1
|
Monzem S, Ballester RY, Javaheri B, Poulet B, Sônego DA, Pitsillides AA, Souza RL. Long-term bisphosphonate treatment coupled with ovariectomy in mice provokes deleterious effects on femoral neck fracture pattern and modifies tibial shape. Bone Jt Open 2020; 1:512-519. [PMID: 33215149 PMCID: PMC7659644 DOI: 10.1302/2633-1462.19.bjo-2020-0117.r1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aims The processes linking long-term bisphosphonate treatment to atypical fracture remain elusive. To establish a means of exploring this link, we have examined how long-term bisphosphonate treatment with prior ovariectomy modifies femur fracture behaviour and tibia mass and shape in murine bones. Methods Three groups (seven per group) of 12-week-old mice were: 1) ovariectomized and 20 weeks thereafter treated weekly for 24 weeks with 100 μm/kg subcutaneous ibandronate (OVX+IBN); 2) ovariectomized (OVX); or 3) sham-operated (SHAM). Quantitative fracture analysis generated biomechanical properties for the femoral neck. Tibiae were microCT scanned and trabecular (proximal metaphysis) and cortical parameters along almost its whole length measured. Results Fracture analyses revealed that OVX+IBN significantly reduced yield displacement (vs SHAM/OVX) and resilience, and increased stiffness (vs SHAM). OVX+IBN elevated tibial trabecular parameters and also increased cortical cross-sectional area and second moment of area around minor axis, and diminished ellipticity proximally. Conclusion These data indicate that combined ovariectomy and bisphosphonate generates cortical changes linked with greater bone brittleness and modified fracture characteristics, which may provide a basis in mice for interrogating the mechanisms and genetics of atypical fracture aetiology.Cite this article: Bone Joint Open 2020;1-9:512-519.
Collapse
Affiliation(s)
- Samuel Monzem
- Veterinary College, Federal University of Mato Grosso, Cuiaba, Mato Grosso, Brazil.,The Skeletal Biology Group - Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Rafael Y Ballester
- Biomaterials and Oral Biology Department, University of São Paulo, São Paulo, Brazil
| | - Behzad Javaheri
- The Skeletal Biology Group - Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Blandine Poulet
- Musculoskeletal Biology group, University of Liverpool Institute of Ageing and Chronic Disease, Liverpool, UK
| | - Dábila A Sônego
- Veterinary College, Federal University of Mato Grosso, Cuiaba, Mato Grosso, Brazil
| | - Andrew A Pitsillides
- The Skeletal Biology Group - Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Roberto L Souza
- Veterinary College, Federal University of Mato Grosso, Cuiaba, Mato Grosso, Brazil
| |
Collapse
|
2
|
Influence of accelerated ageing on the physical properties of CAD/CAM restorative materials. Clin Oral Investig 2019; 24:2415-2425. [DOI: 10.1007/s00784-019-03101-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022]
|
3
|
Niem T, Youssef N, Wöstmann B. Energy dissipation capacities of CAD-CAM restorative materials: A comparative evaluation of resilience and toughness. J Prosthet Dent 2019; 121:101-109. [DOI: 10.1016/j.prosdent.2018.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 01/02/2023]
|
4
|
Meixner CN, Aref MW, Gupta A, McNerny EMB, Brown D, Wallace JM, Allen MR. Raloxifene Improves Bone Mechanical Properties in Mice Previously Treated with Zoledronate. Calcif Tissue Int 2017; 101:75-81. [PMID: 28246928 PMCID: PMC5459622 DOI: 10.1007/s00223-017-0257-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/16/2017] [Indexed: 12/18/2022]
Abstract
Bisphosphonates represent the gold-standard pharmaceutical agent for reducing fracture risk. Long-term treatment with bisphosphonates can result in tissue brittleness which in rare clinical cases manifests as atypical femoral fracture. Although this has led to an increasing call for bisphosphonate cessation, few studies have investigated therapeutic options for follow-up treatment. The goal of this study was to test the hypothesis that treatment with raloxifene, a drug that has cell-independent effects on bone mechanical material properties, could reverse the compromised mechanical properties that occur following zoledronate treatment. Skeletally mature male C57Bl/6J mice were treated with vehicle (VEH), zoledronate (ZOL), or ZOL followed by raloxifene (RAL; 2 different doses). At the conclusion of 8 weeks of treatment, femora were collected and assessed with microCT and mechanical testing. Trabecular BV/TV was significantly higher in all treated animals compared to VEH with both RAL groups having significantly higher BV/TV compared to ZOL (+21%). All three drug-treated groups had significantly more cortical bone area, higher cortical thickness, and greater moment of inertia at the femoral mid-diaphysis compared to VEH with no difference among the three treated groups. All three drug-treated groups had significantly higher ultimate load compared to VEH-treated animals (+14 to 18%). Both doses of RAL resulted in significantly higher displacement values compared to ZOL-treated animals (+25 to +50%). In conclusion, the current work shows beneficial effects of raloxifene in animals previously treated with zoledronate. The higher mechanical properties of raloxifene-treated animals, combined with similar cortical bone geometry compared to animals treated with zoledronate, suggest that the raloxifene treatment is enhancing mechanical material properties of the tissue.
Collapse
Affiliation(s)
- Cory N Meixner
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, MS 5035, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Mohammad W Aref
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, MS 5035, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Aryaman Gupta
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, MS 5035, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Erin M B McNerny
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, MS 5035, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Drew Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, MS 5035, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Joseph M Wallace
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, MS 5035, 635 Barnhill Dr., Indianapolis, IN, 46202, USA.
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Zheng N, Tang N, Qin L. Atypical femoral fractures and current management. J Orthop Translat 2016; 7:7-22. [PMID: 30035084 PMCID: PMC5987564 DOI: 10.1016/j.jot.2016.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 01/22/2023] Open
Abstract
With the rapid increase in patients receiving bisphosphonates (BPs) for treating osteoporosis, one of the clinical complications associated with its long-term use is atypical femoral fractures (AFFs). Although the absolute risk for AFFs is low and it was a consensus that AFFs were acceptable compared with the amount of osteoporotic fractures BPs have prevented, epidemiological studies have proved that BPs had a strong association with AFFs and possibly more people were going to suffer from this adverse effect with wide prescriptions of this drug. In addition, AFFs seemed to have impaired ability to heal. Thus, to understand the mechanism(s) behind AFFs is important and desirable for considering preventive measures. This article reviewed the clinical features of AFFs as well as potential underlining pathological characteristics, such as the decreased turnover rate caused by BPs that led to multiple-level alternations, e.g., changes not only at cellular and tissue levels, but also related to changes in bone micro- and macrostructure and organic/inorganic contents, leading to potentially compromised mechanical properties of cortical bone when exposed to prolonged BP therapy. Severely suppressed bone turnover may also be the underlying mechanism for impaired fracture healing in patients with AFFs. The rising concerns about the risk for AFFs in nonosteoporotic patients receiving high-dose BPs to treat cancers were also discussed. Detailed investigation will help develop potential targeted pharmacological treatments such as parathyroid hormone. In addition, potential innovative internal fixation implants were discussed with regard to dynamic and biological fixation for enhancing AFF repair.
Collapse
Affiliation(s)
- Nianye Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Ning Tang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
6
|
Fyhrie DP, Christiansen BA. Bone Material Properties and Skeletal Fragility. Calcif Tissue Int 2015; 97:213-28. [PMID: 25939648 DOI: 10.1007/s00223-015-9997-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/07/2015] [Indexed: 12/27/2022]
Abstract
Deformations of vertebrae and sudden fractures of long bones caused by essentially normal loading are a characteristic problem in osteoporosis. If the loading is normal, then the explanation for and prediction of unexpected bone failure lies in understanding the mechanical properties of the whole bone-which come from its internal and external geometry, the mechanical properties of the hard tissue, and from how well the tissue repairs damage. Modern QCT and MRI imaging systems can measure the geometry of the mineralized tissue quite well in vivo-leaving the mechanical properties of the hard tissue and the ability of bone to repair damage as important unknown factors in predicting fractures. This review explains which material properties must be measured to understand why some bones fail unexpectedly despite our current ability to determine bone geometry and bone mineral content in vivo. Examples of how to measure the important mechanical properties are presented along with some analysis of potential drawbacks of each method. Particular attention is given to methods useful to characterize the loss of bone toughness caused by mechanical fatigue, drug side effects, and damage to the bone matrix.
Collapse
Affiliation(s)
- David P Fyhrie
- Department of Orthopaedic Surgery, University of California-Davis Medical Center, 4635 2nd Ave, Suite 2000, Sacramento, CA, 95817, USA,
| | | |
Collapse
|
7
|
Ng AH, Willett TL, Alman BA, Grynpas MD. Development, validation and characterization of a novel mouse model of Adynamic Bone Disease (ABD). Bone 2014; 68:57-66. [PMID: 25111968 DOI: 10.1016/j.bone.2014.07.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 11/29/2022]
Abstract
The etiology of Adynamic Bone Disease (ABD) is poorly understood but the hallmark of ABD is a lack of bone turnover. ABD occurs in renal osteodystrophy (ROD) and is suspected to occur in elderly patients on long-term anti-resorptive therapy. A major clinical concern of ABD is diminished bone quality and an increased fracture risk. To our knowledge, experimental animal models for ABD other than ROD-ABD have not been developed or studied. The objectives of this study were to develop a mouse model of ABD without the complications of renal ablation, and to characterize changes in bone quality in ABD relative to controls. To re-create the adynamic bone condition, 4-month old female Col2.3Δtk mice were treated with ganciclovir to specifically ablate osteoblasts, and pamidronate was used to inhibit osteoclastic resorption. Four groups of animals were used to characterize bone quality in ABD: Normal bone controls, No Formation controls, No Resorption controls, and an Adynamic group. After a 6-week treatment period, the animals were sacrificed and the bones were harvested for analyses. Bone quality assessments were conducted using established techniques including bone histology, quantitative backscattered electron imaging (qBEI), dual energy X-ray absorptiometry (DXA), microcomputed tomography (microCT), and biomechanical testing. Histomorphometry confirmed osteoblast-related hallmarks of ABD in our mouse model. Bone formation was near complete suppression in the No Formation and Adynamic specimens. Inhibition of bone resorption in the Adynamic group was confirmed by tartrate-resistant acid phosphatase (TRAP) stain. Normal bone mineral density and architecture were maintained in the Adynamic group, whereas the No Formation group showed a reduction in bone mineral content and trabecular thickness relative to the Adynamic group. As expected, the No Formation group had a more hypomineralized profile and the Adynamic group had a higher mean mineralization profile that is similar to suppressed bone turnover in human. This data confirms successful replication of the adynamic bone condition in a mouse without the complication of renal ablation. Our approach is the first model of ABD that uses pharmacological manipulation in a transgenic mouse to mimic the bone cellular dynamics observed in the human ABD condition. We plan to use our mouse model to investigate the adynamic bone condition in aging and to study changes to bone quality and fracture risk as a consequence of over-suppressed bone turnover.
Collapse
Affiliation(s)
- Adeline H Ng
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Thomas L Willett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin A Alman
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Marc D Grynpas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|