osteoblasts and osteocytes using the Cre/loxP system has greatly increased our current understanding of how these cells function. Additionally, the use of the Cre/loxP system in conjunction with cell-specific reporters has enabled lineage tracing of these bone cells both in vivo and ex vivo. However, concerns have been raised regarding the specificity of the promoters used and the resulting off-target effects on cells within and outside of the bone. In this review, we have summarized the main mouse models that have been used to determine the functions of specific genes in osteoblasts and osteocytes. We discuss the expression patterns and specificity of the different promoter fragments during osteoblast to osteocyte differentiation in vivo. We also highlight how their expression in non-skeletal tissues may complicate the interpretation of study results. A thorough understanding of when and where these promoters are activated will enable improved study design and greater confidence in data interpretation.
Collapse
Affiliation(s)
- Y Kitase
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States of America
| | - M Prideaux
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States of America.
| |
Collapse
|
7
|
Zhao D, Wu J, Acosta FM, Xu H, Jiang JX. Connexin 43 hemichannels and prostaglandin E 2 release in anabolic function of the skeletal tissue to mechanical stimulation. Front Cell Dev Biol 2023; 11:1151838. [PMID: 37123401 PMCID: PMC10133519 DOI: 10.3389/fcell.2023.1151838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Bone adapts to changes in the physical environment by modulating remodeling through bone resorption and formation to maintain optimal bone mass. As the most abundant connexin subtype in bone tissue, connexin 43 (Cx43)-forming hemichannels are highly responsive to mechanical stimulation by permitting the exchange of small molecules (<1.2 kDa) between bone cells and the extracellular environment. Upon mechanical stimulation, Cx43 hemichannels facilitate the release of prostaglandins E2 (PGE2), a vital bone anabolic factor from osteocytes. Although most bone cells are involved in mechanosensing, osteocytes are the principal mechanosensitive cells, and PGE2 biosynthesis is greatly enhanced by mechanical stimulation. Mechanical stimulation-induced PGE2 released from osteocytic Cx43 hemichannels acts as autocrine effects that promote β-catenin nuclear accumulation, Cx43 expression, gap junction function, and protects osteocytes against glucocorticoid-induced osteoporosis in cultured osteocytes. In vivo, Cx43 hemichannels with PGE2 release promote bone formation and anabolism in response to mechanical loading. This review summarizes current in vitro and in vivo understanding of Cx43 hemichannels and extracellular PGE2 release, and their roles in bone function and mechanical responses. Cx43 hemichannels could be a significant potential new therapeutic target for treating bone loss and osteoporosis.
Collapse
Affiliation(s)
- Dezhi Zhao
- School of Medicine, Northwest University, Xi’an, China
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jiawei Wu
- School of Medicine, Northwest University, Xi’an, China
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
8
|
Marques FC, Boaretti D, Walle M, Scheuren AC, Schulte FA, Müller R. Mechanostat parameters estimated from time-lapsed in vivo micro-computed tomography data of mechanically driven bone adaptation are logarithmically dependent on loading frequency. Front Bioeng Biotechnol 2023; 11:1140673. [PMID: 37113673 PMCID: PMC10126906 DOI: 10.3389/fbioe.2023.1140673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Mechanical loading is a key factor governing bone adaptation. Both preclinical and clinical studies have demonstrated its effects on bone tissue, which were also notably predicted in the mechanostat theory. Indeed, existing methods to quantify bone mechanoregulation have successfully associated the frequency of (re)modeling events with local mechanical signals, combining time-lapsed in vivo micro-computed tomography (micro-CT) imaging and micro-finite element (micro-FE) analysis. However, a correlation between the local surface velocity of (re)modeling events and mechanical signals has not been shown. As many degenerative bone diseases have also been linked to impaired bone (re)modeling, this relationship could provide an advantage in detecting the effects of such conditions and advance our understanding of the underlying mechanisms. Therefore, in this study, we introduce a novel method to estimate (re)modeling velocity curves from time-lapsed in vivo mouse caudal vertebrae data under static and cyclic mechanical loading. These curves can be fitted with piecewise linear functions as proposed in the mechanostat theory. Accordingly, new (re)modeling parameters can be derived from such data, including formation saturation levels, resorption velocity moduli, and (re)modeling thresholds. Our results revealed that the norm of the gradient of strain energy density yielded the highest accuracy in quantifying mechanoregulation data using micro-finite element analysis with homogeneous material properties, while effective strain was the best predictor for micro-finite element analysis with heterogeneous material properties. Furthermore, (re)modeling velocity curves could be accurately described with piecewise linear and hyperbola functions (root mean square error below 0.2 µm/day for weekly analysis), and several (re)modeling parameters determined from these curves followed a logarithmic relationship with loading frequency. Crucially, (re)modeling velocity curves and derived parameters could detect differences in mechanically driven bone adaptation, which complemented previous results showing a logarithmic relationship between loading frequency and net change in bone volume fraction over 4 weeks. Together, we expect this data to support the calibration of in silico models of bone adaptation and the characterization of the effects of mechanical loading and pharmaceutical treatment interventions in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Williams JN, Irwin M, Li Y, Kambrath AV, Mattingly BT, Patel S, Kittaka M, Collins RN, Clough NA, Doud EH, Mosley AL, Bellido T, Bruzzaniti A, Plotkin LI, Trinidad JC, Thompson WR, Bonewald LF, Sankar U. Osteocyte-Derived CaMKK2 Regulates Osteoclasts and Bone Mass in a Sex-Dependent Manner through Secreted Calpastatin. Int J Mol Sci 2023; 24:4718. [PMID: 36902150 PMCID: PMC10003151 DOI: 10.3390/ijms24054718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Calcium/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) regulates bone remodeling through its effects on osteoblasts and osteoclasts. However, its role in osteocytes, the most abundant bone cell type and the master regulator of bone remodeling, remains unknown. Here we report that the conditional deletion of CaMKK2 from osteocytes using Dentine matrix protein 1 (Dmp1)-8kb-Cre mice led to enhanced bone mass only in female mice owing to a suppression of osteoclasts. Conditioned media isolated from female CaMKK2-deficient osteocytes inhibited osteoclast formation and function in in vitro assays, indicating a role for osteocyte-secreted factors. Proteomics analysis revealed significantly higher levels of extracellular calpastatin, a specific inhibitor of calcium-dependent cysteine proteases calpains, in female CaMKK2 null osteocyte conditioned media, compared to media from female control osteocytes. Further, exogenously added non-cell permeable recombinant calpastatin domain I elicited a marked, dose-dependent inhibition of female wild-type osteoclasts and depletion of calpastatin from female CaMKK2-deficient osteocyte conditioned media reversed the inhibition of matrix resorption by osteoclasts. Our findings reveal a novel role for extracellular calpastatin in regulating female osteoclast function and unravel a novel CaMKK2-mediated paracrine mechanism of osteoclast regulation by female osteocytes.
Collapse
Affiliation(s)
- Justin N. Williams
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mavis Irwin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yong Li
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anuradha Valiya Kambrath
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brett T. Mattingly
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheel Patel
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN 46022, USA
| | - Mizuho Kittaka
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| | - Rebecca N. Collins
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nicholas A. Clough
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teresita Bellido
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Angela Bruzzaniti
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| | - Lilian I. Plotkin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jonathan C. Trinidad
- Department of Chemistry, Biological Mass Spectrometry Facility, Indiana University, Bloomington, IN 47405, USA
| | - William R. Thompson
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Physical Therapy, School of Health and Human Sciences, Indianapolis, IN 46202, USA
| | - Lynda F. Bonewald
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Uma Sankar
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Solidum JGN, Jeong Y, Heralde F, Park D. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front Physiol 2023; 14:1137063. [PMID: 36926193 PMCID: PMC10013690 DOI: 10.3389/fphys.2023.1137063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Skeletal stem/progenitor cells (SSPCs), characterized by self-renewal and multipotency, are essential for skeletal development, bone remodeling, and bone repair. These cells have traditionally been known to reside within the bone marrow, but recent studies have identified the presence of distinct SSPC populations in other skeletal compartments such as the growth plate, periosteum, and calvarial sutures. Differences in the cellular and matrix environment of distinct SSPC populations are believed to regulate their stemness and to direct their roles at different stages of development, homeostasis, and regeneration; differences in embryonic origin and adjacent tissue structures also affect SSPC regulation. As these SSPC niches are dynamic and highly specialized, changes under stress conditions and with aging can alter the cellular composition and molecular mechanisms in place, contributing to the dysregulation of local SSPCs and their activity in bone regeneration. Therefore, a better understanding of the different regulatory mechanisms for the distinct SSPCs in each skeletal compartment, and in different conditions, could provide answers to the existing knowledge gap and the impetus for realizing their potential in this biological and medical space. Here, we summarize the current scientific advances made in the study of the differential regulation pathways for distinct SSPCs in different bone compartments. We also discuss the physical, biological, and molecular factors that affect each skeletal compartment niche. Lastly, we look into how aging influences the regenerative capacity of SSPCs. Understanding these regulatory differences can open new avenues for the discovery of novel treatment approaches for calvarial or long bone repair.
Collapse
Affiliation(s)
- Jea Giezl Niedo Solidum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Youngjae Jeong
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Francisco Heralde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Dongsu Park
- Department of Molecular and Human Genetics, Houston, TX, United States
- Center for Skeletal Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
11
|
Ma Q, Miri Z, Haugen HJ, Moghanian A, Loca D. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J Tissue Eng 2023; 14:20417314231172573. [PMID: 37251734 PMCID: PMC10214107 DOI: 10.1177/20417314231172573] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
In 1892, J.L. Wolff proposed that bone could respond to mechanical and biophysical stimuli as a dynamic organ. This theory presents a unique opportunity for investigations on bone and its potential to aid in tissue repair. Routine activities such as exercise or machinery application can exert mechanical loads on bone. Previous research has demonstrated that mechanical loading can affect the differentiation and development of mesenchymal tissue. However, the extent to which mechanical stimulation can help repair or generate bone tissue and the related mechanisms remain unclear. Four key cell types in bone tissue, including osteoblasts, osteoclasts, bone lining cells, and osteocytes, play critical roles in responding to mechanical stimuli, while other cell lineages such as myocytes, platelets, fibroblasts, endothelial cells, and chondrocytes also exhibit mechanosensitivity. Mechanical loading can regulate the biological functions of bone tissue through the mechanosensor of bone cells intraosseously, making it a potential target for fracture healing and bone regeneration. This review aims to clarify these issues and explain bone remodeling, structure dynamics, and mechano-transduction processes in response to mechanical loading. Loading of different magnitudes, frequencies, and types, such as dynamic versus static loads, are analyzed to determine the effects of mechanical stimulation on bone tissue structure and cellular function. Finally, the importance of vascularization in nutrient supply for bone healing and regeneration was further discussed.
Collapse
Affiliation(s)
- Qianli Ma
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
- Department of Immunology, School of
Basic Medicine, Fourth Military Medical University, Xi’an, PR China
| | - Zahra Miri
- Department of Materials Engineering,
Isfahan University of Technology, Isfahan, Iran
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
| | - Amirhossein Moghanian
- Department of Materials Engineering,
Imam Khomeini International University, Qazvin, Iran
| | - Dagnjia Loca
- Rudolfs Cimdins Riga Biomaterials
Innovations and Development Centre, Institute of General Chemical Engineering,
Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga,
Latvia
- Baltic Biomaterials Centre of
Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
12
|
Zhao D, Hua R, Riquelme MA, Cheng H, Guda T, Xu H, Gu S, Jiang JX. Osteocytes regulate bone anabolic response to mechanical loading in male mice via activation of integrin α5. Bone Res 2022; 10:49. [PMID: 35851577 PMCID: PMC9293884 DOI: 10.1038/s41413-022-00222-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Physical mechanical stimulation can maintain and even increase bone mass. Here, we report an important role of osteocytic integrin α5 in regulating the anabolic response of bone to mechanical loading using an Itga5 conditional gene knockout (cKO) mouse model. Integrin α5 gene deletion increased apoptotic osteocytes and reduced cortical anabolic responses to tibial compression including decreased endosteal osteoblasts and bone formation, and increased endosteal osteoclasts and bone resorption, contributing to the decreased bone area fraction and biomechanical properties, leading to an enlarged bone marrow area in cKO mice. Similar disruption of anabolic responses to mechanical loading was also detected in cKO trabecular bone. Moreover, integrin α5 deficiency impeded load-induced Cx43 hemichannel opening, and production and release of PGE2, an anabolic factor, resulting in attenuated effects of the loading on catabolic sclerostin (SOST) reduction and anabolic β-catenin increase. Together, this study shows an indispensable role of integrin α5 in osteocytes in the anabolic action of mechanical loading on skeletal tissue through activation of hemichannels and PGE2-evoked gene expression. Integrin α5 could act as a potential new therapeutic target for bone loss, especially in the elderly population with impeded mechanical sensitivity.
Collapse
Affiliation(s)
- Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Hongyun Cheng
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas, San Antonio, TX, USA
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
13
|
Chai H, Zhang ZH, Fang JY, She C, Geng DC, Xu W. Osteocytic cells exposed to titanium particles increase sclerostin expression and inhibit osteoblastic cell differentiation mostly via direct cell-to-cell contact. J Cell Mol Med 2022; 26:4371-4385. [PMID: 35762300 PMCID: PMC9345295 DOI: 10.1111/jcmm.17460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 12/01/2022] Open
Abstract
The mechanism underlying induction of periprosthetic osteolysis by wear particles remains unclear. In this study, cultured MLO‐Y4 osteocytic cells were exposed to different concentrations of titanium (Ti) particles. The results showed that Ti particles increased expression of the osteocytic marker SOST/sclerostin in a dose‐dependent manner, accelerated apoptosis of MLO‐Y4 cells, increased the expression of IL‐6, TNF‐α and connexin 43. SOST silence alleviated the increase of MLO‐Y4 cells apoptosis, decreased the expression of IL‐6, TNF‐α and connexin 43 caused by Ti particles. The different co‐culture systems of MLO‐Y4 cells with MC3T3‐E1 osteoblastic cells were further used to observe the effects of osteocytic cells' changes induced by Ti particles on osteoblastic cells. MLO‐Y4 cells treated with Ti particles inhibited dramatically differentiation of MC3T3‐E1 cells mostly through direct cell‐to‐cell contact. SOST silence attenuated the inhibition effects of Ti‐induced MLO‐Y4 on MC3T3‐E1 osteoblastic differentiation, which ALP level and mineralization of MC3T3‐E1 cells increased and the expression of ALP, OCN and Runx2 increased compared to the Ti‐treated group. Taken together, Ti particles had negative effects on MLO‐Y4 cells and the impact of Ti particles on osteocytic cells was extensive, which may further inhibit osteoblastic differentiation mostly through intercellular contact directly. SOST/sclerostin plays an important role in the process of mutual cell interaction. These findings may help to understand the effect of osteocytes in wear particle‐induced osteolysis.
Collapse
Affiliation(s)
- Hao Chai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zai Hang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jing Yi Fang
- The Experiment Center, The Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Chang She
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - De Chun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
14
|
Hua R, Gu S, Jiang JX. Connexin 43 Hemichannels Regulate Osteoblast to Osteocyte Differentiation. Front Cell Dev Biol 2022; 10:892229. [PMID: 35693933 PMCID: PMC9184820 DOI: 10.3389/fcell.2022.892229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Connexin 43 (Cx43) is the predominant connexin subtype expressed in osteocytes. Osteocytes, accounting for 90%–95% of total bone cells, function as orchestrators coordinating balanced activity between bone-resorbing osteoclasts and bone-forming osteoblasts. In this study, two newly developed osteocytic cell lines, OCY454 and IDG-SW3, were used to determine the role of Cx43 gap junctions and hemichannels (HCs) in the regulation of osteoblast to osteocyte differentiation. We found that the Cx43 level was substantially increased during the differentiation of IDG-SW3 cells and is also much higher than that of OCY454 cells. We knocked down Cx43 expression using the lentiviral CRISPR/Cas9 approach and inhibition of Cx43 HCs using Cx43 (E2) antibody in IDG-SW3 cells. Cx43 knockdown (KD) or Cx43 HC inhibition decreased gene expression for osteoblast and osteocyte markers, including alkaline phosphatase, type I collagen, dentin matrix protein 1, sclerostin, and fibroblast growth factor 23, whereas increasing the osteoclastogenesis indicator and the receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio at early and late differentiation stages. Moreover, mineralization was remarkably attenuated in differentiated Cx43-deficient IDG-SW3 cells compared to ROSA26 control. The conditioned medium collected from fully differentiated IDG-SW3 cells with Cx43 KD promoted osteoclastogenesis of RAW264.7 osteoclast precursors. Our results demonstrated that Cx43 HCs play critical roles in osteoblast to osteocyte differentiation process and regulate osteoclast differentiation via secreted factors.
Collapse
|
15
|
Mechanical regulation of bone remodeling. Bone Res 2022; 10:16. [PMID: 35181672 PMCID: PMC8857305 DOI: 10.1038/s41413-022-00190-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
Bone remodeling is a lifelong process that gives rise to a mature, dynamic bone structure via a balance between bone formation by osteoblasts and resorption by osteoclasts. These opposite processes allow the accommodation of bones to dynamic mechanical forces, altering bone mass in response to changing conditions. Mechanical forces are indispensable for bone homeostasis; skeletal formation, resorption, and adaptation are dependent on mechanical signals, and loss of mechanical stimulation can therefore significantly weaken the bone structure, causing disuse osteoporosis and increasing the risk of fracture. The exact mechanisms by which the body senses and transduces mechanical forces to regulate bone remodeling have long been an active area of study among researchers and clinicians. Such research will lead to a deeper understanding of bone disorders and identify new strategies for skeletal rejuvenation. Here, we will discuss the mechanical properties, mechanosensitive cell populations, and mechanotransducive signaling pathways of the skeletal system.
Collapse
|
16
|
Zhao D, Riquelme MA, Guda T, Tu C, Xu H, Gu S, Jiang JX. Connexin hemichannels with prostaglandin release in anabolic function of bone to mechanical loading. eLife 2022; 11:74365. [PMID: 35132953 PMCID: PMC8824479 DOI: 10.7554/elife.74365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/10/2022] [Indexed: 01/18/2023] Open
Abstract
Mechanical stimulation, such as physical exercise, is essential for bone formation and health. Here, we demonstrate the critical role of osteocytic Cx43 hemichannels in anabolic function of bone in response to mechanical loading. Two transgenic mouse models, R76W and Δ130–136, expressing dominant-negative Cx43 mutants in osteocytes were adopted. Mechanical loading of tibial bone increased cortical bone mass and mechanical properties in wild-type and gap junction-impaired R76W mice through increased PGE2, endosteal osteoblast activity, and decreased sclerostin. These anabolic responses were impeded in gap junction/hemichannel-impaired Δ130–136 mice and accompanied by increased endosteal osteoclast activity. Specific inhibition of Cx43 hemichannels by Cx43(M1) antibody suppressed PGE2 secretion and impeded loading-induced endosteal osteoblast activity, bone formation and anabolic gene expression. PGE2 administration rescued the osteogenic response to mechanical loading impeded by impaired hemichannels. Together, osteocytic Cx43 hemichannels could be a potential new therapeutic target for treating bone loss and osteoporosis.
Collapse
Affiliation(s)
- Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, United States.,School of Life Sciences, Northwestern Polytechnical University, Xian, China
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, United States
| | - Chao Tu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, United States.,Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xian, China
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, United States
| |
Collapse
|
17
|
Li MCM, Chow SKH, Wong RMY, Qin L, Cheung WH. The role of osteocytes-specific molecular mechanism in regulation of mechanotransduction - A systematic review. J Orthop Translat 2021; 29:1-9. [PMID: 34036041 PMCID: PMC8138679 DOI: 10.1016/j.jot.2021.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/15/2021] [Accepted: 04/11/2021] [Indexed: 11/29/2022] Open
Abstract
Background Osteocytes, composing over 90% of bone cells, are well known for their mechanosensing abilities. Aged osteocytes with impaired morphology and function are less efficient in mechanotransduction which will disrupt bone turnover leading to osteoporosis. The aim of this systematic review is to delineate the mechanotransduction mechanism at different stages in order to explore potential target for therapeutic drugs. Methods A systematic literature search was performed in PubMed and Web of Science. Original animal, cell and clinical studies with available English full-text were included. Information was extracted from the included studies for review. Results The 26 studies included in this review provided evidence that mechanical loading are sensed by osteocytes via various sensing proteins and transduced to different signaling molecules which later initiate various biochemical responses. Studies have shown that osteocyte plasma membrane and cytoskeletons are emerging key players in initiating mechanotransduction. Bone regulating genes expressions are altered in response to load sensed by osteocytes, but the genes involved different signaling pathways and the spatiotemporal expression pattern had made mechanotransduction mechanism complicated. Most of the included studies described the important role of osteocytes in pathways that regulate mechanosensing and bone remodeling. Conclusions This systematic review provides an up-to-date insight to different steps of mechanotransduction. A better understanding of the mechanotransduction mechanism is beneficial in search of new potential treatment for osteoporotic patients. By delineating the unique morphology of osteocytes and their interconnected signaling network new targets can be discovered for drug development. Translational potential of this article This systematic review provides an up-to-date sequential overview and highlights the different osteocyte-related pathways and signaling molecules during mechanotransduction. This allows a better understanding of mechanotransduction for future development of new therapeutic interventions to treat patients with impaired mechanosensitivity.
Collapse
Affiliation(s)
- Meng Chen Michelle Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Kwoon Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Ronald Man Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
- Corresponding author.Department of Orthopaedics and Traumatology, 5/F, Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
18
|
Riquelme MA, Gu S, Hua R, Jiang JX. Mechanotransduction via the coordinated actions of integrins, PI3K signaling and Connexin hemichannels. Bone Res 2021; 9:8. [PMID: 33531460 PMCID: PMC7854719 DOI: 10.1038/s41413-020-00126-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanical loading opens connexin 43 (Cx43) hemichannels (HCs), leading to the release of bone anabolic molecules, such as prostaglandins, from mechanosensitive osteocytes, which is essential for bone formation and remodeling. However, the mechanotransduction mechanism that activates HCs remains elusive. Here, we report a unique pathway by which mechanical signals are effectively transferred between integrin molecules located in different regions of the cell, resulting in HC activation. Both integrin α5 and αV were activated upon mechanical stimulation via either fluid dropping or flow shear stress (FSS). Inhibition of integrin αV activation or ablation of integrin α5 prevented HC opening on the cell body when dendrites were mechanically stimulated, suggesting mechanical transmission from the dendritic integrin αV to α5 in the cell body during HC activation. In addition, HC function was compromised in vivo, as determined by utilizing an antibody blocking αV activation and α5-deficient osteocyte-specific knockout mice. Furthermore, inhibition of integrin αV activation, but not that of α5, attenuated activation of the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway upon mechanical loading, and the inhibition of PI3K/AKT activation blocked integrin α5 activation and HC opening. Moreover, HC opening was blocked only by an anti-integrin αV antibody at low but not high FSS levels, suggesting that dendritic αV is a more sensitive mechanosensor than α5 for activating HCs. Together, these results reveal a new molecular mechanism of mechanotransduction involving the coordinated actions of integrins and PI3K/AKT in osteocytic dendritic processes and cell bodies that leads to HC opening and the release of key bone anabolic factors.
Collapse
Affiliation(s)
- Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229-3900, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229-3900, USA
| | - Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229-3900, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
19
|
Wang Z, Weng Y, Ishihara Y, Odagaki N, Ei Hsu Hlaing E, Izawa T, Okamura H, Kamioka H. Loading history changes the morphology and compressive force-induced expression of receptor activator of nuclear factor kappa B ligand/osteoprotegerin in MLO-Y4 osteocytes. PeerJ 2020; 8:e10244. [PMID: 33240612 PMCID: PMC7659647 DOI: 10.7717/peerj.10244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In this study, we investigated the effect of the mechanical loading history on the expression of receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) in MLO-Y4 osteocyte-like cells. METHODS Three hours after MLO-Y4 osteocytes were seeded, a continuous compressive force (CCF) of 31 dynes/cm2 with or without additional CCF (32 dynes/cm2) was loaded onto the osteocytes. After 36 h, the additional CCF (loading history) was removed for a recovery period of 10 h. The expression of RANKL, OPG, RANKL/OPG ratio, cell numbers, viability and morphology were time-dependently examined at 0, 3, 6 and 10 h. Then, the same additional CCF was applied again for 1 h to all osteocytes with or without the gap junction inhibitor to examine the expression of RANKL, OPG, the RANKL/OPG ratio and other genes that essential to characterize the phenotype of MLO-Y4 cells. Fluorescence recovery after photobleaching technique was also applied to test the differences of gap-junctional intercellular communications (GJIC) among MLO-Y4 cells. RESULTS The expression of RANKL and OPG by MLO-Y4 osteocytes without a loading history was dramatically decreased and increased, respectively, in response to the 1-h loading of additional weight. However, the expression of RANKL, OPG and the RANKL/OPG ratio were maintained at the same level as in the control group in the MLO-Y4 osteocytes with a loading history but without gap junction inhibitor treatment. Treatment of loading history significantly changed the capacity of GJIC and protein expression of connexin 43 (Cx43) but not the mRNA expression of Cx43. No significant difference was observed in the cell number or viability between the MLO-Y4 osteocyte-like cells with and without a loading history or among different time checkpoints during the recovery period. The cell morphology showed significant changes and was correlated with the expression of OPG, Gja1 and Dmp1 during the recovery period. CONCLUSION Our findings indicated that the compressive force-induced changes in the RANKL/OPG expression could be habituated within at least 11 h by 36-h CCF exposure. GJIC and cell morphology may play roles in response to loading history in MLO-Y4 osteocyte-like cells.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yao Weng
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshihito Ishihara
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Naoya Odagaki
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ei Ei Hsu Hlaing
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takashi Izawa
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
20
|
Abstract
Skeleton formation and its proper functioning is possible thanks to specialized bone tissue
cells: bone forming osteoblasts, bone resorbing osteoclasts and osteocytes located in bone
cavities.
Gap junctions are transmembrane channels connecting neighboring cell. Thanks to gap junctions
it is possible for signals to be directly transmitted by cells. Gap junction type channels,
and more specifically the connexin proteins that build them, have a key impacton the bone
turnover process, and thus on both bone building and remodeling. A particularly important
connexin in bone tissue is connexin43 (Cx43), which is necessary in the proper course of the
bone formation process and in maintaining bone homeostasis.
The importance of the presence of Cx43 in bones is showed by skeletal defects in diseases
such as ODD syndrome and craniometaphyseal dysplasia caused by mutations in GJA1, the
gene encoding Cx43. The role of Cx43 in the differentiation of stem cells into bone cells,
anti-apoptotic action of bisphosphonates and bone responses to hormonal and mechanical
stimuli have also been demonstrated. In addition to connexin43, the presence of other connexins
such as connexin45, 46 and 37 was also noted in bone tissue.
Collapse
Affiliation(s)
- Krzysztof Łukowicz
- Zakład Biologii i Obrazowania Komórki, Instytut Zoologii i Badań Biomedycznych, Wydział Biologii, Uniwersytet Jagielloński w Krakowie
| | - Karolina Fijał
- Zakład Biologii i Obrazowania Komórki, Instytut Zoologii i Badań Biomedycznych, Wydział Biologii, Uniwersytet Jagielloński w Krakowie
| | - Aleksandra Nowak
- Zakład Biologii i Obrazowania Komórki, Instytut Zoologii i Badań Biomedycznych, Wydział Biologii, Uniwersytet Jagielloński w Krakowie
| | - Anna M. Osyczka
- Zakład Biologii i Obrazowania Komórki, Instytut Zoologii i Badań Biomedycznych, Wydział Biologii, Uniwersytet Jagielloński w Krakowie
| |
Collapse
|
21
|
Zhao D, Liu R, Li G, Chen M, Shang P, Yang H, Jiang JX, Xu H. Connexin 43 Channels in Osteocytes Regulate Bone Responses to Mechanical Unloading. Front Physiol 2020; 11:299. [PMID: 32296345 PMCID: PMC7137730 DOI: 10.3389/fphys.2020.00299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/16/2020] [Indexed: 01/01/2023] Open
Abstract
Connexin (Cx) 43 forms gap junctions and hemichannels that mediate communication between osteocytes and adjacent cells or the extracellular environment in bone, respectively. To investigate the role of each channel type in response to mechanical unloading, two transgenic mouse models overexpressing dominant-negative Cx43 predominantly in osteocytes driven by a 10 kb dentin matrix protein 1 (Dmp1) promoter were generated. The R76W mutation resulted in gap junction inhibition and enhancement of hemichannels, whereas the Δ130-136 mutation inhibited both gap junctions and hemichannels. Both mutations led to cortical bone loss with increased endocortical osteoclast activity during unloading. Increased periosteal osteoclasts with decreased apoptotic osteocytes were observed only in R76W mice. These findings indicated that inhibiting osteocytic Cx43 channels promotes bone loss induced by unloading, mainly in the cortical area; moreover, hemichannels protect osteocytes against apoptosis and promote periosteal bone remodeling, whereas gap junctions modulate endocortical osteoclast activity in response to unloading.
Collapse
Affiliation(s)
- Dezhi Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Ruofei Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Guobin Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Meng Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Research and Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center of Special Environmental Biomechanics and Medical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, United States
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Key Laboratory for Space Bioscience and Biotechnology, Research and Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
- Research Center of Special Environmental Biomechanics and Medical Engineering, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
22
|
Riquelme MA, Cardenas ER, Xu H, Jiang JX. The Role of Connexin Channels in the Response of Mechanical Loading and Unloading of Bone. Int J Mol Sci 2020; 21:ijms21031146. [PMID: 32050469 PMCID: PMC7038207 DOI: 10.3390/ijms21031146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
The skeleton adapts to mechanical loading to promote bone formation and remodeling. While most bone cells are involved in mechanosensing, it is well accepted that osteocytes are the principal mechanosensory cells. The osteocyte cell body and processes are surrounded by a fluid-filled space, forming an extensive lacuno-canalicular network. The flow of interstitial fluid is a major stress-related factor that transmits mechanical stimulation to bone cells. The long dendritic processes of osteocytes form a gap junction channel network connecting not only neighboring osteocytes, but also cells on the bone surface, such as osteoblasts and osteoclasts. Mechanosensitive osteocytes also form hemichannels that mediate the communication between the cytoplasmic and extracellular microenvironment. This paper will discuss recent research progress regarding connexin (Cx)-forming gap junctions and hemichannels in osteocytes, osteoblasts, and other bone cells, including those richly expressing Cx43. We will then cover the recent progress regarding the regulation of these channels by mechanical loading and the role of integrins and signals in mediating Cx43 channels, and bone cell function and viability. Finally, we will summarize the recent studies regarding bone responses to mechanical unloading in Cx43 transgenic mouse models. The osteocyte has been perceived as the center of bone remodeling, and connexin channels enriched in osteocytes are a likely major player in meditating the function of bone. Based on numerous studies, connexin channels may present as a potential new therapeutic target in the treatment of bone loss and osteoporosis. This review will primarily focus on Cx43, with some discussion in other connexins expressed in bone cells.
Collapse
Affiliation(s)
- Manuel A. Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (E.R.C.)
| | - Eduardo R. Cardenas
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (E.R.C.)
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (E.R.C.)
- Correspondence: ; Tel.: +1-210-562-4094
| |
Collapse
|
23
|
Yan Y, Wang L, Ge L, Pathak JL. Osteocyte-Mediated Translation of Mechanical Stimuli to Cellular Signaling and Its Role in Bone and Non-bone-Related Clinical Complications. Curr Osteoporos Rep 2020; 18:67-80. [PMID: 31953640 DOI: 10.1007/s11914-020-00564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Osteocytes comprise > 95% of the cellular component in bone tissue and produce a wide range of cytokines and cellular signaling molecules in response to mechanical stimuli. In this review, we aimed to summarize the molecular mechanisms involved in the osteocyte-mediated translation of mechanical stimuli to cellular signaling, and discuss their role in skeletal (bone) diseases and extra-skeletal (non-bone) clinical complications. RECENT FINDINGS Two decades before, osteocytes were assumed as a dormant cells buried in bone matrix. In recent years, emerging evidences have shown that osteocytes are pivotal not only for bone homeostasis but also for vital organ functions such as muscle, kidney, and heart. Osteocyte mechanotransduction regulates osteoblast and osteoclast function and maintains bone homeostasis. Mechanical stimuli modulate the release of osteocyte-derived cytokines, signaling molecules, and extracellular cellular vesicles that regulate not only the surrounding bone cell function and bone homeostasis but also the distant organ function in a paracrine and endocrine fashion. Mechanical loading and unloading modulate the osteocytic release of NO, PGE2, and ATPs that regulates multiple cellular signaling such as Wnt/β-catenin, RANKL/OPG, BMPs, PTH, IGF1, VEGF, sclerostin, and others. Therefore, the in-depth study of the molecular mechanism of osteocyte mechanotransduction could unravel therapeutic targets for various bone and non-bone-related clinical complications such as osteoporosis, sarcopenia, and cancer metastasis to bone.
Collapse
Affiliation(s)
- Yongyong Yan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Liping Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| |
Collapse
|
24
|
Fujii Y, Inoue H, Arai Y, Shimomura S, Nakagawa S, Kishida T, Tsuchida S, Kamada Y, Kaihara K, Shirai T, Terauchi R, Toyama S, Ikoma K, Mazda O, Mikami Y. Treadmill Running in Established Phase Arthritis Inhibits Joint Destruction in Rat Rheumatoid Arthritis Models. Int J Mol Sci 2019; 20:ijms20205100. [PMID: 31618828 PMCID: PMC6834114 DOI: 10.3390/ijms20205100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/14/2022] Open
Abstract
Exercise therapy inhibits joint destruction by suppressing pro-inflammatory cytokines. The efficacy of pharmacotherapy for rheumatoid arthritis differs depending on the phase of the disease, but that of exercise therapy for each phase is unknown. We assessed the differences in the efficacy of treadmill running on rheumatoid arthritis at various phases, using rat rheumatoid arthritis models. Rats with collagen-induced arthritis were used as rheumatoid arthritis models, and the phase after immunization was divided as pre-arthritis and established phases. Histologically, the groups with forced treadmill running in the established phase had significantly inhibited joint destruction compared with the other groups. The group with forced treadmill running in only the established phase had significantly better bone morphometry and reduced expression of connexin 43 and tumor necrosis factor α in the synovial membranes compared with the no treadmill group. Furthermore, few cells were positive for cathepsin K immunostaining in the groups with forced treadmill running in the established phase. Our results suggest that the efficacy of exercise therapy may differ depending on rheumatoid arthritis disease activity. Active exercise during phases of decreased disease activity may effectively inhibit arthritis and joint destruction.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental
- Arthritis, Rheumatoid/diagnostic imaging
- Arthritis, Rheumatoid/etiology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Biomarkers
- Body Weight
- Bone Resorption/diagnostic imaging
- Bone Resorption/metabolism
- Cartilage, Articular/diagnostic imaging
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Connexin 43/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Inflammation Mediators/metabolism
- Physical Conditioning, Animal
- Rats
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Yuta Fujii
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Hiroaki Inoue
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yuji Arai
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Seiji Shimomura
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Shuji Nakagawa
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Tsunao Kishida
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Shinji Tsuchida
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yoichiro Kamada
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Kenta Kaihara
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Toshiharu Shirai
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Ryu Terauchi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Shogo Toyama
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Kazuya Ikoma
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yasuo Mikami
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| |
Collapse
|
25
|
Hou X, Khan MRA, Turmaine M, Thrasivoulou C, Becker DL, Ahmed A. Wnt signaling regulates cytosolic translocation of connexin 43. Am J Physiol Regul Integr Comp Physiol 2019; 317:R248-R261. [DOI: 10.1152/ajpregu.00268.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The availability of intracellular, stabilized β-catenin, a transcription factor coactivator, is tightly regulated; β-catenin is translocated into the nucleus in response to Wnt ligand binding to its cell membrane receptors. Here we show that Wnt signal activation in mammalian cells activates intracellular mobilization of connexin 43 (Cx43), which belongs to a gap junction protein family, a new target protein in response to extracellular Wnt signal activation. Transmission electron microscopy showed that the nuclear localization of Cx43 was increased by 8- to 10-fold in Wnt5A- and 9B-treated cells compared with controls; this Wnt-induced increase was negated in the cells where Cx43 and β-catenin were knocked down using shRNA. There was a significant ( P < 0.001) and concomitant depletion of the cell membrane and cytosolic signal of Cx43 in Wnt-treated cells with an increase in the nuclear signal for Cx43; this was more obvious in cells where β-catenin was knocked down using shRNA. Conversely, Cx43 knockdown resulted in increased β-catenin in the nucleus in the absence of Wnt activation. Coimmunoprecipitation of Cx43 and β-catenin proteins with a casein kinase (CKIδ) antibody showed that Cx43 interacts with β-catenin and may form part of the so-called destruction complex. Functionally, Wnt activation increased the rate of wound reepithelization in rat skin in vivo.
Collapse
Affiliation(s)
- Xiaoming Hou
- Prostate Cancer Research Centre, Division of Surgery, University College London, London, United Kingdom
- Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics, University College London, London, United Kingdom
| | - Mohammad R. A. Khan
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, United Kingdom
| | - Mark Turmaine
- Division of Biosciences, University College London, London, United Kingdom
| | - Christopher Thrasivoulou
- Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics, University College London, London, United Kingdom
| | - David L Becker
- Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics, University College London, London, United Kingdom
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Institute of Medical Biology, A*STAR, Singapore
| | - Aamir Ahmed
- Prostate Cancer Research Centre, Division of Surgery, University College London, London, United Kingdom
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
26
|
Connexin43 enhances Wnt and PGE2-dependent activation of β-catenin in osteoblasts. Pflugers Arch 2019; 471:1235-1243. [PMID: 31240382 DOI: 10.1007/s00424-019-02295-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
Connexin43 is an important modulator of many signaling pathways in bone. β-Catenin, a key regulator of the osteoblast differentiation and function, is among the pathways downstream of connexin43-dependent intercellular communication. There are striking overlaps between the functions of these two proteins in bone cells. However, differential effects of connexin43 on β-catenin activity have been reported. Here, we examined how connexin43 influenced both Wnt-dependent and Wnt-independent activation of β-catenin in osteoblasts in vitro. Our data show that loss of connexin43 in primary osteoblasts or connexin43 overexpression in UMR106 cells regulated active β-catenin and phospho-Akt levels, with loss of connexin43 inhibiting and connexin43 overexpression increasing the levels of active β-catenin and phospho-Akt. Increasing connexin43 expression synergistically enhanced Wnt3a-dependent activation of β-catenin protein and β-catenin transcriptional activity, as well as Wnt-independent activation of β-catenin by prostaglandin E2 (PGE2). Finally, we show that the activation of β-catenin by PGE2 required signaling through the phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase 3 beta (GSK3β) pathway, as the PI3K inhibitor, LY-294002, disrupted the synergy between connexin43 and PGE2. These data show that connexin43 regulates Akt and β-catenin activity and synergistically enhances both Wnt-dependent and Wnt-independent β-catenin signaling in osteoblasts.
Collapse
|
27
|
Overexpression of miR-27b-3p Targeting Wnt3a Regulates the Signaling Pathway of Wnt/ β-Catenin and Attenuates Atrial Fibrosis in Rats with Atrial Fibrillation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5703764. [PMID: 31178968 PMCID: PMC6501122 DOI: 10.1155/2019/5703764] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/06/2019] [Accepted: 01/15/2019] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) are regarded as a potential method for the treatment of atrial fibrillation (AF) although its molecular mechanism remains unknown. We found in our previous study that the level of peripheral blood miR-27b-3p and the expression of atrial tissue CX43 were both significantly downregulated in AF patients. In the present study, we propose and test this hypothesis that overexpression of miR-27b-3p attenuates atrial fibrosis, increases CX43 expression, and regulates the signaling pathway of Wnt/β-Catenin by targeting Wnt3a. miR-27b-3p overexpression was induced by rat tail vein injection of adeno-associated virus. Two weeks after transfection of adeno-associated virus, the rat AF model was established by tail vein injection of acetylcholine- (ACh-) CaCl2 for 7 days, and 1 ml/kg was injected daily. The incidence and duration of AF were recorded with an electrocardiogram. Cardiac function was monitored by cardiac ultrasound. Serum cardiac enzyme was detected by ELISA. The expression of atrial miR-27b-3 and Wnt3a was assayed by quantitative RT-PCR. Atrial fibrosis was determined by Masson's trichrome staining. Expression of atrial Collagen-I and Collagen-III was tested by the immunohistochemical method. Expression of CX43 was measured by immunofluorescence. The expression of Collagen-I, a-SMA, Collagen-III, TGF-β1, CX43, Wnt3a, β-Catenin, and p-β-Catenin was assayed by western blot. Our results showed that miR-27b-3p overexpression could reduce the incidence and duration of AF, alleviate atrial fibrosis, increase atrial CX43 expression, and decrease the expression of Collagen-I, a-SMA, Collagen-III, TGF-β1, Wnt3a, and p-β-Catenin. In addition, the results of luciferase activity assay showed that Wnt3a is a validated miR-27b-3p target in HEK 293T cells. Our results provide a new evidence that miR-27b-3p regulates the signaling pathway of Wnt/β-Catenin by targeting Wnt3a, which may play an important role in the development of atrial fibrosis and AF.
Collapse
|
28
|
Fostok SF, El-Sibai M, El-Sabban M, Talhouk RS. Gap Junctions and Wnt Signaling in the Mammary Gland: a Cross-Talk? J Mammary Gland Biol Neoplasia 2019; 24:17-38. [PMID: 30194659 DOI: 10.1007/s10911-018-9411-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
Connexins (Cxs), the building blocks of gap junctions (GJs), exhibit spatiotemporal patterns of expression and regulate the development and differentiation of the mammary gland, acting via channel-dependent and channel-independent mechanisms. Impaired Cx expression and localization are reported in breast cancer, suggesting a tumor suppressive role for Cxs. The signaling events that mediate the role of GJs in the development and tumorigenesis of the mammary gland remain poorly identified. The Wnt pathways, encompassing the canonical or the Wnt/β-catenin pathway and the noncanonical β-catenin-independent pathway, also play important roles in those processes. Indeed, aberrant Wnt signaling is associated with breast cancer. Despite the coincident roles of Cxs and Wnt pathways, the cross-talk in the breast tissue is poorly defined, although this is reported in a number of other tissues. Our previous studies revealed a channel-independent role for Cx43 in inducing differentiation or suppressing tumorigenesis of mammary epithelial cells by acting as a negative regulator of the Wnt/β-catenin pathway. Here, we provide a brief overview of mammary gland development, with emphasis on the role of Cxs in development and tumorigenesis of this tissue. We also discuss the role of Wnt signaling in similar contexts, and review the literature illustrating interplay between Cxs and Wnt pathways.
Collapse
Affiliation(s)
- Sabreen F Fostok
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut (AUB), P.O. Box: 11-0236, Beirut, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut (AUB), Beirut, Lebanon
| | - Rabih S Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut (AUB), P.O. Box: 11-0236, Beirut, Lebanon.
| |
Collapse
|
29
|
Li JY, Yu M, Tyagi AM, Vaccaro C, Hsu E, Adams J, Bellido T, Weitzmann MN, Pacifici R. IL-17 Receptor Signaling in Osteoblasts/Osteocytes Mediates PTH-Induced Bone Loss and Enhances Osteocytic RANKL Production. J Bone Miner Res 2019; 34:349-360. [PMID: 30399207 DOI: 10.1002/jbmr.3600] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/11/2018] [Accepted: 09/22/2018] [Indexed: 12/11/2022]
Abstract
Primary hyperparathyroidism (PHPT) is a condition where elevated PTH levels lead to bone loss, in part through increased production of the osteoclastogenic factor IL-17A, by bone marrow (BM) T-helper 17 (Th17) cells, a subset of helper CD4+ T cells. In animals, PHPT is modeled by continuous PTH treatment (cPTH). In mice, an additional critical action of cPTH is the capacity to increase the production of RANKL by osteocytes. However, a definitive link between IL-17A and osteocytic expression of RANKL has not been made. Here we show that cPTH fails to induce cortical and trabecular bone loss and causes less intense bone resorption in conditional knock-out (IL-17RAΔOCY ) male and female mice lacking the expression of IL-17A receptor (IL-17RA) in dentin matrix protein 1 (DMP1)-8kb-Cre-expressing cells, which include osteocytes and some osteoblasts. Therefore, direct IL-17RA signaling in osteoblasts/osteocytes is required for cPTH to exert its bone catabolic effects. In addition, in vivo, silencing of IL-17RA signaling in in DMP1-8kb-expressing cells blunts the capacity of cPTH to stimulate osteocytic RANKL production, indicating that cPTH augments osteocytic RANKL expression indirectly, via an IL-17A/IL-17RA-mediated mechanism. Thus, osteocytic production of RANKL and T cell production of IL-17A are both critical for the bone catabolic activity of cPTH. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jau-Yi Li
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Mingcan Yu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Abdul Malik Tyagi
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Chiara Vaccaro
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Emory Hsu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Jonathan Adams
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - M Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA.,Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA.,Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
30
|
Gupta A, Leser JM, Gould NR, Buo AM, Moorer MC, Stains JP. Connexin43 regulates osteoprotegerin expression via ERK1/2 -dependent recruitment of Sp1. Biochem Biophys Res Commun 2019; 509:728-733. [PMID: 30626485 DOI: 10.1016/j.bbrc.2018.12.173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 02/08/2023]
Abstract
In bone, connexin43 expression in cells of the osteoblast lineage plays an important role in restraining osteoclastogenesis and bone resorption. While there is a consensus around the notion that the anti-osteoclastogenic factor, osteoprotegerin, is a driver of this effect, how connexin43 regulates osteoprotegerin gene expression is unclear. Here, we show that loss of connexin43 decreased osteoprotegerin gene expression and reduced ERK1/2 activation. Conversely, overexpression of connexin43 increased osteoprotegerin expression and enhanced ERK1/2 activation. This increase in phospho-ERK1/2 is required for connexin43 to induce transcription from the osteoprotegerin proximal promoter. Connexin43 increased promoter activity via a specific 200 base pair region of the osteoprotegerin promoter located at -1486 to -1286 with respect to the transcriptional start site, a region which includes four Sp1 binding elements. Further, activation of this promoter region required an intact functional connexin43, as hypomorphic or dominant negative connexin43 mutant constructs, including one with increased hemichannel activity, were unable to stimulate osteoprotegerin expression as strongly as wild type connexin43. Using chromatin immunoprecipitations, we show that connexin43 expression enhanced the recruitment of Sp1, but not Runx2, to the osteoprotegerin proximal promoter. In total, these data show that connexin43-dependent gap junctional communication among osteoblast cells permits efficient ERK1/2 activation. ERK1/2 signaling promotes the recruitment of the potent transcriptional activator, Sp1, to the osteoprotegerin proximal promoter, resulting in robust transcription of anti-osteoclastogenic factor, osteoprotegerin.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Jenna M Leser
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Nicole R Gould
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Atum M Buo
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Megan C Moorer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
31
|
Pacheco-Costa R, Davis HM, Atkinson EG, Dilley JE, Byiringiro I, Aref MW, Allen MR, Bellido T, Plotkin LI. Reversal of loss of bone mass in old mice treated with mefloquine. Bone 2018; 114:22-31. [PMID: 29879544 PMCID: PMC6056320 DOI: 10.1016/j.bone.2018.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/16/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022]
Abstract
Aging is accompanied by imbalanced bone remodeling, elevated osteocyte apoptosis, and decreased bone mass and mechanical properties; and improved pharmacologic approaches to counteract bone deterioration with aging are needed. We examined herein the effect of mefloquine, a drug used to treat malaria and systemic lupus erythematosus and shown to ameliorate bone loss in glucocorticoid-treated patients, on bone mass and mechanical properties in young and old mice. Young 3.5-month-old and old 21-month-old female C57BL/6 mice received daily injections of 5 mg/kg/day mefloquine for 14 days. Aging resulted in the expected changes in bone volume and mechanical properties. In old mice mefloquine administration reversed the lower vertebral cancellous bone volume and bone formation; and had modest effects on cortical bone volume, thickness, and moment of inertia. Mefloquine administration did not change the levels of the circulating bone formation markers P1NP or alkaline phosphatase, whereas levels of the resorption marker CTX showed trends towards increase with mefloquine treatment. In addition, and as expected, aging bones exhibited an accumulation of active caspase3-expressing osteocytes and higher expression of apoptosis-related genes compared to young mice, which were not altered by mefloquine administration at either age. In young animals, mefloquine induced higher periosteal bone formation, but lower endocortical bone formation. Further, osteoclast numbers were higher on the endocortical bone surface and circulating CTX levels were increased, in mefloquine- compared to vehicle-treated young mice. Consistent with this, addition of mefloquine to bone marrow cells isolated from young mice led to increased osteoclastic gene expression and a tendency towards increased osteoclast numbers in vitro. Taken together our findings identify the age and bone-site specific skeletal effects of mefloquine. Further, our results highlight a beneficial effect of mefloquine administration on vertebral cancellous bone mass in old animals, raising the possibility of using this pharmacologic inhibitor to preserve skeletal health with aging.
Collapse
Affiliation(s)
- Rafael Pacheco-Costa
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hannah M Davis
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Emily G Atkinson
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Julian E Dilley
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Innocent Byiringiro
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mohammad W Aref
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Matthew R Allen
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA.
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA; Division of Endocrinology, Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Lilian I Plotkin
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
32
|
Abstract
PURPOSE Transgenic Cre lines are a valuable tool for conditionally inactivating or activating genes to understand their function. Here, we provide an overview of Cre transgenic models used for studying gene function in bone cells and discuss their advantages and limitations, with particular emphasis on Cre lines used for studying osteocyte and osteoclast function. RECENT FINDINGS Recent studies have shown that many bone cell-targeted Cre models are not as specific as originally thought. To ensure accurate data interpretation, it is important for investigators to test for unexpected recombination events due to transient expression of Cre recombinase during development or in precursor cells and to be aware of the potential for germ line recombination of targeted genes as well as the potential for unexpected phenotypes due to the Cre transgene. Although many of the bone-targeted Cre-deleter strains are imperfect and each model has its own limitations, their careful use will continue to provide key advances in our understanding of bone cell function in health and disease.
Collapse
Affiliation(s)
- Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, 650 E. 25th Street, Kansas, MO, 64108, USA.
| | - Yixia Xie
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, 650 E. 25th Street, Kansas, MO, 64108, USA
| | - Lora A Shiflett
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, 650 E. 25th Street, Kansas, MO, 64108, USA
| | - Yasuyoshi Ueki
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, 650 E. 25th Street, Kansas, MO, 64108, USA
| |
Collapse
|
33
|
Treadmill Running Ameliorates Destruction of Articular Cartilage and Subchondral Bone, Not Only Synovitis, in a Rheumatoid Arthritis Rat Model. Int J Mol Sci 2018; 19:ijms19061653. [PMID: 29865282 PMCID: PMC6032207 DOI: 10.3390/ijms19061653] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
We analyzed the influence of treadmill running on rheumatoid arthritis (RA) joints using a collagen-induced arthritis (CIA) rat model. Eight-week-old male Dark Agouti rats were randomly divided into four groups: The control group, treadmill group (30 min/day for 4 weeks from 10-weeks-old), CIA group (induced CIA at 8-weeks-old), and CIA + treadmill group. Destruction of the ankle joint was evaluated by histological analyses. Morphological changes of subchondral bone were analyzed by μ-CT. CIA treatment-induced synovial membrane invasion, articular cartilage destruction, and bone erosion. Treadmill running improved these changes. The synovial membrane in CIA rats produced a large amount of tumor necrosis factor-α and Connexin 43; production was significantly suppressed by treadmill running. On μ-CT of the talus, bone volume fraction (BV/TV) was significantly decreased in the CIA group. Marrow star volume (MSV), an index of bone loss, was significantly increased. These changes were significantly improved by treadmill running. Bone destruction in the talus was significantly increased with CIA and was suppressed by treadmill running. On tartrate-resistant acid phosphate and alkaline phosphatase (TRAP/ALP) staining, the number of osteoclasts around the pannus was decreased by treadmill running. These findings indicate that treadmill running in CIA rats inhibited synovial hyperplasia and joint destruction.
Collapse
|
34
|
Yu K, Sellman DP, Bahraini A, Hagan ML, Elsherbini A, Vanpelt KT, Marshall PL, Hamrick MW, McNeil A, McNeil PL, McGee-Lawrence ME. Mechanical loading disrupts osteocyte plasma membranes which initiates mechanosensation events in bone. J Orthop Res 2018; 36:653-662. [PMID: 28755471 PMCID: PMC5788741 DOI: 10.1002/jor.23665] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/24/2017] [Indexed: 02/04/2023]
Abstract
Osteocytes sense loading in bone, but their mechanosensation mechanisms remain poorly understood. Plasma membrane disruptions (PMD) develop with loading under physiological conditions in many cell types (e.g., myocytes, endothelial cells). These PMD foster molecular flux across cell membranes that promotes tissue adaptation, but this mechanosensation mechanism had not been explored in osteocytes. Our goal was to investigate whether PMD occur and initiate consequent mechanotransduction in osteocytes during physiological loading. We found that osteocytes experience PMD during in vitro (fluid flow) and in vivo (treadmill exercise) mechanical loading, in proportion to the level of stress experienced. In fluid flow studies, osteocyte PMD preferentially formed with rapid as compared to gradual application of loading. In treadmill studies, osteocyte PMD increased with loading in weight bearing locations (tibia), but this trend was not seen in non-weight bearing locations (skull). PMD initiated osteocyte mechanotransduction including calcium signaling and expression of c-fos, and repair rates of these PMD could be enhanced or inhibited pharmacologically to alter downstream mechanotransduction and osteocyte survival. PMD may represent a novel mechanosensation pathway in bone and a target for modifying skeletal adaptation signaling in osteocytes. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:653-662, 2018.
Collapse
Affiliation(s)
- Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15 St, Augusta, GA
| | - David P. Sellman
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15 St, Augusta, GA
| | - Anoosh Bahraini
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15 St, Augusta, GA
| | - Mackenzie L. Hagan
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15 St, Augusta, GA
| | - Ahmed Elsherbini
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15 St, Augusta, GA
| | - Kayce T. Vanpelt
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15 St, Augusta, GA
| | - Peyton L. Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15 St, Augusta, GA
| | - Mark W. Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15 St, Augusta, GA
| | - Anna McNeil
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15 St, Augusta, GA
| | - Paul L. McNeil
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15 St, Augusta, GA
| | - Meghan E. McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15 St, Augusta, GA
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, 1120 15 St, Augusta, GA
| |
Collapse
|
35
|
Davis HM, Aref MW, Aguilar-Perez A, Pacheco-Costa R, Allen K, Valdez S, Herrera C, Atkinson EG, Mohammad A, Lopez D, Harris MA, Harris SE, Allen M, Bellido T, Plotkin LI. Cx43 overexpression in osteocytes prevents osteocyte apoptosis and preserves cortical bone quality in aging mice. JBMR Plus 2018; 2:206-216. [PMID: 29978155 DOI: 10.1002/jbm4.10035] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Young, skeletally mature mice lacking Cx43 in osteocytes exhibit increased osteocyte apoptosis and decreased bone strength, resembling the phenotype of old mice. Further, the expression of Cx43 in bone decreases with age, suggesting a contribution of reduced Cx43 levels to the age-related changes in the skeleton. We report herein that Cx43 overexpression in osteocytes achieved by using the DMP1-8kb promoter (Cx43OT mice) attenuates the skeletal cortical, but not trabecular bone phenotype of aged, 14-month-old mice. The percentage of Cx43-expressing osteocytes was higher in Cx43OT mice, whereas the percentage of Cx43 positive osteoblasts remained similar to wild type (WT) littermate control mice. The percentage of apoptotic osteocytes and osteoblasts was increased in aged WT mice compared to skeletally mature, 6-month-old WT mice, and the percentage of apoptotic osteocytes, but not osteoblasts, was decreased in age-matched Cx43OT mice. Aged WT mice exhibited decreased bone formation and increased bone resorption as quantified by histomorphometric analysis and circulating markers, compared to skeletally mature mice. Further, aged WT mice exhibited the expected decrease in bone biomechanical structural and material properties compared to young mice. Cx43 overexpression prevented the increase in osteoclasts and decrease in bone formation on the endocortical surfaces, and the changes in circulating markers in the aged mice. Moreover, the ability of bone to resist damage was preserved in aged Cx43OT mice both at the structural and material level. All together, these findings suggest that increased Cx43 expression in osteocytes ameliorates age-induced cortical bone changes by preserving osteocyte viability and maintaining bone formation, leading to improved bone strength.
Collapse
Affiliation(s)
- Hannah M Davis
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mohammad W Aref
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexandra Aguilar-Perez
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rafael Pacheco-Costa
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kimberly Allen
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sinai Valdez
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmen Herrera
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emily G Atkinson
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arwa Mohammad
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Lopez
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marie A Harris
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Stephen E Harris
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Matthew Allen
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Division of Endocrinology, Dept. Internal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Lilian I Plotkin
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
36
|
Wang H, Yi J, Li X, Xiao Y, Dhakal K, Zhou J. ALS-associated mutation SOD1 G93A leads to abnormal mitochondrial dynamics in osteocytes. Bone 2018; 106:126-138. [PMID: 29030231 PMCID: PMC5718158 DOI: 10.1016/j.bone.2017.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022]
Abstract
While the death of motor neuron is a pathological hallmark of amyotrophic lateral sclerosis (ALS), defects in other cell types or organs may also actively contribute to ALS disease progression. ALS patients experience progressive skeletal muscle wasting that may not only exacerbate neuronal degeneration, but likely has a significant impact on bone function. In our previous published study, we have discovered severe bone loss in an ALS mouse model with overexpression of ALS-associated mutation SOD1G93A (G93A). Here we further provide a mechanistic understanding of the bone loss in ALS animal and cellular models. Combining mitochondrial fluorescent indicators and confocal live cell imaging, we discovered abnormalities in mitochondrial network and dynamics in primary osteocytes derived from the same ALS mouse model G93A. Those mitochondrial defects occur in ALS mice after the onset of neuromuscular symptoms, indicating that mitochondria in bone cells respond to muscle atrophy during ALS disease progression. To examine whether ALS mutation has a direct contribution to mitochondrial dysfunction independent of muscle atrophy, we evaluated mitochondrial morphology and motility in cultured osteocytes (MLO-Y4) with overexpression of mitochondrial targeted SOD1G93A. Compared with osteocytes overexpressing the wild type SOD1 as a control, the SOD1G93A osteocytes showed similar defects in mitochondrial network and dynamic as that of the primary osteocytes derived from the ALS mouse model. In addition, we further discovered that overexpression of SOD1G93A enhanced the expression level of dynamin-related protein 1 (Drp1), a key protein promoting mitochondrial fission activity, and reduced the expression level of optic atrophy protein 1 (OPA1), a key protein related to mitochondrial fusion. A specific mitochondrial fission inhibitor (Mdivi-1) partially reversed the effect of SOD1G93A on mitochondrial network and dynamics, indicating that SOD1G93A likely promotes mitochondrial fission, but suppresses the fusion activity. Our data provide the first evidence that mitochondria show abnormality in osteocytes derived from an ALS mouse model. The accumulation of mutant SOD1G93A protein inside mitochondria directly causes dysfunction in mitochondrial dynamics in cultured MLO-Y4 osteocytes. In addition, the ALS mutation SOD1G93A-mediated dysfunction in mitochondrial dynamics is associated with an enhanced apoptosis in osteocytes, which could be a potential mechanism underlying the bone loss during ALS progression.
Collapse
Affiliation(s)
- Huan Wang
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA
| | - Jianxun Yi
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA
| | - Xuejun Li
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA
| | - Yajuan Xiao
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA
| | - Kamal Dhakal
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA
| | - Jingsong Zhou
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA.
| |
Collapse
|
37
|
Abstract
Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.
Collapse
Affiliation(s)
- Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia 23284, USA
| | - Roy W Qu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
38
|
Zhang X, Zhao F, Zhao JF, Fu HY, Huang XJ, Lv BD. PDGF-mediated PI3K/AKT/β-catenin signaling regulates gap junctions in corpus cavernosum smooth muscle cells. Exp Cell Res 2017; 362:252-259. [PMID: 29174980 DOI: 10.1016/j.yexcr.2017.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 02/06/2023]
Abstract
Erectile dysfunction (ED) is the most common sexual disorder that men report to healthcare providers. Gap junctions (GJs) are thought to be responsible for synchronous shrinkage of corpus cavernosum smooth muscle cells (CCSMCs), and play thus an important role in the maintenance of an erection. Hypoxia has been suggested as a pathological mechanism underlying ED. Here we demonstrate that hypoxia increased the expression of platelet-derived growth factor (PDGF) and the main GJ component connexin (Cx)43 in CCSMCs. Inhibiting PDGF receptor (PDGFR) activity decreased Cx43 expression. Treatment with different concentrations of PDGF increased the levels of phosphorylated protein kinase B (AKT), β-catenin, and Cx43, whereas inhibition of PDGFR or activation of phosphatidylinositol 3 kinase (PI3K)/AKT signaling altered β-catenin and Cx43 expression. Meanwhile, silencing β-catenin resulted in the downregulation of Cx43. These results demonstrate that PDGF secretion by CCSMCs and vascular endothelial cells is enhanced under hypoxic conditions, leading to increased Cx43 expression through PI3K/AKT/β-catenin signaling and ultimately affecting GJ function in ED. Thus, targeting this pathway is a potential therapeutic strategy for the treatment of ED.
Collapse
Affiliation(s)
- Xiang Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fan Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian-Feng Zhao
- Department of Urology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui-Ying Fu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Andrology Laboratory on Integration of Chinese and Western Medicine, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine, Hangzhou, China
| | - Xiao-Jun Huang
- Department of Urology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo-Dong Lv
- Department of Urology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China; Andrology Laboratory on Integration of Chinese and Western Medicine, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine, Hangzhou, China.
| |
Collapse
|
39
|
Grimston SK, Fontana F, Watkins M, Civitelli R. Heterozygous deletion of both sclerostin (Sost) and connexin43 (Gja1) genes in mice is not sufficient to impair cortical bone modeling. PLoS One 2017; 12:e0187980. [PMID: 29149200 PMCID: PMC5693294 DOI: 10.1371/journal.pone.0187980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/30/2017] [Indexed: 11/18/2022] Open
Abstract
Connexin43 (Cx43) is the main gap junction protein expressed in bone forming cells, where it modulates peak bone mass acquisition and cortical modeling. Genetic ablation of the Cx43 gene (Gja1) results in cortical expansion with accentuated periosteal bone formation associated with decreased expression of the Wnt inhibitor sclerostin. To determine whether sclerostin (Sost) down-regulation might contribute to periosteal expansion in Gja1 deficient bones, we took a gene interaction approach and crossed mice harboring germline null alleles for Gja1 or Sost to generate single Gja1+/–and Sost+/–and double Gja1+/–;Sost+/–heterozygous mice. In vivo μCT analysis of cortical bone at age 1 and 3 months confirmed increased thickness in Sost–/–mice, but revealed no cortical abnormalities in single Gja1+/–or Sost+/–mice. Double heterozygous Gja1+/–Sost+/–also showed no differences in mineral density, cortical thickness, width or geometry relative to wild type control mice. Likewise, 3-point bending measurement of bone strength revealed no significant differences between double Gja1+/–;Sost+/–or single heterozygous and wild type mice. Although these data do not exclude a contribution of reduced sclerostin in the cortical expansion seen in Gja1 deficient bones, they are not consistent with a strong genetic interaction between Sost and Gja1 dictating cortical modeling.
Collapse
Affiliation(s)
- Susan K. Grimston
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Francesca Fontana
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| | - Marcus Watkins
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Roberto Civitelli
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
40
|
Kuroshima S, Kaku M, Ishimoto T, Sasaki M, Nakano T, Sawase T. A paradigm shift for bone quality in dentistry: A literature review. J Prosthodont Res 2017. [PMID: 28633987 DOI: 10.1016/j.jpor.2017.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The aim of this study was to present the current concept of bone quality based on the proposal by the National Institutes of Health (NIH) and some of the cellular and molecular factors that affect bone quality. STUDY SELECTION This is a literature review which focuses on collagen, biological apatite (BAp), and bone cells such as osteoblasts and osteocytes. RESULTS In dentistry, the term "bone quality" has long been considered to be synonymous with bone mineral density (BMD) based on radiographic and sensible evaluations. In 2000, the NIH proposed the concept of bone quality as "the sum of all characteristics of bone that influence the bone's resistance to fracture," which is completely independent of BMD. The NIH defines bone quality as comprising bone architecture, bone turnover, bone mineralization, and micro-damage accumulation. Moreover, our investigations have demonstrated that BAp, collagen, and bone cells such as osteoblasts and osteocytes play essential roles in controlling the current concept of bone quality in bone around hip and dental implants. CONCLUSION The current concept of bone quality is crucial for understanding bone mechanical functions. BAp, collagen and osteocytes are the main factors affecting bone quality. Moreover, mechanical loading dynamically adapts bone quality. Understanding the current concept of bone quality is required in dentistry.
Collapse
Affiliation(s)
- Shinichiro Kuroshima
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki-city, Nagasaki 852-8588, Japan.
| | - Masaru Kaku
- Division of Bio-prosthodontics, Graduate School of Medical and Dental Science, Niigata University, 2-5274, Gakkocho-dori, Chuo-ku, Niigata-City, Niigata 951-8514, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-city, Osaka 565-0871, Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki-city, Nagasaki 852-8588, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-city, Osaka 565-0871, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki-city, Nagasaki 852-8588, Japan
| |
Collapse
|
41
|
Pacheco-Costa R, Kadakia JR, Atkinson EG, Wallace JM, Plotkin LI, Reginato RD. Connexin37 deficiency alters organic bone matrix, cortical bone geometry, and increases Wnt/β-catenin signaling. Bone 2017; 97:105-113. [PMID: 28096061 DOI: 10.1016/j.bone.2017.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
Deletion of connexin (Cx) 37 in mice leads to increased cancellous bone mass due to defective osteoclast differentiation. Paradoxically; however, Cx37-deficient mice exhibit reduced cortical thickness accompanied by higher bone strength, suggesting a contribution of Cx37 to bone matrix composition. Thus, we investigated whether global deletion of Cx37 alters the composition of organic bone extracellular matrix. Five-month-old Cx37-/- mice exhibited increased marrow cavity area, and periosteal and endocortical bone surface resulting in higher total area in tibia compared to Cx37+/+ control mice. Deletion of Cx37 increased genes involved in collagen maturation (loxl3 and loxl4) and glycosaminoglycans- (chsy1, chpf and has3) proteoglycans- associated genes (biglycan and decorin). In addition, expression of type II collagen assessed by immunostaining was increased by 82% whereas collagen maturity by picrosirius-polarizarion tended to be reduced (p=0.071). Expression of glycosaminoglycans by histochemistry was decreased, whereas immunostaining revealed that biglycan was unchanged and decorin was slightly increased in Cx37-/- bone sections. Consistent with these in vivo findings, MLO-Y4 osteocytic cells silenced for Cx37 gene exhibited increased mRNA levels for collagen synthesis (col1a1 and col3a1) and collagen maturation (lox, loxl1 and loxl2 genes). Furthermore, mechanistic studies showed Wnt/β-catenin activation in MLO-Y4 osteocytic cells, L5 vertebra, and authentic calvaria-derived osteocytes isolated by fluorescent-activated cell sorter. Our findings demonstrate that altered profile of the bone matrix components in Cx37-deficient mice acts in favor of higher resistance to fracture in long bones.
Collapse
Affiliation(s)
- Rafael Pacheco-Costa
- Departamento de Morfologia e Genética, Universidade Federal de Sao Paulo - Escola Paulista de Medicina, São Paulo, Brazil; Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Jay R Kadakia
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, IN, USA.
| | - Emily G Atkinson
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, IN, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA.
| | - Lilian I Plotkin
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| | - Rejane D Reginato
- Departamento de Morfologia e Genética, Universidade Federal de Sao Paulo - Escola Paulista de Medicina, São Paulo, Brazil.
| |
Collapse
|
42
|
Abstract
The primary cilium is a mechanosensor in a variety of mammalian cell types, initiating and directing intracellular signalling cascades in response to external stimuli. When primary cilia formation is disrupted, cells have diminished mechanosensitivity and an abrogated response to mechanical stimulation. Due to this important role, we hypothesised that increasing primary cilia length would enhance the downstream response and therefore, mechanosensitivity. To test this hypothesis, we increased osteocyte primary cilia length with fenoldopam and lithium and found that cells with longer primary cilia were more mechanosensitive. Furthermore, fenoldopam treatment potentiated adenylyl cyclase activity and was able to recover primary cilia form and sensitivity in cells with impaired cilia. This work demonstrates that modulating the structure of the primary cilium directly impacts cellular mechanosensitivity. Our results implicate cilium length as a potential therapeutic target for combating numerous conditions characterised by impaired cilia function.
Collapse
|
43
|
Abstract
PURPOSE OF THE REVIEW This review highlights recent developments into how intercellular communication through connexin43 facilitates bone modeling and remodeling. RECENT FINDINGS Connexin43 is required for both skeletal development and maintenance, particularly in cortical bone, where it carries out multiple functions, including preventing osteoclastogenesis, restraining osteoprogenitor proliferation, promoting osteoblast differentiation, coordinating organized collagen matrix deposition, and maintaining osteocyte survival. Emerging data shows that connexin43 regulates both the exchange of small molecules among osteoblast lineage cells and the docking of signaling proteins to the gap junction, affecting the efficiency of signal transduction. Understanding how and what connexin43 communicates to coordinate tissue remodeling has therapeutic implications in bone. Altering the information shared by intercellular communication and/or targeting the recruitment of signaling machinery to the gap junction could be used to impact the skeletal homeostatic set point, either driving osteogenesis or inhibiting resorption.
Collapse
Affiliation(s)
- Megan C Moorer
- Department of Orthopaedics, University of Maryland School of Medicine, 100 Penn Street, Allied Health Building, Room 540E, Baltimore, MD, 21201, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, 100 Penn Street, Allied Health Building, Room 540E, Baltimore, MD, 21201, USA.
| |
Collapse
|
44
|
Moorer MC, Hebert C, Tomlinson RE, Iyer SR, Chason M, Stains JP. Defective signaling, osteoblastogenesis and bone remodeling in a mouse model of connexin 43 C-terminal truncation. J Cell Sci 2017; 130:531-540. [PMID: 28049723 PMCID: PMC5312734 DOI: 10.1242/jcs.197285] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/28/2016] [Indexed: 01/29/2023] Open
Abstract
In skeletal tissue, loss or mutation of the gap junction protein connexin 43 (Cx43, also known as GJA1) in cells of the osteoblast lineage leads to a profound cortical bone phenotype and defective tissue remodeling. There is mounting evidence in bone cells that the C-terminus (CT) of Cx43 is a docking platform for signaling effectors and is required for efficient downstream signaling. Here, we examined this function, using a mouse model of Cx43 CT-truncation (Gja1 K258Stop). Relative to Gja1+/- controls, male Gja1-/K258Stop mice have a cortical bone phenotype that is remarkably similar to those reported for deletion of the entire Cx43 gene in osteoblasts. Furthermore, we show that the Cx43 CT binds several signaling proteins that are required for optimal osteoblast function, including PKCδ, ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1, respectively) and β-catenin. Deletion of the Cx43 CT domain affects these signaling cascades, impacting osteoblast proliferation, differentiation, and collagen processing and organization. These data imply that, at least in bone, Cx43 gap junctions not only exchange signals, but also recruit the appropriate effector molecules to the Cx43 CT in order to efficiently activate signaling cascades that affect cell function and bone acquisition.
Collapse
Affiliation(s)
- Megan C Moorer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Carla Hebert
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Max Chason
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
45
|
Abstract
Osteocytes are differentiated osteoblasts that become surrounded by matrix during the process of bone formation. Acquisition of the osteocyte phenotype is achieved by profound changes in gene expression that facilitate adaptation to the changing cellular environment and constitute the molecular signature of osteocytes. During osteocytogenesis, the expression of genes that are characteristic of the osteoblast are altered and the expression of genes and/or proteins that impart dendritic cellular morphology, regulate matrix mineralization and control the function of cells at the bone surface are ordely modulated. The discovery of mutations in human osteocytic genes has contributed, in a large part, to our understanding of the role of osteocytes in bone homeostasis. Osteocytes are targets of the mechanical force imposed on the skeleton and have a critical role in integrating mechanosensory pathways with the action of hormones, which thereby leads to the orchestrated response of bone to environmental cues. Current, therapeutic approaches harness this accumulating knowledge by targeting osteocytic signalling pathways and messengers to improve skeletal health.
Collapse
Affiliation(s)
- Lilian I. Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| |
Collapse
|
46
|
Laurent MR, Dubois V, Claessens F, Verschueren SMP, Vanderschueren D, Gielen E, Jardí F. Muscle-bone interactions: From experimental models to the clinic? A critical update. Mol Cell Endocrinol 2016; 432:14-36. [PMID: 26506009 DOI: 10.1016/j.mce.2015.10.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023]
Abstract
Bone is a biomechanical tissue shaped by forces from muscles and gravitation. Simultaneous bone and muscle decay and dysfunction (osteosarcopenia or sarco-osteoporosis) is seen in ageing, numerous clinical situations including after stroke or paralysis, in neuromuscular dystrophies, glucocorticoid excess, or in association with vitamin D, growth hormone/insulin like growth factor or sex steroid deficiency, as well as in spaceflight. Physical exercise may be beneficial in these situations, but further work is still needed to translate acceptable and effective biomechanical interventions like vibration therapy from animal models to humans. Novel antiresorptive and anabolic therapies are emerging for osteoporosis as well as drugs for sarcopenia, cancer cachexia or muscle wasting disorders, including antibodies against myostatin or activin receptor type IIA and IIB (e.g. bimagrumab). Ideally, increasing muscle mass would increase muscle strength and restore bone loss from disuse. However, the classical view that muscle is unidirectionally dominant over bone via mechanical loading is overly simplistic. Indeed, recent studies indicate a role for neuronal regulation of not only muscle but also bone metabolism, bone signaling pathways like receptor activator of nuclear factor kappa-B ligand (RANKL) implicated in muscle biology, myokines affecting bone and possible bone-to-muscle communication. Moreover, pharmacological strategies inducing isolated myocyte hypertrophy may not translate into increased muscle power because tendons, connective tissue, neurons and energy metabolism need to adapt as well. We aim here to critically review key musculoskeletal molecular pathways involved in mechanoregulation and their effect on the bone-muscle unit as a whole, as well as preclinical and emerging clinical evidence regarding the effects of sarcopenia therapies on osteoporosis and vice versa.
Collapse
Affiliation(s)
- Michaël R Laurent
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Vanessa Dubois
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sabine M P Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Rehabilitation Science, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Evelien Gielen
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ferran Jardí
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
47
|
Hammond MA, Berman AG, Pacheco-Costa R, Davis HM, Plotkin LI, Wallace JM. Removing or truncating connexin 43 in murine osteocytes alters cortical geometry, nanoscale morphology, and tissue mechanics in the tibia. Bone 2016; 88:85-91. [PMID: 27113527 PMCID: PMC4899203 DOI: 10.1016/j.bone.2016.04.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/19/2016] [Accepted: 04/22/2016] [Indexed: 12/18/2022]
Abstract
Gap junctions are formed from ubiquitously expressed proteins called connexins that allow the transfer of small signaling molecules between adjacent cells. Gap junctions are especially important for signaling between osteocytes and other bone cell types. The most abundant type of connexin in bone is connexin 43 (Cx43). The C-terminal domain of Cx43 is thought to be an important modulator of gap junction function but the role that this domain plays in regulating tissue-level mechanics is largely unknown. We hypothesized that the lack of the C-terminal domain of Cx43 would cause morphological and compositional changes as well as differences in how bone responds to reference point indentation (RPI) and fracture toughness testing. The effects of the C-terminal domain of Cx43 in osteocytes and other cell types were assessed in a murine model (C57BL/6 background). Mice with endogenous Cx43 in their osteocytes removed via a Cre-loxP system were crossed with knock-in mice which expressed Cx43 that lacked the C-terminal domain in all cell types due to the insertion of a truncated allele to produce the four groups used in the study. The main effect of removing the C-terminal domain from osteocytic Cx43 increased cortical mineral crystallinity (p=0.036) and decreased fracture toughness (p=0.017). The main effect of the presence of the C-terminal domain in other cell types increased trabecular thickness (p<0.001), cortical thickness (p=0.008), and average RPI unloading slope (p=0.004). Collagen morphology was altered when either osteocytes lacked Cx43 (p=0.008) or some truncated Cx43 was expressed in all cell types (p<0.001) compared to controls but not when only the truncated form of Cx43 was expressed in osteocytes (p=0.641). In conclusion, the presence of the C-terminal domain of Cx43 in osteocytes and other cell types is important to maintain normal structure and mechanical integrity of bone.
Collapse
Affiliation(s)
- Max A Hammond
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Alycia G Berman
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, IN, United States
| | - Rafael Pacheco-Costa
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, IN, United States
| | - Hannah M Davis
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, IN, United States
| | - Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, IN, United States; Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, United States.
| |
Collapse
|
48
|
Prideaux M, Findlay DM, Atkins GJ. Osteocytes: The master cells in bone remodelling. Curr Opin Pharmacol 2016; 28:24-30. [DOI: 10.1016/j.coph.2016.02.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/14/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
|
49
|
Osteocytic connexin hemichannels suppress breast cancer growth and bone metastasis. Oncogene 2016; 35:5597-5607. [PMID: 27041582 PMCID: PMC5050050 DOI: 10.1038/onc.2016.101] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/13/2016] [Accepted: 01/25/2016] [Indexed: 12/15/2022]
Abstract
Although the skeleton is one of predominant sites for breast cancer metastasis, why breast cancer cells often become dormant after homing to bone is not well understood. Here, we reported an intrinsic self-defense mechanism of bone cells against breast cancer cells: a critical role of connexin (Cx) 43 hemichannels in osteocytes in the suppression of breast cancer bone metastasis. Cx43 hemichannels allow passage of small molecules between the intracellular and extracellular environments. The treatment of bisphosphonate drugs, either alendronate (ALN) or zoledronic acid (ZOL), opened Cx43 hemichannels in osteocytes. Conditioned media (CM) collected from MLO-Y4 osteocyte cells treated with bisphosphonates inhibited the anchorage-independent growth, migration and invasion of MDA-MB-231 human breast cancer cells and Py8119 mouse mammary carcinoma cells and this inhibitory effect was attenuated with Cx43(E2), a specific hemichannel blocking antibody. The opening of osteocytic Cx43 hemichannels by mechanical stimulation had similar inhibitory effects on breast cancer cells and this inhibition was attenuated by Cx43(E2) antibody as well. These inhibitory effects on cancer cells were mediated by ATP released from osteocyte Cx43 hemichannels. Furthermore, both Cx43 osteocyte-specific knockout mice and osteocyte-specific Δ130–136 transgenic mice with impaired Cx43 gap junctions and hemichannels showed significantly increased tumor growth and attenuated the inhibitory effect of ZOL. However, R76W transgenic mice with functional hemichannels but not gap junctions in osteocytes did not display a significant difference. Together, our studies establish the specific inhibitory role of osteocytic Cx43 hemichannels, and exploiting the activity of this channel could serve as a de novo therapeutic strategy.
Collapse
|
50
|
Abstract
Shaping of the skeleton (modeling) and its maintenance throughout life (remodeling) require coordinated activity among bone forming (osteoblasts) and resorbing cells (osteoclasts) and osteocytes (bone embedded cells). The gap junction protein connexin43 (Cx43) has emerged as a key modulator of skeletal growth and homeostasis. The skeletal developmental abnormalities present in oculodentodigital and craniometaphyseal dysplasias, both linked to Cx43 gene (GJA1) mutations, demonstrate that the skeleton is a major site of Cx43 action. Via direct action on osteolineage cells, including altering production of pro-osteoclastogenic factors, Cx43 contributes to peak bone mass acquisition, cortical modeling of long bones, and maintenance of bone quality. Cx43 also contributes in diverse ways to bone responsiveness to hormonal and mechanical signals. Skeletal biology research has revealed the complexity of Cx43 function; in addition to forming gap junctions and "hemichannels", Cx43 provides a scaffold for signaling molecules. Hence, Cx43 actively participates in generation and modulation of cellular signals driving skeletal development and homeostasis. Pharmacological interference with Cx43 may in the future help remedy deterioration of bone quality occurring with aging, disuse and hormonal imbalances.
Collapse
Affiliation(s)
- Joseph P Stains
- Department of Orthopaedics, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Roberto Civitelli
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University in St. Louis, Campus Box 8301, 425 South Euclid, St. Louis, MO 63110, United States.
| |
Collapse
|