1
|
Tao C, Lin S, Shi Y, Gong W, Chen M, Li J, Zhang P, Yao Q, Qian D, Ling Z, Xiao G. Inactivation of Tnf-α/Tnfr signaling attenuates progression of intervertebral disc degeneration in mice. JOR Spine 2024; 7:e70006. [PMID: 39391171 PMCID: PMC11461905 DOI: 10.1002/jsp2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a major cause of low back pain (LBP), worsened by chronic inflammatory processes associated with aging. Tumor necrosis factor alpha (Tnf-α) and its receptors, Tnf receptor type 1 (Tnfr1) and Tnf receptor type 2 (Tnfr2), are upregulated in IVDD. However, its pathologic mechanisms remain poorly defined. Methods To investigate the role of Tnfr in IVDD, we generated global Tnfr1/2 double knockout (KO) mice and age-matched control C57BL/6 male mice, and analyzed intervertebral disc (IVD)-related phenotypes of both genotypes under physiological conditions, aging, and lumbar spine instability (LSI) model through histological and immunofluorescence analyses and μCT imaging. Expression levels of key extracellular matrix (ECM) proteins in aged and LSI mice, especially markers of cell proliferation and apoptosis, were evaluated in aged (21-month-old) mice. Results At 4 months, KO and control mice showed no marked differences of IVDD-related parameters. However, at 21 months of age, the loss of Tnfr expression significantly alleviated IVDD-like phenotypes, including a significant increase in height of the nucleus pulposus (NPs) and reductions of endplates (EPs) porosity and histopathological scores, when compared to controls. Tnfr deficiency promoted anabolic metabolism of the ECM proteins and suppressed ECM catabolism. Tnfr loss largely inhibited hypertrophic differentiation, and, in the meantime, suppressed cell apoptosis and cellular senescence in the annulus fibrosis, NP, and EP tissues without affecting cell proliferation. Similar results were observed in the LSI model, where Tnfr deficiency significantly alleviated IVDD and enhanced ECM anabolic metabolism while suppressing catabolism. Conclusion The deletion of Tnfr mitigates age-related and LSI-induced IVDD, as evidenced by preserved IVD structure, and improved ECM integrity. These findings suggest a crucial role of Tnf-α/Tnfr signaling in IVDD pathogenesis in mice. Targeting this pathway may be a novel strategy for IVDD prevention and treatment.
Collapse
Affiliation(s)
- Chu Tao
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Sixiong Lin
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Department of OrthopaedicsThe First Affiliated Hospital of Guangzhou Medical University, Guangdong key Laboratory of Orthopaedic Technology and Implant MaterialsGuangzhouChina
| | - Yujia Shi
- School of Biomedical SciencesThe Chinese University of Hong KongShatinHong Kong
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Jianglong Li
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Department of Orthopaedics, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Peijun Zhang
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Dongyang Qian
- Department of OrthopaedicsThe First Affiliated Hospital of Guangzhou Medical University, Guangdong key Laboratory of Orthopaedic Technology and Implant MaterialsGuangzhouChina
| | - Zemin Ling
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
2
|
Sono T, Shima K, Shimizu T, Murata K, Matsuda S, Otsuki B. Regenerative therapies for lumbar degenerative disc diseases: a literature review. Front Bioeng Biotechnol 2024; 12:1417600. [PMID: 39257444 PMCID: PMC11385613 DOI: 10.3389/fbioe.2024.1417600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
This review aimed to summarize the recent advances and challenges in the field of regenerative therapies for lumbar disc degeneration. The current first-line treatment options for symptomatic lumbar disc degeneration cannot modify the disease process or restore the normal structure, composition, and biomechanical function of the degenerated discs. Cell-based therapies tailored to facilitate intervertebral disc (IVD) regeneration have been developed to restore the IVD extracellular matrix or mitigate inflammatory conditions. Human clinical trials on Mesenchymal Stem Cells (MSCs) have reported promising outcomes exhibited by MSCs in reducing pain and improving function. Nucleus pulposus (NP) cells possess unique regenerative capacities. Biomaterials aimed at NP replacement in IVD regeneration, comprising synthetic and biological materials, aim to restore disc height and segmental stability without compromising the annulus fibrosus. Similarly, composite IVD replacements that combine various biomaterial strategies to mimic the native disc structure, including organized annulus fibrosus and NP components, have shown promise. Furthermore, preclinical studies on regenerative medicine therapies that utilize cells, biomaterials, growth factors, platelet-rich plasma (PRP), and biological agents have demonstrated their promise in repairing degenerated lumbar discs. However, these therapies are associated with significant limitations and challenges that hinder their clinical translation. Thus, further studies must be conducted to address these challenges.
Collapse
Affiliation(s)
- Takashi Sono
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Shima
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayoshi Shimizu
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Murata
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Bungo Otsuki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Wang Z, Zhu D, Yang F, Chen H, Kang J, Liu W, Lin A, Kang X. POSTN knockdown suppresses IL-1β-induced inflammation and apoptosis of nucleus pulposus cells via inhibiting the NF-κB pathway and alleviates intervertebral disc degeneration. J Cell Commun Signal 2024; 18:e12030. [PMID: 38946726 PMCID: PMC11208126 DOI: 10.1002/ccs3.12030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 07/02/2024] Open
Abstract
The aim of this study is to investigate the effects of POSTN on IL-1β induced inflammation, apoptosis, NF-κB pathway and intervertebral disc degeneration (IVDD) in Nucleus pulposus (NP) cells (NPCs). NP tissue samples with different Pfirrmann grades were collected from patients with different degrees of IVDD. Western blot and immunohistochemical staining were used to compare the expression of POSTN protein in NP tissues. Using the IL-1β-induced IVDD model, NPCs were transfected with lentivirus-coated si-POSTN to down-regulate the expression of POSTN and treated with CU-T12-9 to evaluate the involvement of NF-κB pathway. Western blot, immunofluorescence, and TUNEL staining were used to detect the expression changes of inflammation, apoptosis and NF-κB pathway-related proteins in NPCs. To investigate the role of POSTN in vivo, a rat IVDD model was established by needle puncture of the intervertebral disc. Rats were injected with lentivirus-coated si-POSTN, and H&E staining and immunohistochemical staining were performed. POSTN expression is positively correlated with the severity of IVDD in human. POSTN expression was significantly increased in the IL-1β-induced NPCs degeneration model. Downregulation of POSTN protects NPCs from IL-1β-induced inflammation and apoptosis. CU-T12-9 treatment reversed the protective effect of si-POSTN on NPCs. Furthermore, lentivirus-coated si-POSTN injection partially reversed NP tissue damage in the IVDD model in vivo. POSTN knockdown reduces inflammation and apoptosis of NPCs by inhibiting NF-κB pathway, and ultimately prevents IVDD. Therefore, POSTN may be an effective target for the treatment of IVDD.
Collapse
Affiliation(s)
- Zhaoheng Wang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Daxue Zhu
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Fengguang Yang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Haiwei Chen
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Jihe Kang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Wenzhao Liu
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Aixin Lin
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Xuewen Kang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
4
|
Tamagawa S, Sakai D, Nojiri H, Nakamura Y, Warita T, Matsushita E, Schol J, Soma H, Ogasawara S, Munesada D, Koike M, Shimizu T, Sato M, Ishijima M, Watanabe M. SOD2 orchestrates redox homeostasis in intervertebral discs: A novel insight into oxidative stress-mediated degeneration and therapeutic potential. Redox Biol 2024; 71:103091. [PMID: 38412803 PMCID: PMC10907854 DOI: 10.1016/j.redox.2024.103091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
Low back pain (LBP) is a pervasive global health concern, primarily associated with intervertebral disc (IVD) degeneration. Although oxidative stress has been shown to contribute to IVD degeneration, the underlying mechanisms remain undetermined. This study aimed to unravel the role of superoxide dismutase 2 (SOD2) in IVD pathogenesis and target oxidative stress to limit IVD degeneration. SOD2 demonstrated a dynamic regulation in surgically excised human IVD tissues, with initial upregulation in moderate degeneration and downregulation in severely degenerated IVDs. Through a comprehensive set of in vitro and in vivo experiments, we found a suggestive association between excessive mitochondrial superoxide, cellular senescence, and matrix degradation in human and mouse IVD cells. We confirmed that aging and mechanical stress, established triggers for IVD degeneration, escalated mitochondrial superoxide levels in mouse models. Critically, chondrocyte-specific Sod2 deficiency accelerated age-related and mechanical stress-induced disc degeneration in mice, and could be attenuated by β-nicotinamide mononucleotide treatment. These revelations underscore the central role of SOD2 in IVD redox balance and unveil potential therapeutic avenues, making SOD2 and mitochondrial superoxide promising targets for effective LBP interventions.
Collapse
Affiliation(s)
- Shota Tamagawa
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan; Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan.
| | - Hidetoshi Nojiri
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshihiko Nakamura
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Takayuki Warita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Erika Matsushita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Jordy Schol
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Hazuki Soma
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Shota Ogasawara
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Daiki Munesada
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Masato Koike
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
5
|
Li Y, Zhang H, Zhu D, Yang F, Wang Z, Wei Z, Yang Z, Jia J, Kang X. Notochordal cells: A potential therapeutic option for intervertebral disc degeneration. Cell Prolif 2024; 57:e13541. [PMID: 37697480 PMCID: PMC10849793 DOI: 10.1111/cpr.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a prevalent musculoskeletal degenerative disorder worldwide, and ~40% of chronic low back pain cases are associated with IDD. Although the pathogenesis of IDD remains unclear, the reduction in nucleus pulposus cells (NPCs) and degradation of the extracellular matrix (ECM) are critical factors contributing to IDD. Notochordal cells (NCs), derived from the notochord, which rapidly degrades after birth and is eventually replaced by NPCs, play a crucial role in maintaining ECM homeostasis and preventing NPCs apoptosis. Current treatments for IDD only provide symptomatic relief, while lacking the ability to inhibit or reverse its progression. However, NCs and their secretions possess anti-inflammatory properties and promote NPCs proliferation, leading to ECM formation. Therefore, in recent years, NCs therapy targeting the underlying cause of IDD has emerged as a novel treatment strategy. This article provides a comprehensive review of the latest research progress on NCs for IDD, covering their biological characteristics, specific markers, possible mechanisms involved in IDD and therapeutic effects. It also highlights significant future directions in this field to facilitate further exploration of the pathogenesis of IDD and the development of new therapies based on NCs strategies.
Collapse
Affiliation(s)
- Yanhu Li
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Haijun Zhang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
- The Second People's Hospital of Gansu ProvinceLanzhouPeople's Republic of China
| | - Daxue Zhu
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Fengguang Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhaoheng Wang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Ziyan Wei
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhili Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Jingwen Jia
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Xuewen Kang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| |
Collapse
|
6
|
Lei M, Lin H, Shi D, Hong P, Song H, Herman B, Liao Z, Yang C. Molecular mechanism and therapeutic potential of HDAC9 in intervertebral disc degeneration. Cell Mol Biol Lett 2023; 28:104. [PMID: 38093179 PMCID: PMC10717711 DOI: 10.1186/s11658-023-00517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is the major cause of low-back pain. Histone deacetylase 9 (HDAC9) was dramatically decreased in the degenerative nucleus pulposus (NP) samples of patients with intervertebral disc degeneration (IVDD) according to bioinformatics analysis of Gene Expression Omnibus (GEO) GSE56081 dataset. This study aims to investigate the role of HDAC9 in IVDD progression. METHODS The contribution of HDAC9 to the progression of IVDD was assessed using HDAC9 knockout (HDAC9KO) mice and NP-targeted HDAC9-overexpressing mice by IVD injection of adenovirus-mediated HDAC9 under a Col2a1 promoter. Magnetic resonance imaging (MRI) and histological analysis were used to examine the degeneration of IVD. NP cells were isolated from mice to investigate the effects of HDAC9 on apoptosis and viability. mRNA-seq and coimmunoprecipitation/mass spectrometry (co-IP/MS) analysis were used to analyze the HDAC9-regulated factors in the primary cultured NP cells. RESULTS HDAC9 was statistically decreased in the NP tissues in aged mice. HDAC9KO mice spontaneously developed age-related IVDD compared with wild-type (HDAC9WT) mice. In addition, overexpression of HDAC9 in NP cells alleviated IVDD symptoms in a surgically-induced IVDD mouse model. In an in vitro assay, knockdown of HDAC9 inhibited cell viability and promoted cell apoptosis of NP cells, and HDAC9 overexpression had the opposite effects in NP cells isolated from HDAC9KO mice. Results of mRNA-seq and co-IP/MS analysis revealed the possible proteins and signaling pathways regulated by HDAC9 in NP cells. RUNX family transcription factor 3 (RUNX3) was screened out for further study, and RUNX3 was found to be deacetylated and stabilized by HDAC9. Knockdown of RUNX3 restored the effects of HDAC9 silencing on NP cells by inhibiting apoptosis and increasing viability. CONCLUSION Our results suggest that HDAC9 plays an important role in the development and progression of IVDD. It might be required to protect NP cells against the loss of cell viability and apoptosis by inhibiting RUNX3 acetylation and expression during IVDD. Together, our findings suggest that HDAC9 may be a potential therapeutic target in IVDD.
Collapse
Affiliation(s)
- Ming Lei
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Hui Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Pan Hong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hui Song
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Bomansaan Herman
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhiwei Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Cao Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
7
|
Liu Y, Zhao Z, Guo C, Huang Z, Zhang W, Ma F, Wang Z, Kong Q, Wang Y. Application and development of hydrogel biomaterials for the treatment of intervertebral disc degeneration: a literature review. Front Cell Dev Biol 2023; 11:1286223. [PMID: 38130952 PMCID: PMC10733535 DOI: 10.3389/fcell.2023.1286223] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Low back pain caused by disc herniation and spinal stenosis imposes an enormous medical burden on society due to its high prevalence and refractory nature. This is mainly due to the long-term inflammation and degradation of the extracellular matrix in the process of intervertebral disc degeneration (IVDD), which manifests as loss of water in the nucleus pulposus (NP) and the formation of fibrous disc fissures. Biomaterial repair strategies involving hydrogels play an important role in the treatment of intervertebral disc degeneration. Excellent biocompatibility, tunable mechanical properties, easy modification, injectability, and the ability to encapsulate drugs, cells, genes, etc. make hydrogels good candidates as scaffolds and cell/drug carriers for treating NP degeneration and other aspects of IVDD. This review first briefly describes the anatomy, pathology, and current treatments of IVDD, and then introduces different types of hydrogels and addresses "smart hydrogels". Finally, we discuss the feasibility and prospects of using hydrogels to treat IVDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Hutchinson JL, Veras MA, Serjeant ME, McCann MR, Kelly AL, Quinonez D, Beier F, Séguin CA. Comparative histopathological analysis of age-associated intervertebral disc degeneration in CD-1 and C57BL/6 mice: Anatomical and sex-based differences. JOR Spine 2023; 6:e1298. [PMID: 38156059 PMCID: PMC10751972 DOI: 10.1002/jsp2.1298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 12/30/2023] Open
Abstract
Background Intervertebral disc (IVD) degeneration is a major contributor to back pain and disability. The cause of IVD degeneration is multifactorial, with no disease-modifying treatments. Mouse models are commonly used to study IVD degeneration; however, the effects of anatomical location, strain, and sex on the progression of age-associated degeneration are poorly understood. Methods A longitudinal study was conducted to characterize age-, anatomical-, and sex-specific differences in IVD degeneration in two commonly used strains of mice, C57BL/6 and CD-1. Histopathological evaluation of the cervical, thoracic, lumbar, and caudal regions of mice at 6, 12, 20, and 24 months of age was conducted by two blinded observers at each IVD for the nucleus pulposus (NP), annulus fibrosus (AF), and the NP/AF boundary compartments, enabling analysis of scores by tissue compartment, summed scores for each IVD, or averaged scores for each anatomical region. Results C57BL/6 mice displayed mild IVD degeneration until 24 months of age; at this point, the lumbar spine demonstrated the most degeneration compared to other regions. Degeneration was detected earlier in the CD-1 mice (20 months of age) in both the thoracic and lumbar spine. In CD-1 mice, moderate to severe degeneration was noted in the cervical spine at all time points assessed. In both strains, age-associated IVD degeneration in the thoracic and lumbar spine was associated with increased histopathological scores in all IVD compartments. In both strains, minimal degeneration was detected in caudal IVDs out to 24 months of age. Both C57BL/6 and CD-1 mice displayed sex-specific differences in the presentation and progression of age-associated IVD degeneration. Conclusions These results showed that the progression and severity of age-associated degeneration in mouse models is associated with marked differences based on anatomical region, sex, and strain. This information provides a fundamental baseline characterization for users of mouse models to enable effective and appropriate experimental design, interpretation, and comparison between studies.
Collapse
Affiliation(s)
- Jeffrey L. Hutchinson
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryThe Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Matthew A. Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryThe Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Meghan E. Serjeant
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryThe Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Matthew R. McCann
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryThe Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Ashley L. Kelly
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryThe Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Diana Quinonez
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryThe Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryThe Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Cheryle A. Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryThe Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| |
Collapse
|
9
|
Liang T, Gao B, Zhou J, Qiu X, Qiu J, Chen T, Liang Y, Gao W, Qiu X, Lin Y. Constructing intervertebral disc degeneration animal model: A review of current models. Front Surg 2023; 9:1089244. [PMID: 36969323 PMCID: PMC10036602 DOI: 10.3389/fsurg.2022.1089244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 03/12/2023] Open
Abstract
Low back pain is one of the top disorders that leads to disability and affects disability-adjusted life years (DALY) globally. Intervertebral disc degeneration (IDD) and subsequent discogenic pain composed major causes of low back pain. Recent studies have identified several important risk factors contributing to IDD's development, such as inflammation, mechanical imbalance, and aging. Based on these etiology findings, three categories of animal models for inducing IDD are developed: the damage-induced model, the mechanical model, and the spontaneous model. These models are essential measures in studying the natural history of IDD and finding the possible therapeutic target against IDD. In this review, we will discuss the technical details of these models, the duration between model establishment, the occurrence of observable degeneration, and the potential in different study ranges. In promoting future research for IDD, each animal model should examine its concordance with natural IDD pathogenesis in humans. We hope this review can enhance the understanding and proper use of multiple animal models, which may attract more attention to this disease and contribute to translation research.
Collapse
Affiliation(s)
- Tongzhou Liang
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bo Gao
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinlang Zhou
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xianjian Qiu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jincheng Qiu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Taiqiu Chen
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanfang Liang
- Department of Operating Theater, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Gao
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xuemei Qiu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- Correspondence: Xuemei Qiu Youxi Lin
| | - Youxi Lin
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- Correspondence: Xuemei Qiu Youxi Lin
| |
Collapse
|
10
|
Guo Y, Zhao H, Lu J, Xu H, Hu T, Wu D. Preoperative Lymphocyte to Monocyte Ratio as a Predictive Biomarker for Disease Severity and Spinal Fusion Failure in Lumbar Degenerative Diseases Patients Undergoing Lumbar Fusion. J Pain Res 2022; 15:2879-2891. [PMID: 36124035 PMCID: PMC9482412 DOI: 10.2147/jpr.s379453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Objective This study was designed to determine whether lymphocyte to monocyte ratio (LMR) correlated with the intervertebral disc degeneration (IDD) severity and the postoperative spinal fusion rate in patients with lumbar disc disease. Methods 303 patients undergoing posterior lumbar decompression and fusion were retrospectively analyzed. An examination of the blood count was performed before surgery. The cumulative grade was calculated by summing the pfirrmann grades of all lumbar discs. Grouping was based on the 50th percentile of cumulative grade and spinal fusion. The relationship between LMR and IDD severity and spinal fusion was explored using correlation analyses and logistic regression models. The receiver operating characteristic (ROC) curve was performed to measure model discrimination, and Hosmer-Lemeshow (H-L) test was used to measure calibration. Meanwhile, the ROC curve evaluated the discrimination ability of LMR in predicting severe degeneration and fusion failure. Results LMR was significantly lower in the severe degeneration group (cumulative grade > 18) than in the mild to moderate degeneration group (cumulative grade ≤ 18). Furthermore, the LMR of the fusion group was significantly higher than that of the non-fusion group. The multivariate binary logistic models revealed that LMR was an independently influencing factor of the severe degeneration and fusion failure (OR: 0.793, 95% CI: 0.638–0.987, p = 0.038; OR: 0.371, 95% CI: 0.258–0.532, p < 0.001). The models showed excellent discrimination and calibration. The area under the curve (AUC) of severe degeneration and fusion failure identified by LMR were 0.635 and 0.643, respectively, and the corresponding cut-off values were 3.16 and 3.90. Conclusion LMR is significantly associated with the risk of severe disc degeneration and spinal fusion failure.
Collapse
Affiliation(s)
- Youfeng Guo
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Haihong Zhao
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Jiawei Lu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Haowei Xu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| |
Collapse
|
11
|
Zhou Y, Yang M. Clinical Effect of the Treatment of Lumbar Intervertebral Disc Protrusion. Appl Bionics Biomech 2022; 2022:6803124. [PMID: 35528534 PMCID: PMC9076308 DOI: 10.1155/2022/6803124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022] Open
Abstract
Compared with traditional acupuncture, it is urgently needed for more effective method for the disease to serve the clinical treatment. This paper combines acupuncture and massage to treat lumbar intervertebral disc protrusion, uses a controlled trial to study the clinical effects of acupuncture combined with massage for the treatment of lumbar intervertebral disc protrusion, combines mathematical statistics to test the data, and compares and analyzes the statistical object parameters. Through experimental research, it is known that in the treatment of lumbar intervertebral disc protrusion, in order to obtain a faster and better effect, traditional acupuncture treatment should be combined with massage therapy. On the basis of fully eliminating the pathological factors, the intervertebral disc is reset by mechanical treatment, which makes the patient more likely to heal. Therefore, it is a comprehensive treatment plan that is worth adopting.
Collapse
Affiliation(s)
- Yehui Zhou
- Wuhan No.4 Hospital, WuHan 430000, China
| | - Ming Yang
- Wuhan No.4 Hospital, WuHan 430000, China
| |
Collapse
|
12
|
BRD4 Inhibition Suppresses Senescence and Apoptosis of Nucleus Pulposus Cells by Inducing Autophagy during Intervertebral Disc Degeneration: An In Vitro and In Vivo Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9181412. [PMID: 35308165 PMCID: PMC8933081 DOI: 10.1155/2022/9181412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/10/2021] [Accepted: 02/06/2022] [Indexed: 01/10/2023]
Abstract
Intervertebral disc degeneration (IDD) is the most common chronic skeletal muscle degeneration disease. Although the underlying mechanisms remain unclear, nucleus pulposus (NP) autophagy, senescence, and apoptosis are known to play a critical role in this process. Previous studies suggest that bromodomain-containing protein 4 (BRD4) promotes senescent and apoptotic effects in several age-related degenerative diseases. It is not known, however, if BRD4 inhibition is protective in IDD. In this study, we explored whether BRD4 influenced IDD. In human clinical specimens, the BRD4 level was markedly increased with the increasing Pfirrmann grade. At the cellular level, BRD4 inhibition prevented IL-1β-induced senescence and apoptosis of NP cells and activated autophagy via the AMPK/mTOR/ULK1 signaling pathway. Inhibition of autophagy by 3-methyladenine (3-MA) partially reversed the antisenescence and antiapoptotic effects of BRD4. In vivo, BRD4 inhibition attenuated IDD. Taken together, the results of this study showed that BRD4 inhibition reduced NP cell senescence and apoptosis by induced autophagy, which ultimately alleviated IDD. Therefore, BRD4 may serve as a novel potential therapeutic target for the treatment of IDD.
Collapse
|
13
|
Rebalance of the Polyamine Metabolism Suppresses Oxidative Stress and Delays Senescence in Nucleus Pulposus Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8033353. [PMID: 35178160 PMCID: PMC8844099 DOI: 10.1155/2022/8033353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
Abstract
Intervertebral disk degeneration (IDD) is a major cause of low back pain that becomes a prevalent age-related disease. However, the pathophysiological processes behind IDD are rarely known. Here, we used bioinformatics analysis based on the microarray datasets (GSE34095) to identify the differentially expressed genes (DEGs) as biomarkers and therapeutic targets in degenerated discs. From the previous studies, oxidative stress has been notified as a positive inducement of IDD, which causes DNA damage and accelerates cell senescence. Polyamine oxidase (PAOX), a member of the observed 1057 DEGs, is involved in polyamine metabolism and influences the oxidative balance in cells. However, it is uncertain if the IDD is implicated in the dysregulation of PAOX and polyamine metabolism. This study firstly verified the PAOX upregulation in human degenerated disc samples and applied an IL-1β-induced nucleus pulposus (NP) cell degeneration model to demonstrate that spermidine supplementation balanced polyamine metabolism and delayed NP cell senescence. Moreover, we confirmed that spermidine/N-acetylcysteine supplementation or Cdkn2a gene deletion stabilized the polyamine metabolism, suppressed oxidative stress, and therefore delayed the progress of IDD in older mice. Collectively, our study highlights the role of polyamine metabolism in IDD and foresees spermidine would be the advanced therapeutical drug for IDD.
Collapse
|
14
|
Ohnishi T, Iwasaki N, Sudo H. Causes of and Molecular Targets for the Treatment of Intervertebral Disc Degeneration: A Review. Cells 2022; 11:cells11030394. [PMID: 35159202 PMCID: PMC8834258 DOI: 10.3390/cells11030394] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a pathological condition that can lead to intractable back pain or secondary neurological deficits. There is no fundamental cure for this condition, and current treatments focus on alleviating symptoms indirectly. Numerous studies have been performed to date, and the major strategy for all treatments of IVDD is to prevent cell loss due to programmed or regulated cell death. Accumulating evidence suggests that several types of cell death other than apoptosis, including necroptosis, pyroptosis, and ferroptosis, are also involved in IVDD. In this study, we discuss the molecular pathway of each type of cell death and review the literature that has identified their role in IVDD. We also summarize the recent advances in targeted therapy at the RNA level, including RNA modulations through RNA interference and regulation of non-coding RNAs, for preventing cell death and subsequent IVDD. Therefore, we review the causes and possible therapeutic targets for RNA intervention and discuss the future direction of this research field.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopedic Surgery, Hokkaido University Hospital, Sapporo 060-8648, Japan;
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan;
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
- Correspondence:
| |
Collapse
|
15
|
Zhu B, Chen HX, Li S, Tan JH, Xie Y, Zou MX, Wang C, Xue JB, Li XL, Cao Y, Yan YG. Comprehensive analysis of N6-methyladenosine (m 6A) modification during the degeneration of lumbar intervertebral disc in mice. J Orthop Translat 2022; 31:126-138. [PMID: 34976732 PMCID: PMC8685911 DOI: 10.1016/j.jot.2021.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 01/22/2023] Open
Abstract
Objective To study the N6-methyladenosine (m6A) modification pattern of nucleus pulposus (NP) tissue during intervertebral disc degeneration (IDD). Methods A standing mouse model was generated, and staining and imaging methods were used to evaluate the IDD model. Methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-seq) was used to analyze m6A methylation-associated transcripts in the NP, and real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression of methylation-related enzymes and conduct bio-informatics analysis. Results The standing mouse model caused IDD. Continuous axial pressure changed the expression of related methylases in degenerated NP tissue. Relative to the control group, the expression levels of KIAA1429, METTL14, METTL3, METTL4, WTAP, DGCR8, EIF3A and YTHDC1 in the experimental group were higher, while those of FTO, ELAVL1, HNRNPC1 and SRSF2 were lower. We identified 985 differentially expressed genes through MeRIP-Seq, among which 363 genes were significantly up-regulated, and 622 genes were significantly down-regulated. In addition, among the 9648 genes counted, 1319 m6A peaks with significant differences in methylation were identified, among which 933 were significantly up-regulated, and 386 were significantly down-regulated. Genes and pathways that were enriched in IDD have been identified. Conclusion The results of this study elucidated the m6A methylation pattern of NP tissue in degenerated lumbar intervertebral disc of mice and provided new perspectives and clues for research on and the treatment of lumbar disc degeneration. The Translational potential of this article As one of the important causes of low back and leg pain, intervertebral disc degeneration brings a huge economic burden to the society, family and medical system. Therefore, understanding the molecular and cellular mechanisms of intervertebral disc degeneration is of great significance for guiding clinical treatment. In this study, methylated RNA immunoprecipitation with next-generation sequencing on mice lumbar nucleus pulposus tissues found that differentially expressed genes and changes in the expression of related methylases, confirming that RNA methylation is involved in intervertebral disc degeneration. The process provides new vision and clues for future research on intervertebral disc degeneration.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Hao-xiang Chen
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Shan Li
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jing-hua Tan
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yong Xie
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming-xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jing-bo Xue
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xue-lin Li
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
- Corresponding author. Department of Spine Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China.
| | - Yi-guo Yan
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
- Corresponding author. Department of Spine Surgery, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China.
| |
Collapse
|
16
|
Liu L, Huang K, Li W, Qiu R, Fang Y, Huang Y, Zhao S, Lv H, Zhang K, Shan H, Li Y. Molecular Imaging of Collagen Destruction of the Spine. ACS NANO 2021; 15:19138-19149. [PMID: 34738460 DOI: 10.1021/acsnano.1c07112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As the leading cause of disability worldwide, low back pain is commonly caused by biomechanical and catabolic disruptions to key structures of the spine, such as intervertebral discs and facet joints. To date, accurate, noninvasive detection of microdestruction within these tissues remains an elusive goal. Here, we report an in vivo imaging approach based on a collagen hybridizing peptide (CHP) that specifically targets disruption to the extracellular matrix architecture at the molecular scale─the denatured collagen molecules. Utilizing fluorescently labeled CHPs, live animal imaging, and light sheet fluorescence microscopy, we mapped collagen destruction in the lumbar spines in 3D, revealing that under normal conditions collagen destruction was localized to load-bearing anatomical structures including annulus fibrosus of the disc and the facet joints, where aging, tensile force (hindlimb suspension), and disc degeneration (needle puncture) escalated the CHP-binding in specific mouse models. We showed that targeting denatured collagen molecules allowed for an accurate, quantifiable interrogation of the structural integrity of these spinal matrixes with a greater sensitivity than anatomical imaging and histology. Finally, we demonstrated CHP's binding to degenerated human discs, suggesting exciting potentials for applying CHP for diagnosing, monitoring, and treating various spinal disorders, including intervertebral disc degeneration, facet joint osteoarthritis, and ankylosing spondylitis.
Collapse
Affiliation(s)
- Lei Liu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Spine Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Kui Huang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Wei Li
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Rongmao Qiu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yijie Fang
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yongjie Huang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Suwen Zhao
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Hai Lv
- Department of Spine Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Kuibo Zhang
- Department of Spine Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
17
|
Novais EJ, Tran VA, Johnston SN, Darris KR, Roupas AJ, Sessions GA, Shapiro IM, Diekman BO, Risbud MV. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat Commun 2021; 12:5213. [PMID: 34480023 PMCID: PMC8417260 DOI: 10.1038/s41467-021-25453-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc degeneration is highly prevalent within the elderly population and is a leading cause of chronic back pain and disability. Due to the link between disc degeneration and senescence, we explored the ability of the Dasatinib and Quercetin drug combination (D + Q) to prevent an age-dependent progression of disc degeneration in mice. We treated C57BL/6 mice beginning at 6, 14, and 18 months of age, and analyzed them at 23 months of age. Interestingly, 6- and 14-month D + Q cohorts show lower incidences of degeneration, and the treatment results in a significant decrease in senescence markers p16INK4a, p19ARF, and SASP molecules IL-6 and MMP13. Treatment also preserves cell viability, phenotype, and matrix content. Although transcriptomic analysis shows disc compartment-specific effects of the treatment, cell death and cytokine response pathways are commonly modulated across tissue types. Results suggest that senolytics may provide an attractive strategy to mitigating age-dependent disc degeneration.
Collapse
Affiliation(s)
- Emanuel J. Novais
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s—PT Government Associate Laboratory, Braga, Portugal
| | - Victoria A. Tran
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Shira N. Johnston
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA
| | - Kayla R. Darris
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Alex J. Roupas
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Garrett A. Sessions
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Irving M. Shapiro
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA
| | - Brian O. Diekman
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Makarand V. Risbud
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
18
|
Wang Y, Kang J, Guo X, Zhu D, Liu M, Yang L, Zhang G, Kang X. Intervertebral Disc Degeneration Models for Pathophysiology and Regenerative Therapy -Benefits and Limitations. J INVEST SURG 2021; 35:935-952. [PMID: 34309468 DOI: 10.1080/08941939.2021.1953640] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aim:This review summarized the recent intervertebral disc degeneration (IDD) models and described their advantages and potential disadvantages, aiming to provide an overview for the current condition of IDD model establishment and new ideas for new strategies development of the treatment and prevention of IDD.Methods:The database of PubMed was searched up to May 2021 with the following search terms: nucleus pulposus, annulus fibrosus, cartilage endplate, intervertebral disc(IVD), intervertebral disc degeneration, animal model, organ culture, bioreactor, inflammatory reaction, mechanical stress, pathophysiology, epidemiology. Any IDD model-related articles were collected and summarized.Results:The best IDD model should have the features of repeatability, measurability and controllability. There are a lot of aspects to be considered in the selection of animals. Mice, rats and rabbits are low-cost and easy to access. However, their IVD size and shape are more different from human anatomy than pigs, cattle, sheep and goats. Organ culture models and animal models are two options in model establishment for IDD. The IVD organ culture model can put the studying variables into the controllable system for transitional research. Unlike the animal model, the organ culture model can only be used to evaluate the short-term effects and it is not applicable in simulating the complex process of IDD. Similarly, the animal models induced by different methods also have their advantages and disadvantages. For studying the mechanism of IDD and the corresponding treatment and prevention strategies, the selection of model should be individualized based on the purpose of each study.Conclusions:Various models have different characteristics and scope of application due to their different rationales and methods of construction. Currently, there is no experimental model that can perfectly mimic the degenerative process of human IVD. Personalized selection of appropriate model based on study purpose and experimental designing can enhance the possibility to obtain reliable and real results.
Collapse
Affiliation(s)
- Yidian Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Jihe Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Xudong Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Daxue Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Mingqiang Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Liang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Guangzhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Xuewen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, P.R. China.,The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu, P.R. China
| |
Collapse
|
19
|
Melgoza IP, Chenna SS, Tessier S, Zhang Y, Tang SY, Ohnishi T, Novais EJ, Kerr GJ, Mohanty S, Tam V, Chan WCW, Zhou C, Zhang Y, Leung VY, Brice AK, Séguin CA, Chan D, Vo N, Risbud MV, Dahia CL. Development of a standardized histopathology scoring system using machine learning algorithms for intervertebral disc degeneration in the mouse model-An ORS spine section initiative. JOR Spine 2021; 4:e1164. [PMID: 34337338 PMCID: PMC8313179 DOI: 10.1002/jsp2.1164] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022] Open
Abstract
Mice have been increasingly used as preclinical model to elucidate mechanisms and test therapeutics for treating intervertebral disc degeneration (IDD). Several intervertebral disc (IVD) histological scoring systems have been proposed, but none exists that reliably quantitate mouse disc pathologies. Here, we report a new robust quantitative mouse IVD histopathological scoring system developed by building consensus from the spine community analyses of previous scoring systems and features noted on different mouse models of IDD. The new scoring system analyzes 14 key histopathological features from nucleus pulposus (NP), annulus fibrosus (AF), endplate (EP), and AF/NP/EP interface regions. Each feature is categorized and scored; hence, the weight for quantifying the disc histopathology is equally distributed and not driven by only a few features. We tested the new histopathological scoring criteria using images of lumbar and coccygeal discs from different IDD models of both sexes, including genetic, needle-punctured, static compressive models, and natural aging mice spanning neonatal to old age stages. Moreover, disc sections from common histological preparation techniques and stains including H&E, SafraninO/Fast green, and FAST were analyzed to enable better cross-study comparisons. Fleiss's multi-rater agreement test shows significant agreement by both experienced and novice multiple raters for all 14 features on several mouse models and sections prepared using various histological techniques. The sensitivity and specificity of the new scoring system was validated using artificial intelligence and supervised and unsupervised machine learning algorithms, including artificial neural networks, k-means clustering, and principal component analysis. Finally, we applied the new scoring system on established disc degeneration models and demonstrated high sensitivity and specificity of histopathological scoring changes. Overall, the new histopathological scoring system offers the ability to quantify histological changes in mouse models of disc degeneration and regeneration with high sensitivity and specificity.
Collapse
Affiliation(s)
- Itzel Paola Melgoza
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew York CityNew YorkUSA
| | - Srish S. Chenna
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew York CityNew YorkUSA
| | - Steven Tessier
- Department of Orthopaedic SurgerySidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Yejia Zhang
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Simon Y. Tang
- Department of Orthopaedic SurgeryWashington University in St LouisMissouriUSA
| | - Takashi Ohnishi
- Department of Orthopaedic SurgerySidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryFaculty of Medicine and Graduate School of Medicine, Hokkaido UniversitySapporoJapan
| | - Emanuel José Novais
- Department of Orthopaedic SurgerySidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
| | - Geoffrey J. Kerr
- Department of Physiology & PharmacologyBone & Joint Institute, University of Western OntarioLondonOntarioCanada
| | | | - Vivian Tam
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
| | - Wilson C. W. Chan
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
- Department of Orthopaedic and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdongChina
| | - Chao‐Ming Zhou
- Department of Orthopaedic SurgeryUniversity of PittsburghPennsylvaniaUSA
| | - Ying Zhang
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
| | - Victor Y. Leung
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong
| | | | - Cheryle A. Séguin
- Department of Physiology & PharmacologyBone & Joint Institute, University of Western OntarioLondonOntarioCanada
| | - Danny Chan
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
- Department of Orthopaedic and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdongChina
| | - Nam Vo
- Department of Orthopaedic SurgeryUniversity of PittsburghPennsylvaniaUSA
| | - Makarand V. Risbud
- Department of Orthopaedic SurgerySidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Chitra L. Dahia
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew York CityNew YorkUSA
- Department of Cell & Developmental BiologyWeill Cornell Medicine Graduate School of Medical SciencesNew York CityNew YorkUSA
| |
Collapse
|
20
|
Zheng Q, Shen H, Tong Z, Cheng L, Xu Y, Feng Z, Liao S, Hu X, Pan Z, Mao Z, Wang Y. A thermosensitive, reactive oxygen species-responsive, MR409-encapsulated hydrogel ameliorates disc degeneration in rats by inhibiting the secretory autophagy pathway. Theranostics 2021; 11:147-163. [PMID: 33391467 PMCID: PMC7681093 DOI: 10.7150/thno.47723] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Lumbar disc degeneration is a common cause of chronic low back pain and an important contributor to various degenerative lumbar spinal disorders. However, currently there is currently no effective therapeutic strategy for treating disc degeneration. The pro-inflammatory cytokine interleukin-1β (IL-1β) mediates disc degeneration by inducing apoptotic death of nucleus pulposus (NP) cells and degradation of the NP extracellular matrix. Here, we confirmed that extracellular secretion of IL-1β via secretory autophagy contributes to disc degeneration, and demonstrate that a thermosensitive reactive oxygen species (ROS)-responsive hydrogel loaded with a synthetic growth hormone-releasing hormone analog (MR409) can protect against needle puncture-induced disc degeneration in rats. Methods: The expression levels of proteins related to secretory autophagy such as tripartite motif-containing 16 (TRIM16) and microtubule-associated protein light chain 3B (LC3B) were examined in human and rat disc tissues by histology and immunofluorescence. The effects of TRIM16 expression level on IL-1β secretion were examined in THP-1 cells transfected with TRIM16 plasmid or siRNA using ELISA, immunofluorescence, and immunoblotting. The in vitro effects of MR409 on IL-1β were examined in THP-1 cells and primary rat NP cells using ELISA, immunofluorescence, immunoblotting, and qRT-PCR. Further, MR409 was subcutaneously administered to aged mice to test its efficacy against disc degeneration using immunofluorescence, X-ray, micro-CT, and histology. To achieve controllable MR409 release for intradiscal use, MR409 was encapsulated in an injectable ROS-responsive thermosensitive hydrogel. Viscosity, rheological properties, release profile, and biocompatibility were evaluated. Thereafter, therapeutic efficacy was assessed in a needle puncture-induced rat model of disc degeneration at 8 and 12 weeks post-operation using X-ray, magnetic resonance (MR) imaging, histological analysis, and immunofluorescence. Results: Secretory autophagy-related proteins TRIM16 and LC3B were robustly upregulated in degenerated discs of both human and rat. Moreover, while upregulation of TRIM16 facilitated, and knockdown of TRIM16 suppressed, secretory autophagy-mediated IL-1β secretion from THP-1 cells under oxidative stress, MR409 inhibited ROS-induced secretory autophagy and IL-1β secretion by THP-1 cells as well as IL-1β-induced pro-inflammatory and pro-catabolic effects in rat NP cells. Daily subcutaneous injection of MR409 inhibited secretory autophagy and ameliorated age-related disc degeneration in mice. The newly developed ROS-responsive MR409-encapsulated hydrogel provided a reliable delivery system for controlled MR409 release, and intradiscal application effectively suppressed secretory autophagy and needle puncture-induced disc degeneration in rats. Conclusion: Secretory autophagy and associated IL-1β secretion contribute to the pathogenesis of disc degeneration, and MR409 can effectively inhibit this pathway. The ROS-responsive thermosensitive hydrogel encapsulated with MR409 is a potentially efficacious treatment for disc degeneration.
Collapse
Affiliation(s)
- Qiangqiang Zheng
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haotian Shen
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zongrui Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Linxiang Cheng
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuzi Xu
- Department of Oral Implantology and Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, P.R. China
| | - Zhiyun Feng
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shiyao Liao
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou 310003, China
| | - Xiaojian Hu
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zongyou Pan
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yue Wang
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
21
|
Madhu V, Guntur AR, Risbud MV. Role of autophagy in intervertebral disc and cartilage function: implications in health and disease. Matrix Biol 2020; 100-101:207-220. [PMID: 33301899 DOI: 10.1016/j.matbio.2020.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
The intervertebral disc and cartilage are specialized, extracellular matrix-rich tissues critical for absorbing mechanical loads, providing flexibility to the joints, and longitudinal growth in the case of growth plate cartilage. Specialized niche conditions in these tissues, such as hypoxia, are critical in regulating cellular activities including autophagy, a lysosomal degradation pathway that promotes cell survival. Mounting evidence suggests that dysregulation of autophagic pathways underscores many skeletal pathologies affecting the spinal column, articular and growth plate cartilages. Many lysosomal storage disorders characterized by the accumulation of partially degraded glycosaminoglycans (GAGs) due to the lysosomal dysfunction thus affect skeletal tissues and result in altered ECM structure. Likewise, pathologies that arise from mutations in genes encoding ECM proteins and ECM processing, folding, and post-translational modifications, result in accumulation of misfolded proteins in the ER, ER stress and autophagy dysregulation. These conditions evidence reduced secretion of ECM proteins and/or increased secretion of mutant proteins, thereby impairing matrix quality and the integrity of affected skeletal tissues and causing a lack of growth and degeneration. In this review, we discuss the role of autophagy and mechanisms of its regulation in the intervertebral disc and cartilages, as well as how dysregulation of autophagic pathways affects these skeletal tissues.
Collapse
Affiliation(s)
- Vedavathi Madhu
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; Tufts University School of Medicine, Tufts University, Boston, MA USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA; Cell Biology and Regenerative Medicine Graduate Program, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Veras MA, Lim YJ, Kuljanin M, Lajoie GA, Urquhart BL, Séguin CA. Protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc tissues. JOR Spine 2020; 3:e1099. [PMID: 33015574 PMCID: PMC7524214 DOI: 10.1002/jsp2.1099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 01/07/2023] Open
Abstract
The comprehensiveness of data collected by "omics" modalities has demonstrated the ability to drastically transform our understanding of the molecular mechanisms of chronic, complex diseases such as musculoskeletal pathologies, how biomarkers are identified, and how therapeutic targets are developed. Standardization of protocols will enable comparisons between findings reported by multiple research groups and move the application of these technologies forward. Herein, we describe a protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc (IVD) tissues, building from the combined expertise of our collaborative team. This protocol covers dissection of murine IVD tissues, sample isolation, and data analysis for both proteomics and metabolomics applications. The protocol presented below was optimized to maximize the utility of a mouse model for "omics" applications, accounting for the challenges associated with the small starting quantity of sample due to small tissue size as well as the extracellular matrix-rich nature of the tissue.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| | - Yong J Lim
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Miljan Kuljanin
- Department of Cell Biology Harvard Medical School Boston Massachusetts USA
| | - Gilles A Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| |
Collapse
|
23
|
许 刚, 张 长, 朱 坤, 叶 雨, 鲍 正. [Effects of lentivirus-mediated insulin-like growth factor 1 and platelet derived growth factor genes on nucleus pulposus tissue of human degenerated intervertebral disc]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:907-914. [PMID: 32666737 PMCID: PMC8180428 DOI: 10.7507/1002-1892.201910101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/15/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To observe and compare the cytological and biological differences between human normal and degenerated nucleus pulposus (NP), and to investigate the repair effect of insulin-like growth factor 1 (IFG-1) and platelet derived growth factor (PDGF) on human degenerated NP. METHODS Human degenerative and normal NP tissues were obtained from operative patients, a portion of which were processed into tissue sections and HE staining was performed to observe the morphological changes of nucleus pulposus cells (NPCs) before and after degeneration of NP. Immunohistochemistry staining was used to determine the expression levels of collagen type Ⅰ, collagen type Ⅱ, B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X (Bax) proteins. Another portion of tissues were isolated and cultured and NPCs morphology was observed under inverted microscope. Western blot analysis was used to detect collagen type Ⅱ protein expression. Then, the gene transfection experiments were launched, including 4 groups, with group A designed as degenerated NPCs only, and groups B, C, and D of degenerated NPCs transfected with IGF-1 gene lentiviral particles, PDGF gene lentiviral particles, and lentiviral particles carrying IGF-1 and PDGF double genes, respectively. At 21 days after transfection, the cell morphology of each group was observed under inverted microscope, the positive rates of IGF-1 and PDGF of each group were measured by flow cytometry, and the expression of collagen type Ⅱ protein was detected by using immunohistochemistry staining and Western blot. RESULTS HE staining showed that there were a large number of notochordal cells and a small number of chondrocytes in the central NP tissue of normal group, while the NPCs in degeneration group were significantly reduced, and a large proportion of fibrocartilage tissues were found in NP tissue. Immunohistochemistry staining showed that the percentages of collagen type Ⅰ and Bax protein-positive cells in degeneration group were significantly higher than those of normal group, while the percentages of collagen type Ⅱ and Bcl-2 protein-positive cells were significantly lower than those of normal group ( P<0.05). Western blot showed that the relative expression level of collagen type Ⅱ protein in degeneration group was significantly lower than that in normal group ( t=65.493, P=0.000). At 21 days after gene transfection, compared with group A, the cell viability of groups B, C, and D increased and the morphology became more regular. Flow cytometry showed that the percentages of IGF-1-positive cells in groups B and D were significantly higher than that in group A, and the percentages of PDGF-positive cells in groups C and D were significantly higher than that in group A ( P<0.05). Immunohistochemistry staining showed that the positive stainings of collagen type Ⅱ in groups A, B, C, and D was (±), (+), (+), and (++), respectively. Western blot showed that the relative expression of collagen type Ⅱ protein in groups A, B, C, and D increased by degrees, and the differences between groups were significant ( P<0.05). CONCLUSION Both IGF-1 and PDGF can reverse the degeneration of intervertebral discs NPCs and they have synergistic effects, providing experimental basis for its application in clinical treatment approaches for degenerative disc disease.
Collapse
Affiliation(s)
- 刚 许
- 蚌埠医学院第一附属医院骨科(安徽蚌埠 233004)Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui, 233004, P.R.China
| | - 长春 张
- 蚌埠医学院第一附属医院骨科(安徽蚌埠 233004)Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui, 233004, P.R.China
| | - 坤 朱
- 蚌埠医学院第一附属医院骨科(安徽蚌埠 233004)Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui, 233004, P.R.China
| | - 雨辰 叶
- 蚌埠医学院第一附属医院骨科(安徽蚌埠 233004)Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui, 233004, P.R.China
| | - 正齐 鲍
- 蚌埠医学院第一附属医院骨科(安徽蚌埠 233004)Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui, 233004, P.R.China
| |
Collapse
|
24
|
Novais EJ, Tran VA, Miao J, Slaver K, Sinensky A, Dyment NA, Addya S, Szeri F, Wetering K, Shapiro IM, Risbud MV. Comparison of inbred mouse strains shows diverse phenotypic outcomes of intervertebral disc aging. Aging Cell 2020; 19:e13148. [PMID: 32319726 PMCID: PMC7253061 DOI: 10.1111/acel.13148] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/29/2020] [Accepted: 03/11/2020] [Indexed: 12/27/2022] Open
Abstract
Intervertebral disc degeneration presents a wide spectrum of clinically degenerative disc phenotypes; however, the contribution of genetic background to the degenerative outcomes has not been established. We characterized the spinal phenotype of 3 mouse strains with varying cartilage-regenerative potential at 6 and 23 months: C57BL/6, LG/J and SM/J. All strains showed different aging phenotypes. Importantly, LG/J mice showed an increased prevalence of dystrophic disc calcification in caudal discs with aging. Quantitative-histological analyses of LG/J and SM/J caudal discs evidenced accelerated degeneration compared to BL6, with cellular disorganization and cell loss together with fibrosis of the NP, respectively. Along with the higher grades of disc degeneration, SM/J, at 6M, also differed the most in terms of NP gene expression compared to other strains. Moreover, although we found common DEGs between BL6 and LG/J aging, most of them were divergent between the strains. Noteworthy, the common DEGs altered in both LG/J and BL6 aging were associated with inflammatory processes, response to stress, cell differentiation, cell metabolism and cell division. Results suggested that disc calcification in LG/J resulted from a dystrophic calcification process likely aggravated by cell death, matrix remodelling, changes in calcium/phosphate homeostasis and cell transformation. Lastly, we report 7 distinct phenotypes of human disc degeneration based on transcriptomic profiles, that presented similar pathways and DEGs found in aging mouse strains. Together, our results suggest that disc aging and degeneration depends on the genetic background and involves changes in various molecular pathways, which might help to explain the diverse phenotypes seen during disc disease.
Collapse
Affiliation(s)
- Emanuel J. Novais
- Department of Orthopedic Surgery Sidney Kimmel Medical College Philadelphia PA USA
- Graduate Program in Cell Biology and Regenerative Medicine Thomas Jefferson University Philadelphia PA USA
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Braga Portugal
- ICVS/3B’s – PT Government Associate Laboratory Braga Portugal
| | - Victoria A. Tran
- Department of Orthopedic Surgery Sidney Kimmel Medical College Philadelphia PA USA
| | - Jingya Miao
- Department of Orthopedic Surgery Sidney Kimmel Medical College Philadelphia PA USA
| | - Katie Slaver
- Department of Orthopedic Surgery Sidney Kimmel Medical College Philadelphia PA USA
| | - Andrew Sinensky
- Department of Orthopedic Surgery Sidney Kimmel Medical College Philadelphia PA USA
| | - Nathaniel A. Dyment
- Department of Orthopaedic Surgery University of Pennsylvania Philadelphia PA USA
| | - Sankar Addya
- Sidney Kimmel Cancer Center Thomas Jefferson University Philadelphia PA USA
| | - Flora Szeri
- Department of Dermatology and Cutaneous Biology Sidney Kimmel Medical College Thomas Jefferson University Philadelphia PA USA
- The PXE International Center of Excellence in Research and Clinical Care Thomas Jefferson University Philadelphia PA USA
- The Jefferson Institute of Molecular Medicine Thomas Jefferson University Philadelphia PA USA
| | - Koen Wetering
- Department of Dermatology and Cutaneous Biology Sidney Kimmel Medical College Thomas Jefferson University Philadelphia PA USA
- The PXE International Center of Excellence in Research and Clinical Care Thomas Jefferson University Philadelphia PA USA
- The Jefferson Institute of Molecular Medicine Thomas Jefferson University Philadelphia PA USA
| | - Irving M. Shapiro
- Department of Orthopedic Surgery Sidney Kimmel Medical College Philadelphia PA USA
- Graduate Program in Cell Biology and Regenerative Medicine Thomas Jefferson University Philadelphia PA USA
| | - Makarand V. Risbud
- Department of Orthopedic Surgery Sidney Kimmel Medical College Philadelphia PA USA
- Graduate Program in Cell Biology and Regenerative Medicine Thomas Jefferson University Philadelphia PA USA
| |
Collapse
|
25
|
Ohnishi T, Novais EJ, Risbud MV. Alterations in ECM signature underscore multiple sub-phenotypes of intervertebral disc degeneration. Matrix Biol Plus 2020; 6-7:100036. [PMID: 33543030 PMCID: PMC7852332 DOI: 10.1016/j.mbplus.2020.100036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
The intervertebral disc is a specialized connective tissue critical for absorption of mechanical loads and providing flexibility to the spinal column. The disc ECM is complex and plays a vital role in imparting tissue its biomechanical function. The central NP is primarily composed of large aggregating proteoglycans (PGs) while surrounding AF is composed of fibrillar collagens, I and II. Aggrecan and versican in particular, due to their high concentration of sulfated GAG chains form large aggregates with hyaluronic acid (HA) and provide water binding capacity to the disc. Degradation of aggrecan core protein due to aggrecanase and MMP activity, SNPs that affect number of chondroitin sulfate (CS) substitutions and alteration in enzymes critical in synthesis of CS chains can impair the aggrecan functionality. Similarly, levels of many matrix and matrix-related molecules e.g. Col2, Col9, HAS2, ccn2 are dysregulated during disc degeneration and genetic animal models have helped establish causative link between their expression and disc health. In the degenerating and herniated discs, increased levels of inflammatory cytokines such as TNF-α, IL-1β and IL-6 are shown to promote matrix degradation through regulating expression and activity of critical proteases and stimulate immune cell activation. Recent studies of different mouse strains have better elucidated the broader impact of spontaneous degeneration on disc matrix homeostasis. SM/J mice showed an increased cell apoptosis, loss of cell phenotype, and cleavage of aggrecan during early stages followed by tissue fibrosis evident by enrichment of several collagens, SLRPs and fibronectin. In summary, while disc degeneration encompasses wide spectrum of degenerative phenotypes extensive matrix degradation and remodeling underscores all of them. The intervertebral disc absorbs loads and provides flexibility to the spine. The ECM is complex and vital for imparting tissue its biomechanical function. Numerous types of proteoglycans and collagens designate the quality of the disc. Many matrix and matrix-related molecules are dysregulated during disc degeneration. Matrix degradation and remodeling underscores wide spectrum of phenotype.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Emanuel J Novais
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
26
|
Veras MA, McCann MR, Tenn NA, Séguin CA. Transcriptional profiling of the murine intervertebral disc and age-associated changes in the nucleus pulposus. Connect Tissue Res 2020; 61:63-81. [PMID: 31597481 DOI: 10.1080/03008207.2019.1665034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: The intervertebral disc (IVD) is composed of cell types whose subtle phenotypic differences allow for the formation of distinct tissues. The role of the nucleus pulposus (NP) in the initiation and progression of IVD degeneration is well established; however, the genes and pathways associated with NP degeneration are poorly characterized.Materials and Methods: Using a genetic strategy for IVD lineage-specific fluorescent reporter expression to isolate cells, gene expression and bioinformatic analysis was conducted on the murine NP at 2.5, 6, and 21 months-of-age and the annulus fibrosus (AF) at 2.5 and 6 months-of-age. A subset of differentially regulated genes was validated by qRT-PCR.Results: Transcriptome analysis identified distinct profiles of NP and AF gene expression that were remarkably consistent at 2.5 and 6 months-of-age. Prg4, Cilp, Ibsp and Comp were increased >50-fold in the AF relative to NP. The most highly enriched NP genes included Dsc3 and Cdh6, members of the cadherin superfamily, and microRNAs mir218-1 and mir490. Changes in the NP between 2.5 and 6 months-of-age were associated with up-regulation of molecular functions linked to laminin and Bmp receptor binding (including up-regulation of Bmp5 & 7), with the most up-regulated genes being Mir703, Shh, and Sfrp5. NP degeneration was associated with molecular functions linked to alpha-actinin binding (including up-regulation of Ttn & Myot) and cytoskeletal protein binding, with the overall most up-regulated genes being Rnu3a, Snora2b and Mir669h.Conclusions: This study provided insight into the phenotypes of NP and AF cells, and identified candidate pathways that may regulate degeneration.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Matthew R McCann
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Neil A Tenn
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| |
Collapse
|
27
|
Caspase-3 knockout inhibits intervertebral disc degeneration related to injury but accelerates degeneration related to aging. Sci Rep 2019; 9:19324. [PMID: 31852919 PMCID: PMC6920379 DOI: 10.1038/s41598-019-55709-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Approximately 40% of people under 30 and over 90% of people 55 or older suffer from moderate-to-severe levels of degenerative intervertebral disc (IVD) disease in their lumbar spines. Surgical treatments are sometimes effective; however, the treatment of back pain related to IVD degeneration is still a challenge; therefore, new treatments are necessary. Apoptosis may be important in IVD degeneration because suppressing cell apoptosis inside the IVD inhibits degeneration. Caspase-3, the primary effector of apoptosis, may be a key treatment target. We analyzed caspase-3’s role in two different types of IVD degeneration using caspase-3 knockout (Casp-3 KO) mice. Casp-3 KO delayed IVD degeneration in the injury-induced model but accelerated it in the age-induced model. Our results suggest that this is due to different pathological mechanisms of these two types of IVD degeneration. Apoptosis was suppressed in the IVD cells of Casp-3 KO mice, but cellular senescence was enhanced. This would explain why the Casp-3 KO was effective against injury-induced, but not age-related, IVD degeneration. Our results suggest that short-term caspase-3 inhibition could be used to treat injury-induced IVD degeneration.
Collapse
|
28
|
Bratsman A, Couasnay G, Elefteriou F. A step-by-step protocol for isolation of murine nucleus pulposus cells. JOR Spine 2019; 2:e1073. [PMID: 31891122 PMCID: PMC6920701 DOI: 10.1002/jsp2.1073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
The intervertebral disc (IVD) is composed of three separate tissues with distinct origins and properties. Elucidating changes occurring in these tissues in response to injury or age is paramount to identify new therapies to better manage disc and spine degenerative conditions, including low back pain. Despite their small size and different mechanical load pattern compared to higher species, the use of mouse models represents a cost-effective and powerful approach to better understand the formation, maintenance, and degeneration of the IVD. However, the isolation of the different compartments of the IVD is complicated by their diminutive size. Here, we describe a simple, step-by-step protocol for the isolation of the nucleus pulposus (NP) tissues that can then be processed for further analyses. Analysis from mouse NP tissues shows sufficient quantities of RNAs, purity of the NP fraction, and overall RNA quality for gene expression studies, and reveals no increase in expression of disc degeneration markers, including TNFa, IL1b, and Mmp1 up to 15 months of age in C57BL6 wildtype mice.
Collapse
Affiliation(s)
- Andrew Bratsman
- Department of Orthopedic SurgeryBaylor College of MedicineHoustonTexas
| | - Greig Couasnay
- Department of Orthopedic SurgeryBaylor College of MedicineHoustonTexas
| | - Florent Elefteriou
- Department of Orthopedic SurgeryBaylor College of MedicineHoustonTexas
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| |
Collapse
|
29
|
Novais EJ, Diekman BO, Shapiro IM, Risbud MV. p16 Ink4a deletion in cells of the intervertebral disc affects their matrix homeostasis and senescence associated secretory phenotype without altering onset of senescence. Matrix Biol 2019; 82:54-70. [PMID: 30811968 PMCID: PMC6708504 DOI: 10.1016/j.matbio.2019.02.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/02/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022]
Abstract
Intervertebral disc degeneration is an important contributor to chronic low back and neck pain. Although many environmental and genetic factors are known to contribute to disc degeneration, age is still the most significant risk factor. Recent studies have shown that senescence may play a role in age-related disc degeneration and matrix catabolism in humans and mouse models. Clearance of p16Ink4a-positive senescent cells reduces the degenerative phenotype in many age-associated diseases. Whether p16Ink4a plays a functional role in intervertebral disc degeneration and senescence is unknown. We first characterized the senescence status of discs in young and old mice. Quantitative histology, gene expression and a novel p16tdTom reporter mice showed an increase in p16Ink4a, p21 and IL-6, with a decrease in Ki67 with aging. Accordingly, we studied the spinal-phenotype of 18-month-old mice with conditional deletion of p16Ink4a in the disc driven by Acan-CreERT2 (cKO). The analyses of discs of cKO and age-matched control mice showed little change in cell morphology and tissue architecture. The cKO mice exhibited changes in functional attributes of aggrecan as well as in collagen composition of the intervertebral disc. While cKO discs exhibited a small decrease in TUNEL positive cells, lineage tracing experiments using ZsGreen reporter indicated that the overall changes in cell fate or numbers were minimal. The cKO mice maintained expression of NP-cell phenotypic markers CA3, Krt19 and GLUT-1. Moreover, in cKO discs, levels of p19Arf and RB were higher without alterations in Ki67, γH2AX, CDK4 and Lipofuscin deposition. Interestingly, the cKO discs showed lower levels of SASP markers, IL-1β, IL-6, MCP1 and TGF-β1. These results show that while, p16Ink4a is dispensable for induction and maintenance of senescence, conditional loss of p16Ink4a reduces apoptosis, limits the SASP phenotype and alters matrix homeostasis of disc cells.
Collapse
Affiliation(s)
- Emanuel J Novais
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, USA; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, USA; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Brian O Diekman
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; North Carolina State University, Raleigh, NC, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, USA; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, USA; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
30
|
Xiao L, Majumdar R, Dai J, Li Y, Xie L, Shen FH, Jin L, Li X. Molecular Detection and Assessment of Intervertebral Disc Degeneration via a Collagen Hybridizing Peptide. ACS Biomater Sci Eng 2019; 5:1661-1667. [PMID: 31788555 DOI: 10.1021/acsbiomaterials.9b00070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During aging, wear, and tear of intervertebral discs, human discs undergo a series of morphological and biochemical changes. Degradation of extracellular matrix proteins, e.g., collagen, arises as an important contributor and accelerator in this process. Existing methods to detect collagen degradation at the tissue level include histology and immunohistochemistry. Unfortunately, most of these methods only depict overall collagen content without the ability to specifically discern degraded collagen and to assess the severity of degeneration. To fill this technological gap, we developed a robust and simple approach to detect and assess early disc degeneration with a collagen hybridizing peptide (CHP) that hybridizes with the flawed triple helix structure in degraded collagen. Intriguingly, the CHP signal in mouse lumbar discs exhibited a linear incremental pattern with age. This finding was corroborated with histological analysis based on established methods. When comparing this analysis, a positive linear correlation was found between CHP fluorescence intensity and the histological score with a regression value of r 2 = 0.9478. In degenerative mouse discs elicited by pro-inflammatory stimuli (IL-1β and LPS) ex vivo, the newly developed approach empowered prediction of the severity of disc degeneration. We further demonstrated higher CHP signals in a degenerative human disc tissue when compared to a normal sample. These findings also resonated with histological analysis. This approach lays a solid foundation for specific detection and assessment of intervertebral disc degeneration at the molecular level and will promote development of future disc regeneration strategies.
Collapse
Affiliation(s)
- Li Xiao
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Cobb Hall, Charlottesville, Virginia 22908, United States
| | - Rahul Majumdar
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Cobb Hall, Charlottesville, Virginia 22908, United States
| | - Jun Dai
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Cobb Hall, Charlottesville, Virginia 22908, United States.,Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, P.R. China
| | - Yang Li
- Department of Biomedical Engineering, University of Utah, 201 Presidents Circle, Salt Lake City, Utah 84112, United States
| | - Lin Xie
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Cobb Hall, Charlottesville, Virginia 22908, United States.,Department of Orthopaedics, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Jinan District, Shanghai 200040, P.R. China
| | - Francis H Shen
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Cobb Hall, Charlottesville, Virginia 22908, United States
| | - Li Jin
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Cobb Hall, Charlottesville, Virginia 22908, United States
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Cobb Hall, Charlottesville, Virginia 22908, United States.,Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22904, United States
| |
Collapse
|
31
|
Zhang B, Xu L, Zhuo N, Shen J. Resveratrol protects against mitochondrial dysfunction through autophagy activation in human nucleus pulposus cells. Biochem Biophys Res Commun 2017; 493:373-381. [PMID: 28887038 DOI: 10.1016/j.bbrc.2017.09.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 01/29/2023]
Abstract
Intervertebral disc degeneration (IVDD) is closely related with aging, whereas mitochondrial damage is a common feature of aging that results in cell apoptosis. Resveratrol (RES) is a natural antioxidant that protects against mitochondrial dysfunction in various cells. This study aimed to investigate the protective role of RES against mitochondrial dysfunction and human nucleus pulposus cell (NPC) apoptosis. We found that mitochondrial dysfunction and NPC apoptosis could be induced under oxidative stress by 100 μmol/l of H2O2. However, RES tended to attenuate the H2O2-mediated cytotoxicity. Therefore, autophagic state was evaluated in NPCs to further reveal the underlying mechanism. Results showed that RES reversed the impaired autophagy induced by H2O2, and this increased autophagic flux was confirmed by the addition of bafilomycin A1. Moreover, pretreatment with 3-methyladenine showed that the potential mechanism of RES to prevent deteriorating mitochondrial function and cell apoptosis was related to autophagy activation. Furthermore, MRI and histological detection were employed to provide more solid evidence that RES injection in an IVDD rabbit model effectively retards the degenerative process of the intervertebral discs in vivo. In summary, these results suggested that RES could alleviate mitochondrial dysfunction and cell apoptosis under oxidative stress and may delay the progression of disc degeneration, whose mechanism is associated with an advantageous role of autophagy induced by RES.
Collapse
Affiliation(s)
- Baolong Zhang
- Department of Orthopaedic Surgery, The People's Hospital of Zhengzhou, No.33 Huanghe Rd, Zhengzhou, Henan Province, 450003, China
| | - Linfei Xu
- Department of Orthopaedic Surgery, The People's Hospital of Zhengzhou, No.33 Huanghe Rd, Zhengzhou, Henan Province, 450003, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd., Chongqing, 400016, China
| | - Naiqiang Zhuo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd., Chongqing, 400016, China
| | - Jieliang Shen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd., Chongqing, 400016, China.
| |
Collapse
|