1
|
Wilson BJ, Owston HE, Iqbal N, Giannoudis PV, McGonagle D, Pandit H, Philipose Pampadykandathil L, Jones E, Ganguly P. In Vitro Osteogenesis Study of Shell Nacre Cement with Older and Young Donor Bone Marrow Mesenchymal Stem/Stromal Cells. Bioengineering (Basel) 2024; 11:143. [PMID: 38391629 PMCID: PMC10886325 DOI: 10.3390/bioengineering11020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Bone void-filling cements are one of the preferred materials for managing irregular bone voids, particularly in the geriatric population who undergo many orthopedic surgeries. However, bone marrow mesenchymal stem/stromal cells (BM-MSCs) of older-age donors often exhibit reduced osteogenic capacity. Hence, it is crucial to evaluate candidate bone substitute materials with BM-MSCs from the geriatric population to determine the true osteogenic potential, thus simulating the clinical situation. With this concept, we investigated the osteogenic potential of shell nacre cement (SNC), a bone void-filling cement based on shell nacre powder and ladder-structured siloxane methacrylate, using older donor BM-MSCs (age > 55 years) and young donor BM-MSCs (age < 30 years). Direct and indirect cytotoxicity studies conducted with human BM-MSCs confirmed the non-cytotoxic nature of SNC. The standard colony-forming unit-fibroblast (CFU-F) assay and population doubling (PD) time assays revealed a significant reduction in the proliferation potential (p < 0.0001, p < 0.05) in older donor BM-MSCs compared to young donor BM-MSCs. Correspondingly, older donor BM-MSCs contained higher proportions of senescent, β-galactosidase (SA-β gal)-positive cells (nearly 2-fold, p < 0.001). In contrast, the proliferation capacity of older donor BM-MSCs, measured as the area density of CellTrackerTM green positive cells, was similar to that of young donor BM-MSCs following a 7-day culture on SNC. Furthermore, after 14 days of osteoinduction on SNC, scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) showed that the amount of calcium and phosphorus deposited by young and older donor BM-MSCs on SNC was comparable. A similar trend was observed in the expression of the osteogenesis-related genes BMP2, RUNX2, ALP, COL1A1, OMD and SPARC. Overall, the results of this study indicated that SNC would be a promising candidate for managing bone voids in all age groups.
Collapse
Affiliation(s)
- Bridget Jeyatha Wilson
- Division of Dental Products, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012, India
| | - Heather Elizabeth Owston
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
| | - Neelam Iqbal
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Peter V. Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
- Leeds Orthopaedic & Trauma Sciences, Leeds General Infirmary, University of Leeds, Leeds LS2 9JT, UK
- Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
- Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
- Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Lizymol Philipose Pampadykandathil
- Division of Dental Products, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012, India
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
| |
Collapse
|
2
|
Abstract
Nonunions represent a very heterogeneous, rare and sometimes very complex disease picture. The causes, localization and degree of expression show a very high variability, which makes it difficult to establish uniform treatment standards. Nevertheless, the process of bone healing is subject to some essential factors, which should be ensured for a successful treatment. Over the years these factors have been better researched and were taken into consideration for the diamond concept, which was first published by Giannoudis et al. in 2007. This provides the physician with a concept that does not neglect the heterogeneity of the disease picture and is an aid to decision making for the treatment regimen in individual cases in order to guarantee the best biological and mechanical conditions. The diamond concept is nowadays widely used and many studies have already demonstrated a successful application. It must be understood as a framework, in which the various treatment options available (bone substitute materials, mesenchymal stem cells, osteosynthesis procedures etc.) are incorporated into the individual factors and therefore provides the physician with a certain freedom of choice in the selection of tools. Additionally, it is not a rigid corset and subject to medical scientific progress in its factors, so that it is exciting to see which new developments will be incorporated in the future.
Collapse
|
3
|
Colony Formation, Migratory, and Differentiation Characteristics of Multipotential Stromal Cells (MSCs) from "Clinically Accessible" Human Periosteum Compared to Donor-Matched Bone Marrow MSCs. Stem Cells Int 2019; 2019:6074245. [PMID: 31871468 PMCID: PMC6906873 DOI: 10.1155/2019/6074245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Periosteum is vital for fracture healing, as a highly vascular and multipotential stromal cell- (MSC-) rich tissue. During surgical bone reconstruction, small fragments of periosteum can be “clinically accessible,” yet periosteum is currently not ultilised, unlike autologous bone marrow (BM) aspirate. This study is aimed at comparing human periosteum and donor-matched iliac crest BM MSC content and characterising MSCs in terms of colony formation, growth kinetics, phenotype, cell migration patterns, and trilineage differentiation capacity. “Clinically accessible” periosteum had an intact outer fibrous layer, containing CD271+ candidate MSCs located perivasculary; the inner cambium was rarely present. Following enzymatic release of cells, periosteum formed significantly smaller fibroblastic colonies compared to BM (6.1 mm2 vs. 15.5 mm2, n = 4, P = 0.0006). Periosteal colonies were more homogenous in size (range 2-30 mm2 vs. 2-54 mm2) and on average 2500-fold more frequent (2.0% vs. 0.0008%, n = 10, P = 0.004) relative to total viable cells. When expanded in vitro, similar growth rates up to passage 0 (P0) were seen (1.8 population doublings (PDs) per day (periosteum), 1.6 PDs per day (BM)); however, subsequently BM MSCs proliferated significantly slower by P4 (4.3 PDs per day (periosteum) vs. 9.3 PDs per day (BM), n = 9, P = 0.02). In early culture, periosteum cells were less migratory at slower speeds than BM cells. Both MSC types exhibited MSC phenotype and trilineage differentiation capacity; however, periosteum MSCs showed significantly lower (2.7-fold) adipogenic potential based on Nile red : DAPI ratios with reduced expression of adipogenesis-related transcripts PPAR-γ. Altogether, these data revealed that “clinically accessible” periosteal samples represent a consistently rich source of highly proliferative MSCs compared to donor-matched BM, which importantly show similar osteochondral capacity and lower adipogenic potential. Live cell tracking allowed determination of unique morphological and migration characteristics of periosteal MSCs that can be used for the development of novel bone graft substitutes to be preferentially repopulated by these cells.
Collapse
|
4
|
Bracey DN, Jinnah AH, Willey JS, Seyler TM, Hutchinson ID, Whitlock PW, Smith TL, Danelson KA, Emory CL, Kerr BA. Investigating the Osteoinductive Potential of a Decellularized Xenograft Bone Substitute. Cells Tissues Organs 2019; 207:97-113. [PMID: 31655811 PMCID: PMC6935535 DOI: 10.1159/000503280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Bone grafting is the second most common tissue transplantation procedure worldwide. One of the alternative methods for bone repair under investigation is a tissue-engineered bone substitute. An ideal property of tissue-engineered bone substitutes is osteoinductivity, defined as the ability to stimulate primitive cells to differentiate into a bone-forming lineage. In the current study, we use a decellularization and oxidation protocol to produce a porcine bone scaffold and examine whether it possesses osteoinductive potential and can be used to create a tissue-engineered bone microenvironment. The decellularization protocol was patented by our lab and consists of chemical decellularization and oxidation steps using combinations of deionized water, trypsin, antimicrobials, peracetic acid, and triton-X100. To test if the bone scaffold was a viable host, preosteoblasts were seeded and analyzed for markers of osteogenic differentiation. The osteoinductive potential was observed in vitro with similar osteogenic markers being expressed in preosteoblasts seeded on the scaffolds and demineralized bone matrix. To assess these properties in vivo, scaffolds with and without preosteoblasts preseeded were subcutaneously implanted in mice for 4 weeks. MicroCT scanning revealed 1.6-fold increased bone volume to total volume ratio and 1.4-fold increase in trabecular thickness in scaffolds after implantation. The histological analysis demonstrates new bone formation and blood vessel formation with pentachrome staining demonstrating osteogenesis and angiogenesis, respectively, within the scaffold. Furthermore, CD31+ staining confirmed the endothelial lining of the blood vessels. These results demonstrate that porcine bone maintains its osteoinductive properties after the application of a patented decellularization and oxidation protocol developed in our laboratory. Future work must be performed to definitively prove osteogenesis of human mesenchymal stem cells, biocompatibility in large animal models, and osteoinduction/osseointegration in a relevant clinical model in vivo. The ability to create a functional bone microenvironment using decellularized xenografts will impact regenerative medicine, orthopedic reconstruction, and could be used in the research of multiple diseases.
Collapse
Affiliation(s)
- Daniel N. Bracey
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
| | - Alexander H. Jinnah
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
| | - Jeffrey S. Willey
- Wake Forest Baptist Medical Center, Radiation Oncology, Winston Salem, NC, USA
| | | | | | | | - Thomas L. Smith
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
| | - Kerry A. Danelson
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
| | - Cynthia L. Emory
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
| | - Bethany A. Kerr
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
- Virginia Tech-Wake Forest University School for Bioengineering and Sciences, Winston Salem, NC, USA
- Wake Forest School of Medicine, Cancer Biology, Winston Salem, NC, USA
| |
Collapse
|
5
|
Basic Science and Clinical Application of Reamed Sources for Autogenous Bone Graft Harvest. J Am Acad Orthop Surg 2018; 26:420-428. [PMID: 29781821 DOI: 10.5435/jaaos-d-16-00512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Autologous bone graft remains the only clinically available source of graft material with osteogenic, osteoinductive, and osteoconductive properties. Although iliac crest autologous bone graft has long served as the benchmark, reamed autogenous bone graft offers several advantages. Reamed autograft has a biochemical and cellular profile that is at least equivalent, and perhaps superior, to that of iliac crest autograft. In addition, larger volumes of reamed autograft can be obtained via less-invasive techniques, giving surgeons an accessible source of mesenchymal stem cells that can be reliably and repeatedly harvested. Early clinical experience involving reamed autogenous bone graft in the management of nonunion, bone defects, and arthrodesis has been encouraging and has demonstrated the necessary properties to warrant regular consideration of reamed graft for these applications.
Collapse
|
6
|
Vertebral body versus iliac crest bone marrow as a source of multipotential stromal cells: Comparison of processing techniques, tri-lineage differentiation and application on a scaffold for spine fusion. PLoS One 2018; 13:e0197969. [PMID: 29795650 PMCID: PMC5967748 DOI: 10.1371/journal.pone.0197969] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 05/13/2018] [Indexed: 01/25/2023] Open
Abstract
The potential use of bone progenitors, multipotential stromal cells (MSCs) helping spine fusion is increasing, but convenient MSC sources and effective processing methods are critical factors yet to be optimised. The aim of this study was to test the effect of bone marrow processing on the MSC abundance and to compare the differentiation capabilities of vertebral body-bone marrow (VB-BM) MSCs versus iliac crest-bone marrow (IC-BM) MSCs. We assessed the effect of the red blood cell lysis (ammonium chloride, AC) and density-gradient centrifugation (Lymphoprep™, LMP), on the extracted VB-BM and IC-BM MSC numbers. The MSC abundance (indicated by colony counts and CD45lowCD271high cell numbers), phenotype, proliferation and tri-lineage differentiation of VB-BM MSCs were compared with donor-matched IC-BM MSCs. Importantly, the MSC attachment and osteogenesis were examined when VB-BM and IC-BM samples were loaded on a beta-tricalcium phosphate scaffold. In contrast to LMP, using AC yielded more colonies from IC-BM and VB-BM aspirates (p = 0.0019 & p = 0.0201 respectively). For IC-BM and VB-BM, the colony counts and CD45lowCD271high cell numbers were comparable (p = 0.5186, p = 0.2640 respectively). Furthermore, cultured VB-BM MSCs exhibited the same phenotype, proliferative and adipogenic potential, but a higher osteogenic and chondrogenic capabilities than IC-BM MSCs (p = 0.0010 and p = 0.0005 for calcium and glycosaminoglycan (GAG) levels, respectively). The gene expression data confirmed higher chondrogenesis for VB-BM MSCs than IC-BM MSCs, but osteogenic gene expression levels were comparable. When loaded on Vitoss™, both MSCs showed a similar degree of attachment and survival, but a better osteogenic ability was detected for VB-BM MSCs as measured by alkaline phosphatase activity (p = 0.0386). Collectively, the BM processing using AC had more MSC yield than using LMP. VB-BM MSCs have a comparable phenotype and proliferative capacity, but higher chondrogenesis and osteogenesis with or without using scaffold than donor-matched IC-BM MSCs. Given better accessibility, VB-BM could be an ideal MSC source for spinal bone fusion.
Collapse
|
7
|
Prabha RD, Kraft DCE, Harkness L, Melsen B, Varma H, Nair PD, Kjems J, Kassem M. Bioactive nano‐fibrous scaffold for vascularized craniofacial bone regeneration. J Tissue Eng Regen Med 2017; 12:e1537-e1548. [DOI: 10.1002/term.2579] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 08/05/2017] [Accepted: 09/23/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Rahul Damodaran Prabha
- Department of Endocrinology and MetabolismUniversity Hospital of Odense Odense Denmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University Aarhus Denmark
- Section of Orthodontics, Department of DentistryAarhus University Aarhus Denmark
| | | | - Linda Harkness
- Department of Endocrinology and MetabolismUniversity Hospital of Odense Odense Denmark
| | - Birte Melsen
- Section of Orthodontics, Department of DentistryAarhus University Aarhus Denmark
| | - Harikrishna Varma
- Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST) Thiruvananthapuram Kerala India
| | - Prabha D. Nair
- Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST) Thiruvananthapuram Kerala India
| | - Jorgen Kjems
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University Aarhus Denmark
| | - Moustapha Kassem
- Department of Endocrinology and MetabolismUniversity Hospital of Odense Odense Denmark
| |
Collapse
|
8
|
El‐Jawhari JJ, Sanjurjo‐Rodríguez C, Jones E, Giannoudis PV. Collagen-containing scaffolds enhance attachment and proliferation of non-cultured bone marrow multipotential stromal cells. J Orthop Res 2016; 34:597-606. [PMID: 26466765 PMCID: PMC5063164 DOI: 10.1002/jor.23070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 10/12/2015] [Indexed: 02/04/2023]
Abstract
Large bone defects are ideally treated with autografts, which have many limitations. Therefore, osteoconductive scaffolds loaded with autologous bone marrow (BM) aspirate are increasingly used as alternatives. The purpose of this study was to compare the growth of multipotential stromal cells (MSCs) from unprocessed BM on a collagen-containing bovine bone scaffold (Orthoss(®) Collagen) with a non-collagen-containing bovine bone scaffold, Orthoss(®) . Another collagen-containing synthetic scaffold, Vitoss(®) was included in the comparison. Colonization of scaffolds by BM MSCs (n = 23 donors) was evaluated using microscopy, colony forming unit-fibroblast assay and flow-cytometry. The number of BM MSCs initially attached to Orthoss(®) Collagen and Vitoss(®) was similar but greater than Orthoss(®) (p = 0.001 and p = 0.041, respectively). Furthermore, the number of MSCs released from Orthoss(®) Collagen and Vitoss(®) after 2-week culture was also higher compared to Orthoss(®) (p = 0.010 and p = 0.023, respectively). Interestingly, collagen-containing scaffolds accommodated larger numbers of lymphocytic and myelomonocytic cells. Additionally, the proliferation of culture-expanded MSCs on Orthoss(®) collagen and Vitoss(®) was greater compared to Orthoss(®) (p = 0.047 and p = 0.004, respectively). Collectively, collagen-containing scaffolds were superior in supporting the attachment and proliferation of MSCs when they were loaded with unprocessed BM aspirates. This highlights the benefit of collagen incorporation into bone scaffolds for use with autologous bone marrow aspirates as autograft substitutes.
Collapse
Affiliation(s)
- Jehan J. El‐Jawhari
- Academic Unit of Musculoskeletal DiseaseLeeds Institute of Rheumatic and Musculoskeletal MedicineSt. James University HospitalUniversity of LeedsLS9 7TFLeedsUnited Kingdom,NIHRLeeds Biomedical Research UnitChapel Allerton HospitalUniversity of LeedsLS7 4SALeedsUnited Kingdom
| | - Clara Sanjurjo‐Rodríguez
- Academic Unit of Musculoskeletal DiseaseLeeds Institute of Rheumatic and Musculoskeletal MedicineSt. James University HospitalUniversity of LeedsLS9 7TFLeedsUnited Kingdom
| | - Elena Jones
- Academic Unit of Musculoskeletal DiseaseLeeds Institute of Rheumatic and Musculoskeletal MedicineSt. James University HospitalUniversity of LeedsLS9 7TFLeedsUnited Kingdom,NIHRLeeds Biomedical Research UnitChapel Allerton HospitalUniversity of LeedsLS7 4SALeedsUnited Kingdom
| | - Peter V. Giannoudis
- Academic Unit of Musculoskeletal DiseaseLeeds Institute of Rheumatic and Musculoskeletal MedicineSt. James University HospitalUniversity of LeedsLS9 7TFLeedsUnited Kingdom,NIHRLeeds Biomedical Research UnitChapel Allerton HospitalUniversity of LeedsLS7 4SALeedsUnited Kingdom
| |
Collapse
|
9
|
|
10
|
Moghaddam A, Ermisch C, Schmidmaier G. Non-Union Current Treatment Concept. ACTA ACUST UNITED AC 2016. [DOI: 10.17795/soj-4546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Baboolal TG, Boxall SA, El-Sherbiny YM, Moseley TA, Cuthbert RJ, Giannoudis PV, McGonagle D, Jones E. Multipotential stromal cell abundance in cellular bone allograft: comparison with fresh age-matched iliac crest bone and bone marrow aspirate. Regen Med 2014; 9:593-607. [PMID: 24617969 PMCID: PMC4077757 DOI: 10.2217/rme.14.17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM To enumerate and characterize multipotential stromal cells (MSCs) in a cellular bone allograft and compare with fresh age-matched iliac crest bone and bone marrow (BM) aspirate. MATERIALS & METHODS MSC characterization used functional assays, confocal/scanning electron microscopy and whole-genome microarrays. Resident MSCs were enumerated by flow cytometry following enzymatic extraction. RESULTS Allograft material contained live osteocytes and proliferative bone-lining cells defined as MSCs by phenotypic and functional capacities. Without cultivation/expansion, the allograft displayed an 'osteoinductive' molecular signature and the presence of CD45(-)CD271(+)CD73(+)CD90(+)CD105(+) MSCs; with a purity over 100-fold that of iliac crest bone. In comparison with BM, MSC numbers enzymatically released from 1 g of cellular allograft were equivalent to approximately 45 ml of BM aspirate. CONCLUSION Cellular allograft bone represents a unique nonimmune material rich in MSCs and osteocytes. This osteoinductive graft represents an attractive alternative to autograft bone or composite/synthetic grafts in orthopedics and broader regenerative medicine settings.
Collapse
Affiliation(s)
- Thomas G Baboolal
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | - Sally A Boxall
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | - Yasser M El-Sherbiny
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | | | - Richard J Cuthbert
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | - Elena Jones
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| |
Collapse
|