1
|
Wang S, Kurth S, Burger C, Wirtz DC, Schildberg FA, Ossendorff R. TNFα-Related Chondrocyte Inflammation Models: A Systematic Review. Int J Mol Sci 2024; 25:10805. [PMID: 39409134 PMCID: PMC11476358 DOI: 10.3390/ijms251910805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Tumor necrosis factor alpha (TNFα), as a key pro-inflammatory cytokine, plays a central role in joint diseases. In recent years, numerous models of TNFα-induced cartilage inflammation have been developed. However, due to the significant differences between these models and the lack of consensus in their construction, it becomes difficult to compare the results of different studies. Therefore, we summarized and compared these models based on important parameters for model construction, such as cell source, cytokine concentration, stimulation time, mechanical stimulation, and more. We attempted to analyze the advantages and disadvantages of each model and provide a compilation of the analytical methods used in previous studies. Currently, TNFα chondrocyte inflammation models can be categorized into four main types: monolayer-based, construct-based, explant-based TNFα chondrocyte inflammation models, and miscellaneous TNFα chondrocyte inflammation models. The most commonly used models were the monolayer-based TNFα chondrocyte inflammation models (42.86% of cases), with 10 ng/mL TNFα being the most frequently used concentration. The most frequently used chondrocyte cell passage is passage 1 (50%). Human tissues were most frequently used in experiments (51.43%). Only five articles included models with mechanical stimulations. We observed variations in design conditions between different models. This systematic review provides the essential experimental characteristics of the available chondrocyte inflammation models with TNFα, and it provides a platform for better comparison between existing and new studies in this field. It is essential to perform further experiments to standardize each model and to find the most appropriate experimental parameters.
Collapse
|
2
|
Elahi SA, Castro-Viñuelas R, Tanska P, Korhonen RK, Lories R, Famaey N, Jonkers I. Contribution of collagen degradation and proteoglycan depletion to cartilage degeneration in primary and secondary osteoarthritis: an in silico study. Osteoarthritis Cartilage 2023; 31:741-752. [PMID: 36669584 DOI: 10.1016/j.joca.2023.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/13/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Current experimental approaches cannot elucidate the effect of maladaptive changes on the main cartilage constituents during the degeneration process in osteoarthritis (OA). In silico approaches, however, allow creating 'virtual knock-out' cases to elucidate these effects in a constituent-specific manner. We used such an approach to study the main mechanisms of cartilage degeneration in different mechanical loadings associated with the following OA etiologies: (1) physiological loading of degenerated cartilage, (2) injurious loading of healthy intact cartilage and (3) physiological loading of cartilage with a focal defect. METHODS We used the recently developed Cartilage Adaptive REorientation Degeneration (CARED) framework to simulate cartilage degeneration associated with primary and secondary OA (OA cases (1)-(3)). CARED incorporates numerical description of tissue-level cartilage degeneration mechanisms in OA, namely, collagen degradation, collagen reorientation, fixed charged density loss and tissue hydration increase following mechanical loading. We created 'virtual knock-out' scenarios by deactivating these degenerative processes one at a time in each of the three OA cases. RESULTS In the injurious loading of intact and physiological loading of degenerated cartilage, collagen degradation drives degenerative changes through fixed charge density loss and tissue hydration rise. In contrast, the two later mechanisms were more prominent in the focal defect cartilage model. CONCLUSION The virtual knock-out models reveal that injurious loading to intact cartilage and physiological loading to degenerated cartilage induce initial degenerative changes in the collagen network, whereas, in the presence of a focal cartilage defect, mechanical loading initially causes proteoglycans (PG) depletion, before changes in the collagen fibril network occur.
Collapse
Affiliation(s)
- S A Elahi
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium; Mechanical Engineering Department, Biomechanics Section, Soft Tissue Biomechanics Group, KU Leuven, Leuven, Belgium.
| | - R Castro-Viñuelas
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium.
| | - P Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - R K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - R Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium.
| | - N Famaey
- Mechanical Engineering Department, Biomechanics Section, Soft Tissue Biomechanics Group, KU Leuven, Leuven, Belgium.
| | - I Jonkers
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Messaoudi O, Henrionnet C, Bourge K, Loeuille D, Gillet P, Pinzano A. Stem Cells and Extrusion 3D Printing for Hyaline Cartilage Engineering. Cells 2020; 10:cells10010002. [PMID: 33374921 PMCID: PMC7821921 DOI: 10.3390/cells10010002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaline cartilage is deficient in self-healing properties. The early treatment of focal cartilage lesions is a public health challenge to prevent long-term degradation and the occurrence of osteoarthritis. Cartilage tissue engineering represents a promising alternative to the current insufficient surgical solutions. 3D printing is a thriving technology and offers new possibilities for personalized regenerative medicine. Extrusion-based processes permit the deposition of cell-seeded bioinks, in a layer-by-layer manner, allowing mimicry of the native zonal organization of hyaline cartilage. Mesenchymal stem cells (MSCs) are a promising cell source for cartilage tissue engineering. Originally isolated from bone marrow, they can now be derived from many different cell sources (e.g., synovium, dental pulp, Wharton’s jelly). Their proliferation and differentiation potential are well characterized, and they possess good chondrogenic potential, making them appropriate candidates for cartilage reconstruction. This review summarizes the different sources, origins, and densities of MSCs used in extrusion-based bioprinting (EBB) processes, as alternatives to chondrocytes. The different bioink constituents and their advantages for producing substitutes mimicking healthy hyaline cartilage is also discussed.
Collapse
Affiliation(s)
- Océane Messaoudi
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l’Université de Lorraine, Campus Brabois-Santé, 9, Avenue de la Forêt de Haye, BP20199, 54505 Vandœuvre-Lès-Nancy, France; (O.M.); (C.H.); (K.B.); (D.L.); (P.G.)
| | - Christel Henrionnet
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l’Université de Lorraine, Campus Brabois-Santé, 9, Avenue de la Forêt de Haye, BP20199, 54505 Vandœuvre-Lès-Nancy, France; (O.M.); (C.H.); (K.B.); (D.L.); (P.G.)
| | - Kevin Bourge
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l’Université de Lorraine, Campus Brabois-Santé, 9, Avenue de la Forêt de Haye, BP20199, 54505 Vandœuvre-Lès-Nancy, France; (O.M.); (C.H.); (K.B.); (D.L.); (P.G.)
| | - Damien Loeuille
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l’Université de Lorraine, Campus Brabois-Santé, 9, Avenue de la Forêt de Haye, BP20199, 54505 Vandœuvre-Lès-Nancy, France; (O.M.); (C.H.); (K.B.); (D.L.); (P.G.)
- Service de Rhumatologie, CHRU de Nancy, Hôpitaux de Brabois, Bâtiment des Spécialités Médicales, 5 rue du Morvan, F54511 Vandœuvre-Lès-Nancy, France
| | - Pierre Gillet
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l’Université de Lorraine, Campus Brabois-Santé, 9, Avenue de la Forêt de Haye, BP20199, 54505 Vandœuvre-Lès-Nancy, France; (O.M.); (C.H.); (K.B.); (D.L.); (P.G.)
- Laboratoire de Pharmacologie, Toxicologie et Pharmacovigilance, Bâtiment de Biologie Médicale et de Biopathologie, CHRU de Nancy-Brabois, 5 Rue du Morvan, F54511 Vandœuvre-Lès-Nancy, France
| | - Astrid Pinzano
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l’Université de Lorraine, Campus Brabois-Santé, 9, Avenue de la Forêt de Haye, BP20199, 54505 Vandœuvre-Lès-Nancy, France; (O.M.); (C.H.); (K.B.); (D.L.); (P.G.)
- Contrat d’Interface, Service de Rhumatologie, Hôpital de Brabois, Bâtiment Spécialités Médicales, F54511 Vandœuvre Lès Nancy, France
- Correspondence: ; Tel.: +33-(0)372-746-565
| |
Collapse
|
4
|
Whiteley JP, Gaffney EA. Modelling the inclusion of swelling pressure in a tissue level poroviscoelastic model of cartilage deformation. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2020; 37:389-428. [PMID: 32072158 DOI: 10.1093/imammb/dqaa001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/12/2019] [Accepted: 01/02/2020] [Indexed: 11/13/2022]
Abstract
Swelling pressure in the interstitial fluid within the pores of cartilage tissue is known to have a significant effect on the rheology of cartilage tissue. The swelling pressure varies rapidly within thin regions inside pores known as Debye layers, caused by the presence of fixed charge, as observed in cartilage. Tissue level calculation of cartilage deformation therefore requires resolution of three distinct spatial scales: the Debye lengthscale within individual pores; the lengthscale of an individual pore; and the tissue lengthscale. We use asymptotics to construct a leading order approximation to the swelling pressure within pores, allowing the swelling pressure to be systematically included within a fluid-solid interaction model at the level of pores in cartilage. We then use homogenization to derive tissue level equations for cartilage deformation that are very similar to those governing the finite deformation of a poroviscoelastic body. The equations derived permit the spatial variations in porosity and electric charge that occur in cartilage tissue. Example solutions are then used to confirm the plausibility of the model derived and to consider the impact of fixed charge heterogeneity, illustrating that local fixed charge loss is predicted to increase deformation gradients under confined compression away from, rather than at, the site of loss.
Collapse
Affiliation(s)
- Jonathan P Whiteley
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, UK
| | - Eamonn A Gaffney
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Rd, Oxford OX2 6GG, UK
| |
Collapse
|
5
|
Wang C, Yue H, Huang W, Lin X, Xie X, He Z, He X, Liu S, Bai L, Lu B, Wei Y, Wang M. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration. Biofabrication 2020; 12:025030. [PMID: 32106097 DOI: 10.1088/1758-5090/ab7ab5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to the increasing aging population and the high probability of sport injury among young people nowadays, it is of great demand to repair/regenerate diseased/defected osteochondral tissue. Given that osteochondral tissue mainly consists of a subchondral layer and a cartilage layer which are structurally heterogeneous and mechanically distinct, developing a biomimetic bi-phasic scaffold with excellent bonding strength to regenerate osteochondral tissue is highly desirable. Three-dimensional (3D) printing is advantageous in producing scaffolds with customized shape, designed structure/composition gradients and hence can be used to produce heterogeneous scaffolds for osteochondral tissue regeneration. In this study, bi-layered osteochondral scaffolds were developed through cryogenic 3D printing, in which osteogenic peptide/β-tricalcium phosphate/poly(lactic-co-glycolic acid) water-in-oil composite emulsions were printed into hierarchically porous subchondral layer while poly(D,L-lactic acid-co-trimethylene carbonate) water-in-oil emulsions were printed into thermal-responsive cartilage frame on top of the subchondral layer. The cartilage frame was further filled/dispensed with transforming growth factor-β1 loaded collagen I hydrogel to form the cartilage module. Although the continuously constructed osteochondral scaffolds had distinct microscopic morphologies and varied mechanical properties at the subchondral zone and cartilage zone at 37 °C, respectively, the two layers were closely bonded together, showing excellent shear strength and peeling strength. Rat bone marrow derived mesenchymal stem cells (rBMSCs) exhibited high viability and proliferation at both subchondral- and cartilage layer. Moreover, gradient rBMSC osteogenic/chondrogenic differentiation was obtained in the osteochondral scaffolds. This proof-of-concept study provides a facile way to produce integrated osteochondral scaffolds for concurrently directing rBMSC osteogenic/chondrogenic differentiation at different regions.
Collapse
Affiliation(s)
- Chong Wang
- College of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, People's Republic of China. Contributed equally. Authors to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Walter SG, Ossendorff R, Schildberg FA. Articular cartilage regeneration and tissue engineering models: a systematic review. Arch Orthop Trauma Surg 2019; 139:305-316. [PMID: 30382366 DOI: 10.1007/s00402-018-3057-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Cartilage regeneration and restoration is a major topic in orthopedic research as cartilaginous degeneration and damage is associated with osteoarthritis and joint destruction. This systematic review aims to summarize current research strategies in cartilage regeneration research. MATERIALS AND METHODS A Pubmed search for models investigating single-site cartilage defects as well as chondrogenesis was conducted and articles were evaluated for content by title and abstract. Finally, only manuscripts were included, which report new models or approaches of cartilage regeneration. RESULTS The search resulted in 2217 studies, 200 of which were eligible for inclusion in this review. The identified manuscripts consisted of a large spectrum of research approaches spanning from cell culture to tissue engineering and transplantation as well as sophisticated computational modeling. CONCLUSIONS In the past three decades, knowledge about articular cartilage and its defects has multiplied in clinical and experimental settings and the respective body of research literature has grown significantly. However, current strategies for articular cartilage repair have not yet succeeded to replicate the structure and function of innate articular cartilage, which makes it even more important to understand the current strategies and their impact. Therefore, the purpose of this review was to globally summarize experimental strategies investigating cartilage regeneration in vitro as well as in vivo. This will allow for better referencing when designing new models or strategies and potentially improve research translation from bench to bedside.
Collapse
Affiliation(s)
- Sebastian G Walter
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Robert Ossendorff
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| |
Collapse
|
7
|
Combination of Mesenchymal Stem Cells, Cartilage Pellet and Bioscaffold Supported Cartilage Regeneration of a Full Thickness Articular Surface Defect in Rabbits. Tissue Eng Regen Med 2018; 15:661-671. [PMID: 30603587 DOI: 10.1007/s13770-018-0131-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) and/or biological scaffolds have been used to regenerate articular cartilage with variable success. In the present study we evaluated cartilage regeneration using a combination of bone marrow (BM)-MSCs, HyalofastTM and/or native cartilage tissue following full thickness surgical cartilage defect in rabbits. METHODS Full-thickness surgical ablation of the medial-tibial cartilage was performed in New Zealand white (NZW) rabbits. Control rabbits (Group-I) received no treatment; Animals in other groups were treated as follows. Group-II: BM-MSCs (1 × 106 cells) + HyalofastTM; Group-III: BMMSCs (1 × 106 cells) + cartilage pellet (CP); and Group-IV: BM-MSCs (1 × 106 cells) + HyalofastTM + CP. Animals were sacrificed at 12 weeks and cartilage regeneration analyzed using histopathology, International Cartilage Repair Society (ICRS-II) score, magnetic resonance observation of cartilage repair tissue (MOCART) score and biomechanical studies. RESULTS Gross images showed good tissue repair (Groups IV > III > Group II) and histology demonstrated intact superficial layer, normal chondrocyte arrangement, tidemark and cartilage matrix staining (Groups III and IV) compared to the untreated control (Group I) respectively. ICRS-II score was 52.5, 65.0, 66 and 75% (Groups I-IV) and the MOCART score was 50.0, 73.75 and 76.25 (Groups II-IV) respectively. Biomechanical properties of the regenerated cartilage tissue in Group IV closed resembled that of a normal cartilage. CONCLUSION HyalofastTM together with BM-MSCs and CP led to efficient cartilage regeneration following full thickness surgical ablation of tibial articular cartilage in vivo in rabbits. Presence of hyaluronic acid in the scaffold and native microenvironment cues probably facilitated differentiation and integration of BM-MSCs.
Collapse
|
8
|
Mononen ME, Tanska P, Isaksson H, Korhonen RK. New algorithm for simulation of proteoglycan loss and collagen degeneration in the knee joint: Data from the osteoarthritis initiative. J Orthop Res 2018; 36:1673-1683. [PMID: 29150953 DOI: 10.1002/jor.23811] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/11/2017] [Indexed: 02/04/2023]
Abstract
Osteoarthritis is a harmful joint disease but prediction of disease progression is problematic. Currently, there is only one modeling framework which can be applied to predict the progression of knee osteoarthritis but it only considers degenerative changes in the collagen fibril network. Here, we have developed the framework further by considering all of the major tissue changes (proteoglycan content, fluid flow, and collagen fibril network) occurring in osteoarthritis. While excessive levels of tissue stresses controlled degeneration of the collagen fibril network, excessive levels of tissue strains controlled the decrease in proteoglycan content and the increase in permeability. We created four knee joint models with increasing degrees of complexity based on the depth-wise composition. Models were tested for normal and abnormal, physiologically relevant, loading conditions in the knee. Finally, the predicted depth-wise compositional changes from each model were compared against experimentally observed compositional changes in vitro. The model incorporating the typical depth-wise composition of cartilage produced the best match with experimental observations. Consistent with earlier in vitro experiments, this model simulated the greatest proteoglycan depletion in the superficial and middle zones, while the collagen fibril degeneration was located mostly in the superficial zone. The presented algorithm can be used for predicting simultaneous collagen degeneration and proteoglycan loss during the development of knee osteoarthritis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1673-1683, 2018.
Collapse
Affiliation(s)
- Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio, 70211, Finland
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio, 70211, Finland
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio, 70211, Finland.,Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
9
|
Nickien M, Heuijerjans A, Ito K, van Donkelaar CC. Comparison between in vitro and in vivo cartilage overloading studies based on a systematic literature review. J Orthop Res 2018; 36:2076-2086. [PMID: 29644716 PMCID: PMC6120482 DOI: 10.1002/jor.23910] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/27/2018] [Indexed: 02/04/2023]
Abstract
Methodological differences between in vitro and in vivo studies on cartilage overloading complicate the comparison of outcomes. The rationale of the current review was to (i) identify consistencies and inconsistencies between in vitro and in vivo studies on mechanically-induced structural damage in articular cartilage, such that variables worth interesting to further explore using either one of these approaches can be identified; and (ii) suggest how the methodologies of both approaches may be adjusted to facilitate easier comparison and therewith stimulate translation of results between in vivo and in vitro studies. This study is anticipated to enhance our understanding of the development of osteoarthritis, and to reduce the number of in vivo studies. Generally, results of in vitro and in vivo studies are not contradicting. Both show subchondral bone damage and intact cartilage above a threshold value of impact energy. At lower loading rates, excessive loads may cause cartilage fissuring, decreased cell viability, collagen network de-structuring, decreased GAG content, an overall damage increase over time, and low ability to recover. This encourages further improvement of in vitro systems, to replace, reduce, and/or refine in vivo studies. However, differences in experimental set up and analyses complicate comparison of results. Ways to bridge the gap include (i) bringing in vitro set-ups closer to in vivo, for example, by aligning loading protocols and overlapping experimental timeframes; (ii) synchronizing analytical methods; and (iii) using computational models to translate conclusions from in vitro results to the in vivo environment and vice versa. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-11, 2018.
Collapse
Affiliation(s)
- Mieke Nickien
- Department of Biomedical Engineering, Orthopaedic BiomechanicsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Ashley Heuijerjans
- Department of Biomedical Engineering, Orthopaedic BiomechanicsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Keita Ito
- Department of Biomedical Engineering, Orthopaedic BiomechanicsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Corrinus C. van Donkelaar
- Department of Biomedical Engineering, Orthopaedic BiomechanicsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| |
Collapse
|
10
|
Biochemical alterations in inflammatory reactive chondrocytes: evidence for intercellular network communication. Heliyon 2018; 4:e00525. [PMID: 29560438 PMCID: PMC5857518 DOI: 10.1016/j.heliyon.2018.e00525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/04/2018] [Accepted: 01/23/2018] [Indexed: 12/24/2022] Open
Abstract
Chondrocytes are effectively involved in the pathophysiological processes of inflammation in joints. They form cellular processes in the superficial layer of the articular cartilage and form gap junction coupled syncytium to facilitate cell-to-cell communication. However, very little is known about their physiological cellular identity and communication. The aim with the present work is to evaluate the physiological behavior after stimulation with the inflammatory inducers interleukin-1β and lipopolysaccharide. The cytoskeleton integrity and intracellular Ca2+ release were assessed as indicators of inflammatory state. Cytoskeleton integrity was analyzed through cartilage oligomeric matrix protein and actin labeling with an Alexa 488-conjugated phalloidin probe. Ca2+ responses were assessed through the Ca2+ sensitive fluorophore Fura-2/AM. Western blot analyses of several inflammatory markers were performed. The results show reorganization of the actin filaments. Glutamate, 5-hydoxytryptamine, and ATP evoked intracellular Ca2+ release changed from single peaks to oscillations after inflammatory induction in the chondrocytes. The expression of toll-like receptor 4, the glutamate transporters GLAST and GLT-1, and the matrix metalloproteinase-13 increased. This work demonstrates that chondrocytes are a key part in conditions that lead to inflammation in the cartilage. The inflammatory inducers modulate the cytoskeleton, the Ca2+ signaling, and several inflammatory parameters. In conclusion, our data show that the cellular responses to inflammatory insults from healthy and inflammatory chondrocytes resemble those previously observed in astrocyte and cardiac fibroblasts networks.
Collapse
|
11
|
Liang X, Wang X, Xu Q, Lu Y, Zhang Y, Xia H, Lu A, Zhang L. Rubbery Chitosan/Carrageenan Hydrogels Constructed through an Electroneutrality System and Their Potential Application as Cartilage Scaffolds. Biomacromolecules 2018; 19:340-352. [PMID: 29253344 DOI: 10.1021/acs.biomac.7b01456] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xichao Liang
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaolan Wang
- Department
of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant
Materials, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China
| | - Qi Xu
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yao Lu
- Department
of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant
Materials, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China
| | - Yu Zhang
- Department
of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant
Materials, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China
| | - Hong Xia
- Department
of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant
Materials, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China
| | - Ang Lu
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lina Zhang
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- School
of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
12
|
Liukkonen MK, Mononen ME, Klets O, Arokoski JP, Saarakkala S, Korhonen RK. Simulation of Subject-Specific Progression of Knee Osteoarthritis and Comparison to Experimental Follow-up Data: Data from the Osteoarthritis Initiative. Sci Rep 2017; 7:9177. [PMID: 28835668 PMCID: PMC5569023 DOI: 10.1038/s41598-017-09013-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/21/2017] [Indexed: 01/05/2023] Open
Abstract
Economic costs of osteoarthritis (OA) are considerable. However, there are no clinical tools to predict the progression of OA or guide patients to a correct treatment for preventing OA. We tested the ability of our cartilage degeneration algorithm to predict the subject-specific development of OA and separate groups with different OA levels. The algorithm was able to predict OA progression similarly with the experimental follow-up data and separate subjects with radiographical OA (Kellgren-Lawrence (KL) grade 2 and 3) from healthy subjects (KL0). Maximum degeneration and degenerated volumes within cartilage were significantly higher (p < 0.05) in OA compared to healthy subjects, KL3 group showing the highest degeneration values. Presented algorithm shows a great potential to predict subject-specific progression of knee OA and has a clinical potential by simulating the effect of interventions on the progression of OA, thus helping decision making in an attempt to delay or prevent further OA symptoms.
Collapse
Affiliation(s)
- Mimmi K Liukkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Olesya Klets
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jari P Arokoski
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
13
|
Ovine Mesenchymal Stromal Cells: Morphologic, Phenotypic and Functional Characterization for Osteochondral Tissue Engineering. PLoS One 2017; 12:e0171231. [PMID: 28141815 PMCID: PMC5283731 DOI: 10.1371/journal.pone.0171231] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 01/17/2017] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Knowledge of ovine mesenchymal stromal cells (oMSCs) is currently expanding. Tissue engineering combining scaffolding with oMSCs provides promising therapies for the treatment of osteochondral diseases. PURPOSE The aim was to isolate and characterize oMSCs from bone marrow aspirates (oBMSCs) and to assess their usefulness for osteochondral repair using β-tricalcium phosphate (bTCP) and type I collagen (Col I) scaffolds. METHODS Cells isolated from ovine bone marrow were characterized morphologically, phenotypically, and functionally. oBMSCs were cultured with osteogenic medium on bTCP and Col I scaffolds. The resulting constructs were evaluated by histology, immunohistochemistry and electron microscopy studies. Furthermore, oBMSCs were cultured on Col I scaffolds to develop an in vitro cartilage repair model that was assessed using a modified International Cartilage Research Society (ICRS) II scale. RESULTS oBMSCs presented morphology, surface marker pattern and multipotent capacities similar to those of human BMSCs. oBMSCs seeded on Col I gave rise to osteogenic neotissue. Assessment by the modified ICRS II scale revealed that fibrocartilage/hyaline cartilage was obtained in the in vitro repair model. CONCLUSIONS The isolated ovine cells were demonstrated to be oBMSCs. oBMSCs cultured on Col I sponges successfully synthesized osteochondral tissue. The data suggest that oBMSCs have potential for use in preclinical models prior to human clinical studies.
Collapse
|