1
|
Tollabi M, Poursalehi Z, Mehrafshar P, Bakhtiari R, Sarmadi VH, Tayebi L, Haramshahi SMA. Insight into the role of integrins and integrins-targeting biomaterials in bone regeneration. Connect Tissue Res 2024; 65:343-363. [PMID: 39297793 PMCID: PMC11541888 DOI: 10.1080/03008207.2024.2396002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/06/2024] [Accepted: 08/19/2024] [Indexed: 10/17/2024]
Abstract
Features of the extracellular matrix, along with biochemical factors, have a momentous impress in making genes on and/or off. The interaction of cells and the extracellular matrix is mediated by integrins. Therefore, these molecules have pivotal roles in regulating cell behaviors. Integrins include a group of molecules with a variety of characteristics that can affect different molecular cascades. Considering the importance of these molecules in tissue regeneration after injury, it is necessary to know well the integrins involved in the process of connecting cells to the extracellular matrix in each tissue.With the increase in life expectancy, bone tissue engineering has received more attention from researchers. Integrins are critical components in osteoblast differentiation, survival, and bone mechanotransduction. During osteogenic differentiation in stem cells, specific integrins facilitate multiple signaling pathways through their cytoplasmic domain, leading to the induction of osteogenic differentiation. Also, due to the importance of using biomaterials in bone tissue engineering, efforts have been made to design and use biomaterials with maximum interaction with integrins. Notably, the use of RGD peptide or fibronectin for surface modification is a well-established and commonly employed approach to manipulate integrin activity.This review article looks into integrins' role in bone development and regeneration. It then goes on to explore the complex mechanisms by which integrins contribute to these processes. In addition, this review discusses the use of natural and synthetic biomaterials that target integrins to promote bone regeneration.
Collapse
Affiliation(s)
- Mohammad Tollabi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Poursalehi
- Department of Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parichehr Mehrafshar
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Seyed Mohammad Amin Haramshahi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Hazrate Fatemeh Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Li M, Yu X, Chen X, Jiang Y, Zeng Y, Ren R, Nie M, Zhang Z, Bao Y, Kang H. Genkwanin alleviates intervertebral disc degeneration via regulating ITGA2/PI3K/AKT pathway and inhibiting apoptosis and senescence. Int Immunopharmacol 2024; 133:112101. [PMID: 38640717 DOI: 10.1016/j.intimp.2024.112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a progressive degenerative disease influenced by various factors. Genkwanin, a known anti-inflammatory flavonoid, has not been explored for its potential in IVDD management. This study aims to investigate the effects and mechanisms of genkwanin on IVDD. In vitro, cell experiments revealed that genkwanin dose-dependently inhibited Interleukin-1β-induced expression levels of inflammatory factors (Interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2) and degradation metabolic protein (matrix metalloproteinase-13). Concurrently, genkwanin upregulated the expression of synthetic metabolism genes (type II collagen, aggrecan). Moreover, genkwanin effectively reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways. Transcriptome sequencing analysis identified integrin α2 (ITGA2) as a potential target of genkwanin, and silencing ITGA2 reversed the activation of PI3K/AKT pathway induced by Interleukin-1β. Furthermore, genkwanin alleviated Interleukin-1β-induced senescence and apoptosis in nucleus pulposus cells. In vivo animal experiments demonstrated that genkwanin mitigated the progression of IVDD in the rat model through imaging and histological examinations. In conclusion, This study suggest that genkwanin inhibits inflammation in nucleus pulposus cells, promotes extracellular matrix remodeling, suppresses cellular senescence and apoptosis, through the ITGA2/PI3K/AKT, NF-κB and MAPK signaling pathways. These findings indicate that genkwanin may be a promising therapeutic candidate for IVDD.
Collapse
Affiliation(s)
- Mengwei Li
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojun Yu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
| | - Xin Chen
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yongqiao Jiang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunqian Zeng
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ranyue Ren
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mingbo Nie
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziyang Zhang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuan Bao
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Hao Kang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Qian W, Li Z. Expression and diagnostic significance of integrin beta-2 in synovial fluid of patients with osteoarthritis. J Orthop Surg (Hong Kong) 2023; 31:10225536221147213. [PMID: 37379363 DOI: 10.1177/10225536221147213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is characterized by synovial cartilage degeneration and is the leading cause of disability and pain worldwide. This study sought to investigate the expression of integrin beta-2 (ITGB2) in synovial fluid of OA patients and its clinical significance. METHODS A total of 110 OA patients were enrolled, who were classified into grade I (N = 35), II (N = 42), and III (N = 33) according to the Kellgren-Lawrence classification, with 110 healthy subjects as controls, and their clinical data were compared. ITGB2 level was detected by RT-qPCR. The receiver operating characteristic curve was used to analyze the predictive value of ITGB2 on OA occurrence. The correlation between ITGB2 and bone metabolism indexes procollagen type I N-terminal peptide (PINP), bone glaprotein (BGP), bone alkaline phosphatase (BALP), and β-collagen I telopeptide (β-CTX) was analyzed by the Pearson method. Logistic regression model was performed to analyze the influencing factors of OA. RESULTS The content of red blood cells, white blood cells, PINP, BGP, and BALP was lowered in OA patients, while β-CTX was elevated. ITGB2 was highly-expressed in OA patients, negatively-correlated with PINP, BGP, and BALP, but positively-correlated with β-CTX. ITGB2 level increased with the elevation of OA grade. The ITGB2 level >1.375 had certain diagnostic values for OA. ITGB2 level is related to OA severity and may be a biomarker for OA classification. ITGB2 was an independent risk factor for OA. CONCLUSION High expression of ITGB2 in synovial fluid can assist OA diagnosis and may be a biomarker for OA grade.
Collapse
Affiliation(s)
- Weiwei Qian
- Hangzhou Fuyang District Bone Injury Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Zhen Li
- Hangzhou Fuyang District Bone Injury Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
4
|
Osteopontin: A Bone-Derived Protein Involved in Rheumatoid Arthritis and Osteoarthritis Immunopathology. Biomolecules 2023; 13:biom13030502. [PMID: 36979437 PMCID: PMC10046882 DOI: 10.3390/biom13030502] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Osteopontin (OPN) is a bone-derived phosphoglycoprotein related to physiological and pathological mechanisms that nowadays has gained relevance due to its role in the immune system response to chronic degenerative diseases, including rheumatoid arthritis (RA) and osteoarthritis (OA). OPN is an extracellular matrix (ECM) glycoprotein that plays a critical role in bone remodeling. Therefore, it is an effector molecule that promotes joint and cartilage destruction observed in clinical studies, in vitro assays, and animal models of RA and OA. Since OPN undergoes multiple modifications, including posttranslational changes, proteolytic cleavage, and binding to a wide range of receptors, the mechanisms by which it produces its effects, in some cases, remain unclear. Although there is strong evidence that OPN contributes significantly to the immunopathology of RA and OA when considering it as a common denominator molecule, some experimental trial results argue for its protective role in rheumatic diseases. Elucidating in detail OPN involvement in bone and cartilage degeneration is of interest to the field of rheumatology. This review aims to provide evidence of the OPN’s multifaceted role in promoting joint and cartilage destruction and propose it as a common denominator of AR and OA immunopathology.
Collapse
|
5
|
Sumsuzzman DM, Khan ZA, Choi J, Hong Y. Assessment of functional roles and therapeutic potential of integrin receptors in osteoarthritis: A systematic review and meta-analysis of preclinical studies. Ageing Res Rev 2022; 81:101729. [PMID: 36087701 DOI: 10.1016/j.arr.2022.101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/22/2022] [Accepted: 09/03/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Integrins are heterodimeric transmembrane receptors that mediate a variety of biological function and plays a critical role in osteoarthritis (OA) pathogenesis, which may provide new targets for the development of OA therapies. However, the roles of integrins in different stages of OA remain elusive. OBJECTIVES This study aimed to synthesize all published preclinical evidence on the roles of integrin receptors in different stages of OA to identify the potential target for drug development in alleviating OA pathogenesis. METHODS Major electronic databases were used to identify related original articles. The methodological quality of all included studies was appraised using the SYRCLE risk of bias tool. We used the generic inverse variance with random effects model to calculate standardized mean differences (SMDs) and 95% confidence interval (CI). RESULTS Seventeen studies were included in this systematic review. Integrin α5β1 activation increases the histopathological score both in early [SMD, 6.39; 95%CI (2.90, 9.87); p = 0.0003] and late [SMD, 3.41; 95%CI (2.44, 4.38); p < 0.00001] stage of OA. Integrin α5β1 also increased the core catabolic factors like MMP-3, IL-1β, and TNF-α. Interestingly, the inactivation of α5β1 integrin did not change the histopathological score (p = 0.84). Similarly, β1 integrin notably increased histopathological score at both stages of OA [early; SMD, 7.13; 95%CI (2.01, 12.24); p = 0.006]; [late; SMD, 10.25; 95%CI (5.11, 15.39); p < 0.0001], and increased the MMP-13 levels. However, integrin β1 was upregulated at the early stage and downregulated at the late stage of OA. Furthermore, α2β1 integrin significantly increased histopathological score [SMD, 3.14; 95%CI (2.18, 4.10); p < 0.00001] and MMP-13 [SMD, 2.24; 95%CI (0.07, 4.41); p = 0.04]. Deactivating integrin α1β1 increased histopathological score in late [SMD, 1.53; 95%CI (0.80, 2.26); p < 0.0001], but not in early [SMD, 0.90; 95%CI (-1.65, 3.45); p = 0.49] stage of OA. CONCLUSION This study provides evidence that α5β1, α2β1, and α1β1 integrin might be the potential target for future drug development in alleviating OA pathogenesis. Further work is required to establish our findings through activating/deactivating these receptors in different stages of OA.
Collapse
Affiliation(s)
- Dewan Md Sumsuzzman
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea.
| | - Zeeshan Ahmad Khan
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea.
| | - Jeonghyun Choi
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea.
| | - Yonggeun Hong
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea; Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Republic of Korea.
| |
Collapse
|
6
|
Yang M, Zhang ZC, Liu Y, Chen YR, Deng RH, Zhang ZN, Yu JK, Yuan FZ. Function and Mechanism of RGD in Bone and Cartilage Tissue Engineering. Front Bioeng Biotechnol 2022; 9:773636. [PMID: 34976971 PMCID: PMC8714999 DOI: 10.3389/fbioe.2021.773636] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Bone and cartilage injury is common, tissue engineered scaffolds are potential means to repair. Because most of the scaffold materials used in bone and cartilage tissue engineering are bio-inert, it is necessary to increase the cellular adhesion ability of during tissue engineering reconstruction. The Arginine - Glycine - Aspartic acid (Arg-Gly-Asp, RGD) peptide family is considered as a specific recognition site for the integrin receptors. Integrin receptors are key regulators of cell-cell and cell-extracellular microenvironment communication. Therefore, the RGD polypeptide families are considered as suitable candidates for treatment of a variety of diseases and for the regeneration of various tissues and organs. Many scaffold material for tissue engineering and has been approved by US Food and Drug Administration (FDA) for human using. The application of RGD peptides in bone and cartilage tissue engineering was reported seldom. Only a few reviews have summarized the applications of RGD peptide with alloy, bone cements, and PCL in bone tissue engineering. Herein, we summarize the application progress of RGD in bone and cartilage tissue engineering, discuss the effects of structure, sequence, concentration, mechanical stimulation, physicochemical stimulation, and time stimulation of RGD peptide on cells differentiation, and introduce the mechanism of RGD peptide through integrin in the field of bone and cartilage tissue engineering.
Collapse
Affiliation(s)
- Meng Yang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zheng-Chu Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yan Liu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - You-Rong Chen
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Rong-Hui Deng
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Zi-Ning Zhang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Jia-Kuo Yu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Fu-Zhen Yuan
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| |
Collapse
|
7
|
Yue D, Du L, Zhang B, Wu H, Yang Q, Wang M, Pan J. Time-dependently Appeared Microenvironmental Changes and Mechanism after Cartilage or Joint Damage and the Influences on Cartilage Regeneration. Organogenesis 2021; 17:85-99. [PMID: 34806543 DOI: 10.1080/15476278.2021.1991199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cartilage and joint damage easily degenerates cartilage and turns into osteoarthritis (OA), which seriously affects human life and work, and has no cure currently. The temporal and spatial changes of multiple microenvironments upon the damage of cartilage and joint are noticed, including the emergences of inflammation, bone remodeling, blood vessels, and nerves, as well as alterations of extracellular and pericellular matrix, oxygen tension, biomechanics, underneath articular cartilage tissues, and pH value. This review summarizes the existing literatures on microenvironmental changes, mechanisms, and their negative effects on cartilage regeneration following cartilage and joint damage. We conclude that time-dependently rebuilding the multiple normal microenvironments of damaged cartilage is the key for cartilage regeneration after systematic studies for the timing and correlations of various microenvironment changes.
Collapse
Affiliation(s)
- Danyang Yue
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | - Lin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | - Bingbing Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | - Huan Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | - Qiong Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | - Min Wang
- Orthopedic Department, Xinqiao Hospital, Army Medical University, Chongqing, PR China
| | - Jun Pan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| |
Collapse
|
8
|
Stöckl S, Eitner A, Bauer RJ, König M, Johnstone B, Grässel S. Substance P and Alpha-Calcitonin Gene-Related Peptide Differentially Affect Human Osteoarthritic and Healthy Chondrocytes. Front Immunol 2021; 12:722884. [PMID: 34512650 PMCID: PMC8430215 DOI: 10.3389/fimmu.2021.722884] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that not only causes cartilage loss but also structural damage in all joint tissues. Joints are innervated by alpha-calcitonin gene-related peptide (αCGRP) and substance P (SP)-positive sensory nerve fibers. Alteration of sensory joint innervation could be partly responsible for degenerative changes in joints that contribute to the development of OA. Therefore, our aim was to analyze and compare the molecular effects of SP and αCGRP on the metabolism of articular chondrocytes from OA patients and non-OA cartilage donors. We treated the cells with SP or αCGRP and analysed the influence of these neuropeptides on chondrocyte metabolism and modulation of signaling pathways. In chondrocytes from healthy cartilage, SP had minimal effects compared with its effects on OA chondrocytes, where it induced inflammatory mediators, inhibited chondrogenic markers and promoted apoptosis and senescence. Treatment with αCGRP also increased apoptosis and senescence and reduced chondrogenic marker expression in OA chondrocytes, but stimulated an anabolic and protective response in healthy chondrocytes. The catabolic influence of SP and αCGRP might be due to activation of ERK signaling that could be counteracted by an increased cAMP response. We suggest that a switch between the G-subunits of the corresponding receptors after binding their ligands SP or αCGRP plays a central role in mediating the observed effects of sensory neuropeptides on chondrocytes.
Collapse
Affiliation(s)
- Sabine Stöckl
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Center for Medical Biotechnology, University of Regensburg, Regensburg, Germany
| | - Annett Eitner
- Department of Trauma, Hand and Reconstructive Surgery, Experimental Trauma Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany.,Department of Physiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Richard J Bauer
- Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias König
- Department of Orthopedics, University Medical Center Regensburg, Asklepios Klinikum Bad Abbach, Bad Abbach, Germany
| | - Brian Johnstone
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, OR, United States
| | - Susanne Grässel
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Center for Medical Biotechnology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Slovacek H, Khanna R, Poredos P, Jezovnik M, Hoppensteadt D, Fareed J, Hopkinson W. Interrelationship of Osteopontin, MMP-9 and ADAMTS4 in Patients With Osteoarthritis Undergoing Total Joint Arthroplasty. Clin Appl Thromb Hemost 2021; 26:1076029620964864. [PMID: 33350314 PMCID: PMC7758646 DOI: 10.1177/1076029620964864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by loss of articular cartilage, inflammation and pain, which sometimes necessitates total joint arthroplasty (TJA). Profiling biomarkers of cartilage degradation and inflammation is a promising area of research to understand the pathogenesis of OA. This study aims to report the post-operative fluctuations of 3 biomarkers of OA, osteopontin (OPN), matrix metalloproteinase-9 (MMP-9), and ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4), in patients undergoing TJA to further define the interaction among these biomarkers and delineate their role in OA pathogenesis. OPN is an extracellular matrix (ECM) glycoprotein with increased activity in OA and joint damage and is upregulated by either inflammation or cleavage by MMPs and thrombin. MMP-9 is known to cleave OPN and is upregulated by inflammatory markers, such as IL-1, IL-6 and CRP. ADAMTS4 is an enzyme that degrades aggrecan, a major component of cartilage. These biomarkers were measured in deidentified blood samples collected on the day of surgery, 1 day post-operatively, and day 5-7 post-operatively. MMP-9 and OPN levels were significantly elevated at all times, and ADAMTS4 was significantly decreased at baseline versus controls. OPN and ADAMTS4 inversely fluctuated post-operatively, indicating an interrelation between these 2 biomarkers. This study suggests that the upregulation of MMP-9 and therefore OPN then results in the downregulation of ADAMTS4. The relationship between OPN and thrombin also highlights the importance of monitoring for thrombotic complications. These biomarkers, along with thrombin-mediated cleavage products, may be helpful in the prognostic management of OA patients.
Collapse
Affiliation(s)
- Hannah Slovacek
- Department of Pathology and Laboratory Medicine, 25815Loyola University Medical Center, Maywood, IL, USA
| | - Rajan Khanna
- Department of Pathology and Laboratory Medicine, 25815Loyola University Medical Center, Maywood, IL, USA
| | - Pavel Poredos
- Medical Clinic Division of Vascular Medicine, 37663Ljubljana University Medical Center, Ljubljana, Slovenia
| | - Mateja Jezovnik
- Department of Advanced Cardiopulmonary Therapies and Transplantation, 12340University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Debra Hoppensteadt
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, 2456Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Jawed Fareed
- Cardiovascular Research Institute, 2456Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - William Hopkinson
- Health Sciences Division, Orthopaedic Surgery and Rehabilitation Department, 2456Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
10
|
Jin H, Jiang S, Wang R, Zhang Y, Dong J, Li Y. Mechanistic Insight Into the Roles of Integrins in Osteoarthritis. Front Cell Dev Biol 2021; 9:693484. [PMID: 34222261 PMCID: PMC8250141 DOI: 10.3389/fcell.2021.693484] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/19/2021] [Indexed: 01/13/2023] Open
Abstract
Osteoarthritis (OA), one of the most common degenerative diseases, is characterized by progressive degeneration of the articular cartilage and subchondral bone, as well as the synovium. Integrins, comprising a family of heterodimeric transmembrane proteins containing α subunit and β subunit, play essential roles in various physiological functions of cells, such as cell attachment, movement, growth, differentiation, and mechanical signal conduction. Previous studies have shown that integrin dysfunction is involved in OA pathogenesis. This review article focuses on the roles of integrins in OA, especially in OA cartilage, subchondral bone and the synovium. A clear understanding of these roles may influence the future development of treatments for OA.
Collapse
Affiliation(s)
- Hongfu Jin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shigang Jiang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruomei Wang
- Department of Endocrinology and Metabolic Diseases, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiangtao Dong
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Boraldi F, Lofaro FD, Quaglino D. Apoptosis in the Extraosseous Calcification Process. Cells 2021; 10:cells10010131. [PMID: 33445441 PMCID: PMC7827519 DOI: 10.3390/cells10010131] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
Extraosseous calcification is a pathologic mineralization process occurring in soft connective tissues (e.g., skin, vessels, tendons, and cartilage). It can take place on a genetic basis or as a consequence of acquired chronic diseases. In this last case, the etiology is multifactorial, including both extra- and intracellular mechanisms, such as the formation of membrane vesicles (e.g., matrix vesicles and apoptotic bodies), mitochondrial alterations, and oxidative stress. This review is an overview of extraosseous calcification mechanisms focusing on the relationships between apoptosis and mineralization in cartilage and vascular tissues, as these are the two tissues mostly affected by a number of age-related diseases having a progressively increased impact in Western Countries.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Correspondence:
| | - Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Interuniversity Consortium for Biotechnologies (CIB), Italy
| |
Collapse
|
12
|
Ehirchiou D, Bernabei I, Chobaz V, Castelblanco M, Hügle T, So A, Zhang L, Busso N, Nasi S. CD11b Signaling Prevents Chondrocyte Mineralization and Attenuates the Severity of Osteoarthritis. Front Cell Dev Biol 2020; 8:611757. [PMID: 33392201 PMCID: PMC7775404 DOI: 10.3389/fcell.2020.611757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a progressive joint disease that is strongly associated with calcium-containing crystal formation (mineralization) by chondrocytes leading ultimately to cartilage calcification. However, this calcification process is poorly understood and treatments targeting the underlying disease mechanisms are lacking. The CD11b/CD18 integrin (Mac-1 or αMβ2), a member of the beta 2 integrin family of adhesion receptors, is critically involved in the development of several inflammatory diseases, including rheumatoid arthritis and systemic lupus erythematosus. We found that in a collagen-induced arthritis, CD11b-deficient mice exhibited increased cartilage degradation compared to WT control animals. However, the functional significance of CD11b integrin signaling in the pathophysiology of chondrocytes remains unknown. CD11b expression was found in the extracellular matrix and in chondrocytes in both healthy and damaged human and murine articular cartilage. Primary murine CD11b KO chondrocytes showed increased mineralization when induced in vitro by secondary calciprotein particles (CPP) and quantified by Alizarin Red staining. This increased propensity to mineralize was associated with an increased alkaline phosphatase (Alp) expression (measured by qRT-PCR and activity assay) and an enhanced secretion of the pro-mineralizing IL-6 cytokine compared to control wild-type cells (measured by ELISA). Accordingly, addition of an anti-IL-6 receptor antibody to CD11b KO chondrocytes reduced significantly the calcification and identified IL-6 as a pro-mineralizing factor in these cells. In the same conditions, the ratio of qRT-PCR expression of collagen X over collagen II, and that of Runx2 over Sox9 (both ratio being indexes of chondrocyte hypertrophy) were increased in CD11b-deficient cells. Conversely, the CD11b activator LA1 reduced chondrocyte mineralization, Alp expression, IL-6 production and collagen X expression. In the meniscectomy (MNX) model of murine knee osteoarthritis, deficiency of CD11b led to more severe OA (OARSI scoring of medial cartilage damage in CD11b: 5.6 ± 1.8, in WT: 1.2 ± 0.5, p < 0.05, inflammation in CD11b: 2.8 ± 0.2, in WT: 1.4 ± 0.5). In conclusion, these data demonstrate that CD11b signaling prevents chondrocyte hypertrophy and chondrocyte mineralization in vitro and has a protective role in models of OA in vivo.
Collapse
Affiliation(s)
- Driss Ehirchiou
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Véronique Chobaz
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Mariela Castelblanco
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Thomas Hügle
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Li Zhang
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Wang J, Roberts S, Kuiper JH, Zhang W, Garcia J, Cui Z, Wright K. Characterization of regional meniscal cell and chondrocyte phenotypes and chondrogenic differentiation with histological analysis in osteoarthritic donor-matched tissues. Sci Rep 2020; 10:21658. [PMID: 33303888 PMCID: PMC7730426 DOI: 10.1038/s41598-020-78757-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Meniscus degeneration is closely related to the progression of knee osteoarthritis (OA). However, there is currently a lack of quantitative and objective metrics to assess OA meniscal cell phenotypes. In this study we investigated the phenotypic markers and chondrogenic potency of avascular and vascular meniscal cells and chondrocytes from medial OA knee joints (n = 10). Flow cytometry results showed that a significantly greater percentage of meniscal cells were positive for CD49b, CD49c and CD166 compared to donor-matched chondrocytes after 14 days in monolayer culture. The integrins, CD49b and CD29, were expressed at a significantly higher level on avascular meniscal cells derived from tissues with a more degenerated inner border than non-degenerate menisci, suggesting that the integrin family may play an important role in meniscus OA pathology. Collagen fibres arranged in a "tree-like" formation within the meniscus appeared to have less blood vessels associated with them in the vascular region of the most degenerate menisci, which may indicate that such structures are involved in the pathological process. We have demonstrated that meniscal cells derived from the lateral meniscus in medial OA patients have chondrogenic capacity in vitro and hence could represent a potential cell source to consider for meniscus tissue engineering.
Collapse
Affiliation(s)
- Jingsong Wang
- School of Pharmacy and Bioengineering, Keele University, Keele, ST5 5GB, Staffordshire, UK
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, SY10 7AG, Shropshire, UK
- Dalian Medical University, Dalian, 116044, China
| | - Sally Roberts
- School of Pharmacy and Bioengineering, Keele University, Keele, ST5 5GB, Staffordshire, UK
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, SY10 7AG, Shropshire, UK
| | - Jan Herman Kuiper
- School of Pharmacy and Bioengineering, Keele University, Keele, ST5 5GB, Staffordshire, UK
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, SY10 7AG, Shropshire, UK
| | - Weiguo Zhang
- Department of Orthopaedic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China
| | - John Garcia
- School of Pharmacy and Bioengineering, Keele University, Keele, ST5 5GB, Staffordshire, UK
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, SY10 7AG, Shropshire, UK
| | - Zhanfeng Cui
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, OX1 3PJ, UK
| | - Karina Wright
- School of Pharmacy and Bioengineering, Keele University, Keele, ST5 5GB, Staffordshire, UK.
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, SY10 7AG, Shropshire, UK.
| |
Collapse
|
14
|
Charlier E, Deroyer C, Neuville S, Plener Z, Malaise O, Ciregia F, Gillet P, Reuter G, Salvé M, Withofs N, Hustinx R, de Seny D, Malaise MG. Toward diagnostic relevance of the α Vβ 5, α Vβ 3, and α Vβ 6 integrins in OA: expression within human cartilage and spinal osteophytes. Bone Res 2020; 8:35. [PMID: 33083095 PMCID: PMC7527564 DOI: 10.1038/s41413-020-00110-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/06/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
We previously reported 18FPRGD2 uptake by the coxofemoral lining, intervertebral discs and facet joint osteophytes in OA using PET/SCAN imaging. However, the molecular mechanism by which the PRGD2 tracer interacts with joint tissues and osteophytes in OA remains unclear. As PRGD2 ligands are expected to belong to the RGD-specific integrin family, the purpose of this study was (i) to determine which integrin complexes display the highest affinity for PRGD2-based ligands, (ii) to analyze integrin expression in relevant tissues, and (iii) to test integrin regulation in chondrocytes using OA-related stimuli to increase the levels of fibrosis and ossification markers. To this end, the affinity of PRGD2-based ligands for five heterodimeric integrins was measured by competition with 125I-echistatin. In situ analyses were performed in human normal vs. OA cartilage and spinal osteophytes. Osteophytes were characterized by (immuno-)histological staining. Integrin subunit expression was tested in chondrocytes undergoing dedifferentiation, osteogenic differentiation, and inflammatory stimulation. The integrins αVβ5, αVβ3, and αVβ6 presented the highest affinity for PRGD2-based ligands. In situ, the expression of these integrins was significantly increased in OA compared to normal cartilage. Within osteophytes, the mean integrin expression score was significantly higher in blood vessels, fibrous areas, and cells from the bone lining than in osteocytes and cartilaginous zones. In vitro, the levels of integrin subunits were significantly increased during chondrocyte dedifferentiation (except for β6), fibrosis, and osteogenic differentiation as well as under inflammatory stimuli. In conclusion, anatomical zones (such as OA cartilage, intervertebral discs, and facet joint osteophytes) previously reported to show PRGD2 ligand uptake in vivo expressed increased levels of αVβ5, αVβ3, and β6 integrins, whose subunits are modulated in vitro by OA-associated conditions that increase fibrosis, inflammation, and osteogenic differentiation. These results suggest that the increased levels of integrins in OA compared to normal tissues favor PRGD2 uptake and might explain the molecular mechanism of OA imaging using the PRGD2-based ligand PET/CT.
Collapse
Affiliation(s)
- Edith Charlier
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Céline Deroyer
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Sophie Neuville
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Zelda Plener
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Olivier Malaise
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Federica Ciregia
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | | | - Gilles Reuter
- Department of Neurosurgery, CHULiège, Liège, Belgium
| | - Mallory Salvé
- Department of Nuclear Medicine, CHULiège, Liège, Belgium
| | - Nadia Withofs
- Department of Nuclear Medicine, CHULiège, Liège, Belgium
| | - Roland Hustinx
- Department of Nuclear Medicine, CHULiège, Liège, Belgium
| | - Dominique de Seny
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Michel G. Malaise
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| |
Collapse
|
15
|
Wang M, Li Z, Zhang M, Wang H, Zhang Y, Feng Y, Liu Y, Chen J. Decorin knockdown affects the gene expression profile of adhesion, growth and extracellular matrix metabolism in C-28/I2 chondrocytes. PLoS One 2020; 15:e0232321. [PMID: 32353084 PMCID: PMC7192450 DOI: 10.1371/journal.pone.0232321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022] Open
Abstract
Decorin is a member of small leucine-rich proteoglycan family, which is involved in multiple biological functions mainly as a structural and signaling molecule, and disturbances in its own metabolism plays a crucial role in the pathogenesis of osteoarthropathy. In this study, we aim to further explore the biological function of decorin and their role in human chondrocyte cell line, C28/I2. Lentivirus-mediated shRNA was applied to down-regulate decorin expression in C28/I2 chondrocytes. Effect of decorin knockdown on gene expression profiles was determined by RNA sequencing followed by bioinformatics analysis. MTT, adhesion assays and flow cytometry were used to investigate the effect of decorin knockdown on cell proliferation, adhesion, and apoptosis. sGAG content in the culture medium was determined by DMMB assay. Stably transfected C28/I2 cells were seeded onto the cancellous bone matrix gelatin (BMG) to construct tissue-engineered cartilage. The histological patterns were evaluated by H&E and Toluidine blue staining. In this study, 1780 differentially expressed genes (DEGs) including 864 up-regulated and 916 down-regulated genes were identified using RNA-Seq. The reliability of the gene expression was further verified by qRT-PCR. GO and KEGG pathway enrichment analysis revealed diverse cellular processes were affected by decorin silencing such as: cell adhesion, growth, and metabolism of extracellular matrix. In addition, we confirmed that down-regulation of decorin significantly suppressed cell proliferation and adhesion and induced apoptosis. The sGAG content in the media was significantly increased after decorin silencing. Engineered articular tissues in the decorin knockdown group exhibited cartilage destruction and proteoglycan loss as evidenced by H&E and Toluidine blue stains. Overall, this combined data helps to provide a comprehensive understanding of the roles of decorin following its knockdown in C28/I2 cells.
Collapse
Affiliation(s)
- Mengying Wang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Zhengzheng Li
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Meng Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Hui Wang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Ying Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Yiping Feng
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Yinan Liu
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Jinghong Chen
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| |
Collapse
|
16
|
Hernandez PA, Wells J, Usheva E, Nakonezny PA, Barati Z, Gonzalez R, Kassem L, Henson FMD. Early-Onset Osteoarthritis originates at the chondrocyte level in Hip Dysplasia. Sci Rep 2020; 10:627. [PMID: 31953438 PMCID: PMC6969105 DOI: 10.1038/s41598-020-57431-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/31/2019] [Indexed: 01/05/2023] Open
Abstract
Subjects with developmental dysplasia of the hip (DDH) often show early-onset osteoarthritis (OA); however, the molecular mechanisms underlying this pathology are not known. We investigated whether cellular changes in chondrocytes from OA cartilage can be detected in chondrocytes from DDH cartilage before histological manifestations of degeneration. We characterized undamaged and damaged articular cartilage from 22 participants having hip replacement surgery with and without DDH (9 DDH-OA, 12 OA-only, one femoral fracture). Tissue immunostaining revealed changes in damaged OA-only cartilage that was also found in undamaged DDH-OA cartilage. Chondrocytes in situ from both groups show: (i) thicker fibers of vimentin intermediate filaments, (ii) clusters of integrin α5β1, (iii) positive MMP13 staining and (iv) a higher percentage of cells expressing the serine protease HtrA1. Further characterization of the extracellular matrix showed strong aggrecan and collagen II immunostaining in undamaged DDH cartilage, with no evidence of augmented cell death by activation of caspase 3. These findings suggest that early events in DDH cartilage originate at the chondrocyte level and that DDH cartilage may provide a novel opportunity to study these early changes for the development of therapeutic targets for OA.
Collapse
Affiliation(s)
- Paula A Hernandez
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Joel Wells
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Emiliya Usheva
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Paul A Nakonezny
- Department of Population and Data Sciences, Division of Biostatistics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zahra Barati
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Roberto Gonzalez
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Layla Kassem
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Frances M D Henson
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Cambridge, CB2 2QQ, UK
| |
Collapse
|
17
|
Song EK, Jeon J, Jang DG, Kim HE, Sim HJ, Kwon KY, Medina-Ruiz S, Jang HJ, Lee AR, Rho JG, Lee HS, Kim SJ, Park CY, Myung K, Kim W, Kwon T, Yang S, Park TJ. ITGBL1 modulates integrin activity to promote cartilage formation and protect against arthritis. Sci Transl Med 2019; 10:10/462/eaam7486. [PMID: 30305454 DOI: 10.1126/scitranslmed.aam7486] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 09/20/2018] [Indexed: 11/02/2022]
Abstract
Developing and mature chondrocytes constantly interact with and remodel the surrounding extracellular matrix (ECM). Recent research indicates that integrin-ECM interaction is differentially regulated during cartilage formation (chondrogenesis). Integrin signaling is also a key source of the catabolic reactions responsible for joint destruction in both rheumatoid arthritis and osteoarthritis. However, we do not understand how chondrocytes dynamically regulate integrin signaling in such an ECM-rich environment. Here, we found that developing chondrocytes express integrin-β-like 1 (Itgbl1) at specific stages, inhibiting integrin signaling and promoting chondrogenesis. Unlike cytosolic integrin inhibitors, ITGBL1 is secreted and physically interacts with integrins to down-regulate activity. We observed that Itgbl1 expression was strongly reduced in the damaged articular cartilage of patients with osteoarthritis (OA). Ectopic expression of Itgbl1 protected joint cartilage against OA development in the destabilization of the medial meniscus-induced OA mouse model. Our results reveal ITGBL1 signaling as an underlying mechanism of protection against destructive cartilage disorders and suggest the potential therapeutic utility of targeting ITGBL1 to modulate integrin signaling in human disease.
Collapse
Affiliation(s)
- Eun Kyung Song
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Jimin Jeon
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,CIRNO, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong Gil Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ha Eun Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyo Jung Sim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Keun Yeong Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sofia Medina-Ruiz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ah Reum Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jun Gi Rho
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seok Jung Kim
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chan Young Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea. .,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,CIRNO, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea. .,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| |
Collapse
|
18
|
Wang Q, Onuma K, Liu C, Wong H, Bloom MS, Elliott EE, Cao RR, Hu N, Lingampalli N, Sharpe O, Zhao X, Sohn DH, Lepus CM, Sokolove J, Mao R, Cisar CT, Raghu H, Chu CR, Giori NJ, Willingham SB, Prohaska SS, Cheng Z, Weissman IL, Robinson WH. Dysregulated integrin αVβ3 and CD47 signaling promotes joint inflammation, cartilage breakdown, and progression of osteoarthritis. JCI Insight 2019; 4:128616. [PMID: 31534047 PMCID: PMC6795293 DOI: 10.1172/jci.insight.128616] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is the leading cause of joint failure, yet the underlying mechanisms remain elusive, and no approved therapies that slow progression exist. Dysregulated integrin function was previously implicated in OA pathogenesis. However, the roles of integrin αVβ3 and the integrin-associated receptor CD47 in OA remain largely unknown. Here, transcriptomic and proteomic analyses of human and murine osteoarthritic tissues revealed dysregulated expression of αVβ3, CD47, and their ligands. Using genetically deficient mice and pharmacologic inhibitors, we showed that αVβ3, CD47, and the downstream signaling molecules Fyn and FAK are crucial to OA pathogenesis. MicroPET/CT imaging of a mouse model showed elevated ligand-binding capacities of integrin αVβ3 and CD47 in osteoarthritic joints. Further, our in vitro studies demonstrated that chondrocyte breakdown products, derived from articular cartilage of individuals with OA, induced αVβ3/CD47-dependent expression of inflammatory and degradative mediators, and revealed the downstream signaling network. Our findings identify a central role for dysregulated αVβ3 and CD47 signaling in OA pathogenesis and suggest that activation of αVβ3 and CD47 signaling in many articular cell types contributes to inflammation and joint destruction in OA. Thus, the data presented here provide a rationale for targeting αVβ3, CD47, and their signaling pathways as a disease-modifying therapy.
Collapse
Affiliation(s)
- Qian Wang
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Kazuhiro Onuma
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Changhao Liu
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, California, USA
| | - Heidi Wong
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Michelle S. Bloom
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Eileen E. Elliott
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Richard R.L. Cao
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Nick Hu
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Nithya Lingampalli
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Orr Sharpe
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Xiaoyan Zhao
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Dong Hyun Sohn
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, South Korea
| | - Christin M. Lepus
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Jeremy Sokolove
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Rong Mao
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Cecilia T. Cisar
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Harini Raghu
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Constance R. Chu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Orthopedic Surgery
| | - Nicholas J. Giori
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Orthopedic Surgery
| | - Stephen B. Willingham
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, and
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Susan S. Prohaska
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, and
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, California, USA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, and
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - William H. Robinson
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Osteocytes are the main mechanosensitive cells in bone. Integrin-based adhesions have been shown to facilitate mechanotransduction, and therefore play an important role in load-induced bone formation. This review outlines the role of integrins in osteocyte function (cell adhesion, signalling, and mechanotransduction) and possible role in disease. RECENT FINDINGS Both β1 and β3 integrins subunits have been shown to be required for osteocyte mechanotransduction. Antagonism of these integrin subunits in osteocytes resulted in impaired responses to fluid shear stress. Various disease states (osteoporosis, osteoarthritis, bone metastases) have been shown to result in altered integrin expression and function. Osteocyte integrins are required for normal cell function, with dysregulation of integrins seen in disease. Understanding the mechanism of faulty integrins in disease may aid in the creation of novel therapeutic approaches.
Collapse
Affiliation(s)
- Ivor P Geoghegan
- Department of Mechanical and Biomedical Engineering, Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, National University of Ireland, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - David A Hoey
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2, Ireland
| | - Laoise M McNamara
- Department of Mechanical and Biomedical Engineering, Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, National University of Ireland, Galway, Ireland.
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland.
| |
Collapse
|
20
|
He Y, Yao W, Zhang M, Zhang Y, Zhang D, Jiang Z, Ma T, Sun J, Shao M, Chen J. Changes in osteogenic gene expression in hypertrophic chondrocytes induced by SIN-1. Exp Ther Med 2018; 16:609-618. [PMID: 30116317 PMCID: PMC6090273 DOI: 10.3892/etm.2018.6261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023] Open
Abstract
The molecular mechanisms underlying osteoarthritis (OA) and Kashin-Beck disease (KBD) remain poorly understood. Hypertrophic chondrocytes serve an important role in the development of both OA and KBD, whereas oxidative stress can contribute to the pathological progression of cartilage damage. Therefore, the aim of the present study was to detect altered expression of osteogenesis-related genes in hypertrophic chondrocytes, following treatment with 3-morpholinosydnonimine (SIN-1). ATDC5 cells were induced to develop into hypertrophic chondrocytes via Insulin-Transferrin-Selenium. The appropriate concentration and time of SIN-1 treatment was determined via MTT assay. Following hypertrophic chondrocyte stimulation with SIN-1, a liquid chip was analyzed using a polymerase chain reaction (PCR) array. Reverse transcription-quantitative PCR was conducted on individual genes to validate the array-based data. Analyses of protein-protein interactions, gene ontology functions and Kyoto Encyclopedia of Genes and Genomes pathway enrichment of the differentially expressed genes were also performed. A total of 6 upregulated and 34 downregulated genes were identified, including the mothers against decapentaplegic homolog (Smad) family (Smad1-4), bone morphogenetic proteins and their receptors (Bmp2, Bmp3, Bmpr1α and Bmpr1β), and matrix metalloproteinases (MMP2,−9 and−10). These genes are associated with collagen biology, transcriptional control, skeletal development, bone mineral metabolism, and cell adhesion. SIN-1 induced death of hypertrophic chondrocytes likely through TGF-β/Smad or BMP/Smad pathways. Oxidative-stress-dependent induction of abnormal gene expression may be associated with chondronecrosis in the cartilage of patients with OA or KBD.
Collapse
Affiliation(s)
- Ying He
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China.,Graduate Students Teaching Experiment Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Wen Yao
- Department of Neurology, Xi'an Children's Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Meng Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Ying Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Dan Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Zhuocheng Jiang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Tianyou Ma
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Jian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Mingming Shao
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Jinghong Chen
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
21
|
Genetic abrogation of the fibronectin-α5β1 integrin interaction in articular cartilage aggravates osteoarthritis in mice. PLoS One 2018; 13:e0198559. [PMID: 29870552 PMCID: PMC5988303 DOI: 10.1371/journal.pone.0198559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/21/2018] [Indexed: 02/02/2023] Open
Abstract
The balance between synthesis and degradation of the cartilage extracellular matrix is severely altered in osteoarthritis, where degradation predominates. One reason for this imbalance is believed to be due to the ligation of the α5β1 integrin, the classic fibronectin (FN) receptor, with soluble FN fragments instead of insoluble FN fibrils, which induces matrix metalloproteinase (MMP) expression. Our objective was to determine whether the lack of α5β1-FN binding influences cartilage morphogenesis in vivo and whether non-ligated α5β1 protects or aggravates the course of osteoarthritis in mice. We engineered mice (Col2a-Cre;Fn1RGE/fl), whose chondrocytes express an α5β1 binding-deficient FN, by substituting the aspartic acid of the RGD cell-binding motif with a glutamic acid (FN-RGE). At an age of 5 months the knee joints were stressed either by forced exercise (moderate mechanical load) or by partially resecting the meniscus followed by forced exercise (high mechanical load). Sections of femoral articular knees were analysed by Safranin-O staining and by immunofluorescence to determine tissue morphology, extracellular matrix proteins and matrix metalloproteinase expression. The articular cartilage from untrained control and Col2a-Cre;Fn1RGE/fl mice was normal, while the exposure to high mechanical load induced osteoarthritis characterized by proteoglycan and collagen type II loss. In the Col2a-Cre;Fn1RGE/fl articular cartilage osteoarthritis progressed significantly faster than in wild type mice. Mechanistically, we observed increased expression of MMP-13 and MMP-3 metalloproteinases in FN-RGE expressing articular cartilage, which severely affected matrix remodelling. Our results underscore the critical role of FN-α5β1 adhesion as ECM sensor in circumstances of articular cartilage regeneration.
Collapse
|
22
|
Zhang Q, Ma J, Liu H, He D, Chen L, Wu H, Jiang H, Lu Q, Bai S. Comparative Analysis of Gene Expression Profiles of Human Dental Fluorosis and Kashin-Beck Disease. Sci Rep 2018; 8:170. [PMID: 29317700 PMCID: PMC5760626 DOI: 10.1038/s41598-017-18519-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/12/2017] [Indexed: 11/09/2022] Open
Abstract
To explore the pathologies of Kashin-Beck disease (KBD) and KBD accompanied with dental fluorosis (DF), we conducted a comparative analysis of gene expression profiles. 12 subjects were recruited, including 4 KBD patients, 4 patients with KBD and DF and 4 healthy subjects. Genome-wide expression profiles from their peripheral blood mononuclear cells were evaluated by customized oligonucleotide microarray. R programming software was used for the microarray data analysis followed by functional enrichment analysis through KOBAS. Several potential biomarkers were identified, and quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) was used for their validation. In this study, 28 genes and 8 genes were found to be up- and down-regulated respectively in KBD patients compared with health subjects. In patients with KBD and DF, we obtained 10 up-regulated and 3 down-regulated genes compared with health controls. Strikingly, no differential expression gene (DEG) was identified between the two groups of patients. A total of 10 overlaps (DUSP2, KLRF1, SRP19, KLRC3, CD69, SIK1, ITGA4, ID3, HSPA1A, GPR18) were obtained between DEGs of patients with KBD and patients with KBD and DF. They play important roles in metabolism, differentiation, apoptosis and bone-development. The relative abundance of 8 DEGs, i.e. FCRL6, KLRC3, CXCR4, CD93, CLK1, GPR18, SRP19 and KLRF1, were further confirmed by qRT-PCR analysis.
Collapse
Affiliation(s)
- Qiang Zhang
- Qinghai Institute For Endemic Disease Prevention and Control, Qinghai, 811602, China
| | - Jing Ma
- Qinghai Institute For Endemic Disease Prevention and Control, Qinghai, 811602, China
| | - Haiqing Liu
- Qinghai Institute For Endemic Disease Prevention and Control, Qinghai, 811602, China.
| | - Duolong He
- Qinghai Institute For Endemic Disease Prevention and Control, Qinghai, 811602, China
| | - Lilin Chen
- Qinghai Institute For Endemic Disease Prevention and Control, Qinghai, 811602, China
| | - Haikun Wu
- Qinghai Institute For Endemic Disease Prevention and Control, Qinghai, 811602, China
| | - Hong Jiang
- Qinghai Institute For Endemic Disease Prevention and Control, Qinghai, 811602, China
| | - Qing Lu
- Qinghai Institute For Endemic Disease Prevention and Control, Qinghai, 811602, China
| | - Shenglu Bai
- Qinghai Institute For Endemic Disease Prevention and Control, Qinghai, 811602, China
| |
Collapse
|
23
|
Milares LP, Assis L, Siqueira A, Claudino V, Domingos H, Almeida T, Tim C, Renno AC. Effectiveness of an aquatic exercise program and low-level laser therapy on articular cartilage in an experimental model of osteoarthritis in rats. Connect Tissue Res 2016; 57:398-407. [PMID: 27220395 DOI: 10.1080/03008207.2016.1193174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the effects of an aquatic exercise program and low-level laser therapy (LLLT) (associated or not) on degenerative modifications and inflammatory mediators on the articular cartilage using an experimental model of knee OA. METHOD Forty male Wistar rats were divided into 4 groups: knee OA - without treatment (OA); OA plus exercise program group (OAE); OA plus LLLT (OAL); OA plus exercise program associated with LLLT (OAEL). Trained rats performed a water-jumping program carrying a load equivalent to 50-80 % of their body mass strapped to their chest. The laser irradiation was used either as the only method or after the exercise training had been performed, at 2 points contact mode (medial and lateral side of the left joint). The treatments started 4 weeks after the surgery, 3 days/week for 8 weeks. RESULTS The results revealed that all treated groups (irradiated or not) exhibited a better pattern of tissue organization, with less fibrillation and irregularities along the articular surface and improved chondrocytes organization. Also, a lower cellular density and structural damage (OARSI score) and higher thickness values were observed in all treated groups. Additionally, OAE and OAEL showed a reduced expression in IL-1β and caspase-3 as compared with OA. Furthermore, a statistically lower MMP-13 expression was only observed in OAEL as compared with OA. CONCLUSION These results suggest that aquatic exercise program and LLLT were effective in preventing cartilage degeneration. Also, physical exercise program presented anti-inflammatory effects in the knees in OA rats.
Collapse
Affiliation(s)
- Luiz Paulo Milares
- a Department of Bioscience , Federal University of São Paulo , Santos , Brazil
| | - Lívia Assis
- a Department of Bioscience , Federal University of São Paulo , Santos , Brazil
| | - Amanda Siqueira
- a Department of Bioscience , Federal University of São Paulo , Santos , Brazil
| | - Vitoria Claudino
- a Department of Bioscience , Federal University of São Paulo , Santos , Brazil
| | - Heloisa Domingos
- a Department of Bioscience , Federal University of São Paulo , Santos , Brazil
| | - Thais Almeida
- a Department of Bioscience , Federal University of São Paulo , Santos , Brazil
| | - Carla Tim
- a Department of Bioscience , Federal University of São Paulo , Santos , Brazil
| | - Ana Claudia Renno
- a Department of Bioscience , Federal University of São Paulo , Santos , Brazil
| |
Collapse
|
24
|
Candela ME, Wang C, Gunawardena AT, Zhang K, Cantley L, Yasuhara R, Usami Y, Francois N, Iwamoto M, van der Flier A, Zhang Y, Qin L, Han L, Enomoto-Iwamoto M. Alpha 5 Integrin Mediates Osteoarthritic Changes in Mouse Knee Joints. PLoS One 2016; 11:e0156783. [PMID: 27280771 PMCID: PMC4900574 DOI: 10.1371/journal.pone.0156783] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/19/2016] [Indexed: 01/26/2023] Open
Abstract
Osteoarthritis (OA) is one of most common skeletal disorders and can affect synovial joints such as knee and ankle joints. α5 integrin, a major fibronectin receptor, is expressed in articular cartilage and has been demonstrated to play roles in synovial joint development and in the regulation of chondrocyte survival and matrix degradation in articular cartilage. We hypothesized that α5 integrin signaling is involved in pathogenesis of OA. To test this, we generated compound mice that conditionally ablate α5 integrin in the synovial joints using the Gdf5Cre system. The compound mice were born normally and had an overall appearance similar to the control mice. However, when the mutant mice received the OA surgery, they showed stronger resistance to osteoarthritic changes than the control. Specifically the mutant knee joints presented lower levels of cartilage matrix and structure loss and synovial changes and showed stronger biomechanical properties than the control knee joints. These findings indicate that α5 integrin may not be essential for synovial joint development but play a causative role in induction of osteoarthritic changes.
Collapse
Affiliation(s)
- Maria Elena Candela
- Department of Surgery, Division of Orthopaedic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Chao Wang
- School of Biomedical Engineering Science, and Health Systems, Drexel University, Philadelphia, PA, United States of America
| | - Aruni T. Gunawardena
- Department of Surgery, Division of Orthopaedic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Kairui Zhang
- Department of Surgery, Division of Orthopaedic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Leslie Cantley
- Department of Surgery, Division of Orthopaedic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Rika Yasuhara
- Division of Pathology, Department of Oral Diagnosis Science, School of Dentistry, Showa University, Tokyo, Japan
| | - Yu Usami
- Department of Surgery, Division of Orthopaedic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Noelle Francois
- Department of Surgery, Division of Orthopaedic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Masahiro Iwamoto
- Department of Surgery, Division of Orthopaedic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Arjan van der Flier
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Yejia Zhang
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ling Qin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Lin Han
- School of Biomedical Engineering Science, and Health Systems, Drexel University, Philadelphia, PA, United States of America
| | - Motomi Enomoto-Iwamoto
- Department of Surgery, Division of Orthopaedic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
25
|
Fei Q, Lin J, Meng H, Wang B, Yang Y, Wang Q, Su N, Li J, Li D. Identification of upstream regulators for synovial expression signature genes in osteoarthritis. Joint Bone Spine 2016; 83:545-51. [PMID: 26832188 DOI: 10.1016/j.jbspin.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/14/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The detection of transcription factors (TFs) for OA signature genes provides better clues to the underlying regulatory mechanisms and therapeutic applications. METHODS We searched GEO database for synovial expression profiling from different OA microarray studies to perform a systematic analysis. Functional annotation of DEGs was conducted, including gene ontology (GO) enrichment analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Based on motif databases and the results from integrated analysis of current gene expression data, a global transcriptional regulatory network was constructed, and the upstream TFs were identified for OA signature genes. RESULTS Six GEO datasets were obtained. Totally, 805 genes across the studies were consistently differentially expressed in OA (469 up-regulated and 336 down-regulated genes) with FDR≤0.01. Supporting an involvement of ECM in the development of OA, we showed that ECM-receptor interaction was the most significant pathway in our KEGG analysis (P=5.92E-12). Sixty-one differentially expressed TFs were identified with FDR≤0.05. The constructed OA-specific regulatory networks consisted of 648 TF-target interactions between 51 TFs and 429 DEGs in the context of OA. The top 10 TFs covering the most downstream DEGs were identified as crucial TFs involved in the development of OA, including ARID3A, NFIC, ZNF354C, NR4A2, BRCA1, EHF, FOXL1, FOXC1, EGR1, and HOXA5. CONCLUSION This integrated analysis has identified the OA signature, providing clues to pathogenesis of OA at the molecular level, which may be also used as diagnostic markers for OA. Some crucial upstream regulators, such as NR4A2, EHF, and EGR1 may be considered as potential new therapeutic targets for OA.
Collapse
Affiliation(s)
- Qi Fei
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China
| | - JiSheng Lin
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China
| | - Hai Meng
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China
| | - BingQiang Wang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China
| | - Yong Yang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China
| | - Qi Wang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China
| | - Nan Su
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China
| | - Jinjun Li
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China
| | - Dong Li
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China.
| |
Collapse
|
26
|
Tian J, Zhang FJ, Lei GH. Role of integrins and their ligands in osteoarthritic cartilage. Rheumatol Int 2014; 35:787-98. [PMID: 25261047 DOI: 10.1007/s00296-014-3137-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 09/17/2014] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is a degenerative disease, which is characterized by articular cartilage destruction, and mainly affects the older people. The extracellular matrix (ECM) provides a vital cellular environment, and interactions between the cell and ECM are important in regulating many biological processes, including cell growth, differentiation, and survival. However, the pathogenesis of this disease is not fully elucidated, and it cannot be cured totally. Integrins are one of the major receptors in chondrocytes. A number of studies confirmed that the chondrocytes express several integrins including α5β1, αVβ3, αVβ5, α6β1, α1β1, α2β1, α10β1, and α3β1, and some integrins ligands might act as the OA progression biomarkers. This review focuses on the functional role of integrins and their extracellular ligands in OA progression, especially OA cartilage. Clear understanding of the role of integrins and their ligands in OA cartilage may have impact on future development of successful therapeutic approaches to OA.
Collapse
Affiliation(s)
- Jian Tian
- Department of Orthopaedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, China
| | | | | |
Collapse
|