1
|
Grinstein M, Tsai SL, Montoro D, Freedman BR, Dingwall HL, Villaseñor S, Zou K, Sade-Feldman M, Tanaka MJ, Mooney DJ, Capellini TD, Rajagopal J, Galloway JL. A latent Axin2 +/Scx + progenitor pool is the central organizer of tendon healing. NPJ Regen Med 2024; 9:30. [PMID: 39420021 PMCID: PMC11487078 DOI: 10.1038/s41536-024-00370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
A tendon's ordered extracellular matrix (ECM) is essential for transmitting force but is also highly prone to injury. How tendon cells embedded within and surrounding this dense ECM orchestrate healing is not well understood. Here, we identify a specialized quiescent Scx+/Axin2+ population in mouse and human tendons that initiates healing and is a major functional contributor to repair. Axin2+ cells express stem cell markers, expand in vitro, and have multilineage differentiation potential. Following tendon injury, Axin2+-descendants infiltrate the injury site, proliferate, and differentiate into tenocytes. Transplantation assays of Axin2-labeled cells into injured tendons reveal their dual capacity to significantly proliferate and differentiate yet retain their Axin2+ identity. Specific loss of Wnt secretion in Axin2+ or Scx+ cells disrupts their ability to respond to injury, severely compromising healing. Our work highlights an unusual paradigm, wherein specialized Axin2+/Scx+ cells rely on self-regulation to maintain their identity as key organizers of tissue healing.
Collapse
Affiliation(s)
- Mor Grinstein
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stephanie L Tsai
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Daniel Montoro
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Heather L Dingwall
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Steffany Villaseñor
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ken Zou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Moshe Sade-Feldman
- The Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Miho J Tanaka
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
2
|
Wang L, Wan L, Zhang T, Guan C, Hu J, Xu D, Lu H. A Combined Treatment of BMP2 and Soluble VEGFR1 for the Enhancement of Tendon-Bone Healing by Regulating Injury-Activated Skeletal Stem Cell Lineage. Am J Sports Med 2024; 52:779-790. [PMID: 38357866 DOI: 10.1177/03635465231225244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
BACKGROUND Bone morphogenetic protein 2 (BMP2) is an appealing osteogenic and chondrogenic growth factor for promoting tendon-bone healing. Recently, it has been reported that soluble vascular endothelial growth factor (VEGF) receptor 1 (sVEGFR1) (a VEGF receptor antagonist) could enhance BMP2-induced bone repair and cartilage regeneration; thus, their combined application may represent a promising treatment to improve tendon-bone healing. Moreover, BMP2 could stimulate skeletal stem cell (SSC) expansion and formation, which is responsible for wounded tendon-bone interface repair. However, whether the codelivery of BMP2 and sVEGFR1 increases tendon enthesis injury-activated SSCs better than does BMP2 alone needs further research. PURPOSE To study the effect of BMP2 combined with sVEGFR1 on tendon-bone healing and injury-activated SSC lineage. STUDY DESIGN Controlled laboratory study. METHODS A total of 128 C57BL/6 mice that underwent unilateral supraspinatus tendon detachment and repair were randomly assigned to 4 groups: (1) untreated control group; (2) hydrogel group, which received a local injection of the blank hydrogel at the injured site; (3) BMP2 group, which received an injection of hydrogel with BMP2; and (4) BMP2 with sVEGFR1 group, which received an injection of hydrogel with BMP2 and sVEGFR1. Histology, micro-computed tomography, and biomechanical tests were conducted to evaluate tendon-bone healing at 4 and 8 weeks after surgery. In addition, flow cytometry was performed to detect the proportion of SSCs and their downstream differentiated subtypes, including bone, cartilage, and stromal progenitors; osteoprogenitors; and pro-chondrogenic progenitors within supraspinatus tendon enthesis at 1 week postoperatively. RESULTS The repaired interface in BMP2 with sVEGFR1 group showed a significantly improved collagen fiber continuity, increased fibrocartilage, greater newly formed bone, and elevated mechanical properties compared with the other 3 groups. There were more SSCs; bone, cartilage, and stromal progenitors; osteoprogenitors; and pro-chondrogenic progenitors in the BMP2 with sVEGFR1 group than that in the other groups. CONCLUSION Our study suggests that the combined delivery of BMP2 and sVEGFR1 could promote tendon-bone healing and stimulate the expansion of SSCs and their downstream progeny within the injured tendon-bone interface. CLINICAL RELEVANCE Combining BMP2 with sVEGFR1 may be a good clinical treatment for wounded tendon enthesis healing.
Collapse
Affiliation(s)
- Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Wan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changbiao Guan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhong Hu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China. Linfeng Wang and Liyang Wan contributed equally to this study
| | - Daqi Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Ye P, Gu R, Zhu H, Chen J, Han F, Nie X. SOX family transcription factors as therapeutic targets in wound healing: A comprehensive review. Int J Biol Macromol 2023; 253:127243. [PMID: 37806414 DOI: 10.1016/j.ijbiomac.2023.127243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
The SOX family plays a vital role in determining the fate of cells and has garnered attention in the fields of cancer research and regenerative medicine. It also shows promise in the study of wound healing, as it actively participates in the healing processes of various tissues such as skin, fractures, tendons, and the cornea. However, our understanding of the mechanisms behind the SOX family's involvement in wound healing is limited compared to its role in cancer. Gaining insight into its role, distribution, interaction with other factors, and modifications in traumatized tissues could provide valuable new knowledge about wound healing. Based on current research, SOX2, SOX7, and SOX9 are the most promising members of the SOX family for future interventions in wound healing. SOX2 and SOX9 promote the renewal of cells, while SOX7 enhances the microvascular environment. The SOX family holds significant potential for advancing wound healing research. This article provides a comprehensive review of the latest research advancements and therapeutic tools related to the SOX family in wound healing, as well as the potential benefits and challenges of targeting the SOX family for wound treatment.
Collapse
Affiliation(s)
- Penghui Ye
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Rifang Gu
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China
| | - Huan Zhu
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jitao Chen
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
4
|
Frankewycz B, Bell R, Chatterjee M, Andarawis-Puri N. The superior healing capacity of MRL tendons is minimally influenced by the systemic environment of the MRL mouse. Sci Rep 2023; 13:17242. [PMID: 37821476 PMCID: PMC10567747 DOI: 10.1038/s41598-023-42449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/10/2023] [Indexed: 10/13/2023] Open
Abstract
Murphy Roths Large mice (MRL) exhibit improved tendon healing and are often described as a "super-healer" strain. The underlying mechanisms that drive the superior healing response of MRL remain a controversial subject. We utilized a tendon transplantation model between MRL and "normal-healer" B6-mice to differentiate between the contribution of MRL's innate tendon and systemic environment to its improved healing capacity. Patellar tendons with a midsubstance punch injury were transplanted back into the same animal (autograft) or into an animal of the other strain (allograft). Findings at 4 weeks showed that the innate MRL tendon environment drives its improved healing capacity as demonstrated by improved stiffness and maximum load in MRL-grafts-in-B6-host-allografts compared to B6-autografts, and higher modulus in MRL-autografts compared to B6-graft-in-MRL-host-allografts. Groups with an MRL component showed an increase in pro-inflammatory cytokines in the 3 days after injury, suggesting an early enhanced inflammatory profile in MRL that ultimately resolves. A preserved range of motion of the knee joint in all MRL animals suggests a systemic "shielding effect" of MRL in regard to joint adhesiveness. Our findings 4-weeks post injury are consistent with previous studies showing tissue-driven improved healing and suggest that the systemic environment contributes to the overall healing process.
Collapse
Affiliation(s)
- Borys Frankewycz
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- University Hospital Regensburg, Regensburg, Germany
| | - Rebecca Bell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.
- Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
5
|
Fukuma Y, Tokunaga T, Tanimura S, Yoshimoto Y, Mashimo T, Kaneko T, Tian X, Ideo K, Yonemitsu R, Matsushita K, Sugimoto K, Yugami M, Hisanaga S, Nakamura T, Uehara Y, Masuda T, Shukunami C, Karasugi T, Miyamoto T. Potential function of Scx+/Sox9+ cells as progenitor cells in rotator cuff tear repair in rats. Biochem Biophys Res Commun 2023; 676:84-90. [PMID: 37499368 DOI: 10.1016/j.bbrc.2023.07.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Tendons and their attachment sites to bone, fibrocartilaginous tissues, have poor self-repair capacity when they rupture, and have risks of retear even after surgical repair. Thus, defining mechanisms underlying their repair is required in order to stimulate tendon repairing capacity. Here we used a rat surgical rotator cuff tear repair model and identified cells expressing the transcription factors Scleraxis (Scx) and SRY-box 9 (Sox9) as playing a crucial role in rotator cuff tendon-to-bone repair. Given the challenges of establishing stably reproducible models of surgical rotator cuff tear repair in mice, we newly established Scx-GFP transgenic rats in which Scx expression can be monitored by GFP. We observed tissue-specific GFP expression along tendons in developing ScxGFP transgenic rats and were able to successfully monitor tissue-specific Scx expression based on GFP signals. Among 3-, 6-, and 12-week-old ScxGFP rats, Scx+/Sox9+ cells were most abundant in 3-week-old rats near the site of humerus bone attachment to the rotator cuff tendon, while we observed significantly fewer cells in the same area in 6- or 12-week-old rats. We then applied a rotator cuff repair model using ScxGFP rats and observed the largest number of Scx+/Sox9+ cells at postoperative repair sites of 3-week-old relative to 6- or 12-week-old rats. Tendons attach to bone via fibrocartilaginous tissue, and cartilage-like tissue was seen at repair sites of 3-week-old but not 6- or 12-week-old rats during postoperative evaluation. Our findings suggest that Scx+/Sox9+ cells may function in rotator cuff repair, and that ScxGFP rats could serve as useful tools to develop therapies to promote rotator cuff repair by enabling analysis of these activities.
Collapse
Affiliation(s)
- Yuko Fukuma
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takuya Tokunaga
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Shuntaro Tanimura
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuki Yoshimoto
- Department of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan; Department of Molecular Biology and Biochemistry, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Takehito Kaneko
- Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan
| | - Xiao Tian
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Katsumasa Ideo
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Ryuji Yonemitsu
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kozo Matsushita
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kazuki Sugimoto
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masaki Yugami
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Satoshi Hisanaga
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takayuki Nakamura
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yusuke Uehara
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tetsuro Masuda
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tatsuki Karasugi
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan; Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
6
|
Huang AH, Galloway JL. Current and emerging technologies for defining and validating tendon cell fate. J Orthop Res 2023; 41:2082-2092. [PMID: 37211925 DOI: 10.1002/jor.25632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The tendon field has been flourishing in recent years with the advent of new tools and model systems. The recent ORS 2022 Tendon Section Conference brought together researchers from diverse disciplines and backgrounds, showcasing studies in biomechanics and tissue engineering to cell and developmental biology and using models from zebrafish and mouse to humans. This perspective aims to summarize progress in tendon research as it pertains to understanding and studying tendon cell fate. The successful integration of new technologies and approaches have the potential to further propel tendon research into a new renaissance of discovery. However, there are also limitations with the current methodologies that are important to consider when tackling research questions. Altogether, we will highlight recent advances and technologies and propose new avenues to explore tendon biology.
Collapse
Affiliation(s)
- Alice H Huang
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
| | - Jenna L Galloway
- Department of Orthopaedic Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Wang L, Li S, Xiao H, Zhang T, Liu Y, Hu J, Xu D, Lu H. TGF-β1 derived from macrophages contributes to load-induced tendon-bone healing in the murine rotator cuff repair model by promoting chondrogenesis. Bone Joint Res 2023; 12:219-230. [PMID: 37051812 PMCID: PMC10032229 DOI: 10.1302/2046-3758.123.bjr-2022-0368.r1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
It has been established that mechanical stimulation benefits tendon-bone (T-B) healing, and macrophage phenotype can be regulated by mechanical cues; moreover, the interaction between macrophages and mesenchymal stem cells (MSCs) plays a fundamental role in tissue repair. This study aimed to investigate the role of macrophage-mediated MSC chondrogenesis in load-induced T-B healing in depth. C57BL/6 mice rotator cuff (RC) repair model was established to explore the effects of mechanical stimulation on macrophage polarization, transforming growth factor (TGF)-β1 generation, and MSC chondrogenesis within T-B enthesis by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Macrophage depletion was performed by clodronate liposomes, and T-B healing quality was evaluated by histology and biomechanics. In vitro, bone marrow-derived macrophages (BMDMs) were stretched with CELLOAD-300 load system and macrophage polarization was identified by flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). MSC chondrogenic differentiation was measured by histochemical analysis and qRT-PCR. ELISA and qRT-PCR were performed to screen the candidate molecules that mediated the pro-chondrogenic function of mechanical stimulated BMDMs. Mechanical stimulation promoted macrophage M2 polarization in vivo and in vitro. The conditioned media from mechanically stimulated BMDMs (MS-CM) enhanced MSC chondrogenic differentiation, and mechanically stimulated BMDMs generated more TGF-β1. Further, neutralizing TGF-β1 in MS-CM can attenuate its pro-chondrogenic effect. In vivo, mechanical stimulation promoted TGF-β1 generation, MSC chondrogenesis, and T-B healing, which were abolished following macrophage depletion. Macrophages subjected to appropriate mechanical stimulation could polarize toward the M2 phenotype and secrete TGF-β1 to promote MSC chondrogenesis, which subsequently augments T-B healing.
Collapse
Affiliation(s)
- Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Han Xiao
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqian Liu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Daqi Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Künzler MB, McGarry MH, Akeda M, Ihn H, Karol A, von Rechenberg B, Schär MO, Zumstein MA, Lee TQ. Effect of PARP-1 Inhibition on Rotator Cuff Healing: A Feasibility Study Using Veliparib in a Rat Model of Acute Rotator Cuff Repair. Am J Sports Med 2023; 51:758-767. [PMID: 36745049 DOI: 10.1177/03635465221148494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND PARP-1 (poly[ADP-ribose]) was shown to influence the inflammatory response after rotator cuff tear, leading to fibrosis, muscular atrophy, and fatty infiltration in mouse rotator cuff degeneration. So far, it is not known how PARP-1 influences enthesis healing after rotator cuff tear repair. HYPOTHESIS/PURPOSE This study aimed to examine the feasibility of oral PARP-1 inhibition and investigate its influence on rat supraspinatus enthesis and muscle healing after rotator cuff repair. The hypothesis was that oral PARP-1 inhibition would improve enthesis healing after acute rotator cuff repair in a rat model. STUDY DESIGN Controlled laboratory study. METHODS In 24 Sprague-Dawley rats, the supraspinatus tendon was sharply detached and immediately repaired with a single transosseous suture. The rats were randomly allocated into 2 groups, with the rats in the inhibitor group receiving veliparib with a target dose of 12.5 mg/kg/d via drinking water during the postoperative recovery period. The animals were sacrificed 8 weeks after surgery. For the analysis, macroscopic, biomechanical, and histologic methods were used. RESULTS Oral veliparib was safe for the rats, with no adverse effects observed. In total, the inhibitor group had a significantly better histologic grading of the enthesis with less scar tissue formation. The macroscopic cross-sectional area of the supraspinatus muscles was 10.5% higher (P = .034) in the inhibitor group, which was in agreement with an 8.7% higher microscopic muscle fiber diameter on histologic sections (P < .0001). There were no statistically significant differences in the biomechanical properties between the groups. CONCLUSION This study is the first to investigate the influence of PARP-1 inhibition on healing enthesis. On the basis of these findings, we conclude that oral veliparib, which was previously shown to inhibit PARP-1 effectively, is safe to apply and has beneficial effects on morphologic enthesis healing and muscle fiber size. CLINICAL RELEVANCE Modulating the inflammatory response through PARP-1 inhibition during the postoperative healing period is a promising approach to improve enthesis healing and reduce rotator cuff retearing. With substances already approved by the Food and Drug Administration, PARP-1 inhibition bears high potential for future translation into clinical application.
Collapse
Affiliation(s)
- Michael B Künzler
- Shoulder, Elbow and Orthopaedic Sports Medicine, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland.,Orthopaedics Biomechanics Laboratory, VA Long Beach Healthcare System, Long Beach, California, USA.,Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Michelle H McGarry
- Orthopaedics Biomechanics Laboratory, VA Long Beach Healthcare System, Long Beach, California, USA.,Orthopaedics Biomechanics Laboratory, Congress Medical Foundation, Pasadena, California, USA
| | - Masaki Akeda
- Orthopaedics Biomechanics Laboratory, VA Long Beach Healthcare System, Long Beach, California, USA
| | - Hansel Ihn
- Orthopaedics Biomechanics Laboratory, VA Long Beach Healthcare System, Long Beach, California, USA
| | - Agnieszka Karol
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Michael O Schär
- Shoulder, Elbow and Orthopaedic Sports Medicine, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Matthias A Zumstein
- Shoulder, Elbow and Orthopaedic Sports Medicine, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland.,Shoulder, Elbow and Orthopaedic Sports Medicine, Sonnenhof Orthopaedics, Bern, Switzerland
| | - Thay Q Lee
- Orthopaedics Biomechanics Laboratory, VA Long Beach Healthcare System, Long Beach, California, USA.,Orthopaedics Biomechanics Laboratory, Congress Medical Foundation, Pasadena, California, USA
| |
Collapse
|
9
|
Marshall BP, Levine WN, Thomopoulos S. The Role of the Subacromial Bursa in Rotator Cuff Healing: Friend or Foe? J Bone Joint Surg Am 2023; 105:417-425. [PMID: 36575165 PMCID: PMC10353884 DOI: 10.2106/jbjs.22.00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Chatterjee M, Acosta A, Taub PJ, Andarawis-Puri N. Enhanced healing outcomes in MRL/MpJ mouse tissues conserved in insertion site following surgical repair. J Shoulder Elbow Surg 2022; 31:e593-e602. [PMID: 35598836 DOI: 10.1016/j.jse.2022.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Surgical repair of supraspinatus tendons (SSTs) has a high failure rate at the insertion site. A significant hurdle to therapeutic development is that effective intrinsic healing mechanisms are unknown. The MRL/MpJ (MRL) mouse exhibits tissue-specific enhanced healing; however, these tissues exhibit disparate properties from the complex SST. The extent of SST healing in the complex environment of the rotator cuff is unknown. We hypothesized that MRL mice would exhibit enhanced restoration of the structurally complex insertion site, resulting in functional improvements. METHODS B6 and MRL mice underwent SST detachment and immediate surgical repair. Mice were analyzed for gait assessment after either 2 or 6 weeks and were then killed humanely for immunohistologic analysis. RESULTS MRL SSTs demonstrated enhanced recovery of zonal architecture and bone structure compared with B6 SSTs. MRL SSTs exhibited decreased levels of type III collagen at 2 weeks and increased levels of type I procollagen at 6 weeks compared with B6 SSTs. MRL mice experienced initial gait deficits at 2 weeks that had recovered by 6 weeks. DISCUSSION The temporal balance of collagen in MRL mice suggests recovery toward naive composition. Initial gait deficits in MRL mice may provide a protective loading environment that is ultimately beneficial. The mechanisms of enhanced healing observed previously in MRL mice may be conserved in the complex SST, providing a platform to interrogate specific aspects of improved healing.
Collapse
Affiliation(s)
- Monideepa Chatterjee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ashley Acosta
- Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter J Taub
- Plastic and Reconstructive Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nelly Andarawis-Puri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA; Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
11
|
Griffith KM, Hammer LC, Iannuzzi NP, Takatani KC, Hsu JE, Cotton JD, Gee AO, Gardner RJ, Lack WD. Review of human supraspinatus tendon mechanics. Part II: tendon healing response and characterization of tendon health. J Shoulder Elbow Surg 2022; 31:2678-2682. [PMID: 35803551 DOI: 10.1016/j.jse.2022.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023]
Abstract
Overuse injuries of the rotator cuff, particularly of the supraspinatus tendon (SST), are highly prevalent and debilitating in work, sport, and daily activities. Despite the clinical significance of these injuries, there remains a large degree of uncertainty regarding the pathophysiology of injury, optimal methods of nonoperative and operative repair, and how to adequately assess tendon injury and healing. The tendon response to fatigue damage resulting from overuse is different from that of acute rupture and results in either an adaptive (healing) or a maladaptive (degenerative) response. Factors associated with the degenerative response include increasing age, smoking, hypercholesterolemia, biological sex (variable by tendon), diabetes mellitus, and excessive load post fatigue damage. After injury, the average healing rate of tendon is approximately 1% per day and may be significantly influenced by biologic sex (females have lower collagen synthesis rates) and excessive load after damage. Although magnetic resonance imaging (MRI) is considered the gold standard in assessing acute tears as well as tendinopathic change in the SST, ultrasonography has proven to be a valuable tool to measure tendinopathic change in real time. Ultrasonography can determine multiple mechanical and structural parameters of the SST that are altered in fatigue loading. Thus, ultrasonography may be utilized to understand how these parameters change in response to SST overuse, and may aid in determining the activity level that places the SST at greater risk of rupture.
Collapse
Affiliation(s)
- Kyle M Griffith
- University of Washington School of Medicine, Seattle, WA, USA.
| | | | - Nicholas P Iannuzzi
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA; Orthopedics Section S-112-ORT, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Karen C Takatani
- Boeing Research & Technology, The Boeing Company, Seattle, WA, USA
| | - Jason Edward Hsu
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | | | - Albert O Gee
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | | | - William D Lack
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA; Orthopedics Section S-112-ORT, VA Puget Sound Health Care System, Seattle, WA, USA
| |
Collapse
|
12
|
Vervaecke AJ, Carbone AD, Abraham A, Bernstein Z, Laudier D, Verborgt O, Galatz LM, Huang AH. Tendon progenitor cells as biological augmentation improve functional gait and reduce scar formation after rotator cuff repair. J Shoulder Elbow Surg 2022; 31:2366-2380. [PMID: 35671924 PMCID: PMC9588545 DOI: 10.1016/j.jse.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND High rates of structural failure are reported after rotator cuff repairs due to inability to recreate the native enthesis during healing. The development of biological augmentation methods that mitigate scar formation and regenerate the enthesis is still an unmet need. Since neonatal enthesis is capable of regeneration after injury, this study tested whether delivery of neonatal tendon progenitor cells (TPCs) into the adult injured environment can enhance functional and structural supraspinatus enthesis and tendon healing. METHODS TPCs were isolated from Ai14 Rosa26-TdTomato mouse Achilles tendons and labeled using adenovirus-Cre. Fifty-two CB57BL/6J mice underwent detachment and acute repair of the supraspinatus tendon and received either a fibrin-only or TPC-fibrin gel. Immunofluorescence analysis was carried out to determine cellularity (DAPI), fibrocartilage (SOX9), macrophages (F4/80), myofibroblasts (α-smooth muscle actin), and scar (laminin). Assays for function (gait and biomechanical testing) and structure (micro-computed tomography imaging, picrosirius red/Alcian Blue staining, type I and III collagen staining) were carried out. RESULTS Analysis of TdTomato cells after injury showed minimal retention of TPCs by day 7 and day 14, with detected cells localized near the bursa and deltoid rather than the enthesis/tendon. However, TPC delivery led to significantly increased %Sox9+ cells in the enthesis at day 7 after injury and decreased laminin intensity across almost all time points compared to fibrin-only treatment. Similarly, TPC-treated mice showed gait recovery by day 14 (paw area and stride length) and day 28 (stance time), while fibrin-treated mice failed to recover gait parameters. Despite improved gait, biomechanical testing showed no differences between groups. Structural analysis by micro-computed tomography suggests that TPC application improves cortical thickness after surgery compared to fibrin. Superior collagen alignment at the neo-enthesis was also observed in the TPC-augmented group at day 28, but no difference was detected in type I and III collagen intensity. CONCLUSION We found that neonatal TPCs improved and restored functional gait by reducing overall scar formation, improving enthesis collagen alignment, and altering bony composition response after supraspinatus tendon repair. TPCs did not appear to integrate into the healing tissue, suggesting improved healing may be due to paracrine effects at early stages. Future work will determine the factors secreted by TPCs to develop translational targets.
Collapse
Affiliation(s)
- Alexander J Vervaecke
- Department of Orthopaedics, The Mount Sinai Hospital, New York, NY, USA; Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Orthopaedic Center Antwerp, AZ Monica, Antwerp, Belgium
| | - Andrew D Carbone
- Department of Orthopaedics, The Mount Sinai Hospital, New York, NY, USA
| | - Adam Abraham
- Department of Orthopaedics, University of Michigan, Ann Arbor, Mich, USA
| | - Zachary Bernstein
- Department of Orthopaedics, The Mount Sinai Hospital, New York, NY, USA
| | - Damien Laudier
- Department of Orthopaedics, The Mount Sinai Hospital, New York, NY, USA
| | - Olivier Verborgt
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Orthopaedic Center Antwerp, AZ Monica, Antwerp, Belgium
| | - Leesa M Galatz
- Department of Orthopaedics, The Mount Sinai Hospital, New York, NY, USA.
| | - Alice H Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Vinestock RC, Felsenthal N, Assaraf E, Katz E, Rubin S, Heinemann-Yerushalmi L, Krief S, Dezorella N, Levin-Zaidman S, Tsoory M, Thomopoulos S, Zelzer E. Neonatal Enthesis Healing Involves Noninflammatory Acellular Scar Formation through Extracellular Matrix Secretion by Resident Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1122-1135. [PMID: 35659946 PMCID: PMC9379688 DOI: 10.1016/j.ajpath.2022.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Wound healing typically recruits the immune and vascular systems to restore tissue structure and function. However, injuries to the enthesis, a hypocellular and avascular tissue, often result in fibrotic scar formation and loss of mechanical properties, severely affecting musculoskeletal function and life quality. This raises questions about the healing capabilities of the enthesis. Herein, this study established an injury model to the Achilles entheses of neonatal mice to study the effectiveness of early-age enthesis healing. Histology and immunohistochemistry analyses revealed an atypical process that did not involve inflammation or angiogenesis. Instead, healing was mediated by secretion of collagen types I and II by resident cells, which formed a permanent hypocellular and avascular scar. Transmission electron microscopy showed that the cellular response to injury, including endoplasmic reticulum stress, autophagy, and cell death, varied between the tendon and cartilage ends of the enthesis. Single-molecule in situ hybridization, immunostaining, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays verified these differences. Finally, gait analysis showed that these processes effectively restored function of the injured leg. These findings reveal a novel healing mechanism in neonatal entheses, whereby local extracellular matrix secretion by resident cells forms an acellular extracellular matrix deposit without inflammation, allowing gait restoration. These insights into the healing mechanism of a complex transitional tissue may lead to new therapeutic strategies for adult enthesis injuries.
Collapse
Affiliation(s)
- Ron C Vinestock
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Assaraf
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad Katz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nili Dezorella
- Department of Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, New York; Department of Biomedical Engineering, Columbia University, New York, New York
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Abraham AC, Fang F, Golman M, Oikonomou P, Thomopoulos S. The role of loading in murine models of rotator cuff disease. J Orthop Res 2022; 40:977-986. [PMID: 34081350 PMCID: PMC8639823 DOI: 10.1002/jor.25113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 05/31/2021] [Indexed: 02/04/2023]
Abstract
Rotator cuff disease pathogenesis is associated with intrinsic (e.g., age, joint laxity, muscle weakness) and extrinsic (e.g., mechanical load, fatigue) factors that lead to chronic degeneration of the cuff tissues. However, etiological studies are difficult to perform in patients due to the long duration of disease onset and progression. Therefore, the purpose of this study was to determine the effects of altered joint loading on the rotator cuff. Mice were subjected to one of three load-dependent rotator cuff tendinopathy models: underuse loading, achieved by injecting botulinum toxin-A into the supraspinatus muscle; overuse loading, achieved using downhill treadmill running; destabilization loading, achieved by surgical excision of the infraspinatus tendon. All models were compared to cage activity animals. Whole joint function was assessed longitudinally using gait analysis. Tissue-scale structure and function were determined using microCT, tensile testing, and histology. The molecular response of the supraspinatus tendon and enthesis was determined by measuring the expression of 84 wound healing-associated genes. Underuse and destabilization altered forepaw weight-bearing, decreased tendon-to-bone attachment strength, decreased mineral density of the humeral epiphysis, and reduced tendon strength. Transcriptional activity of the underuse group returned to baseline levels by 4 weeks, while destabilization had significant upregulation of inflammation, growth factors, and extracellular matrix remodeling genes. Surprisingly, overuse activity caused changes in walking patterns, increased tendon stiffness, and primarily suppressed expression of wound healing-related genes. In summary, the tendinopathy models demonstrated how divergent muscle loading can result in clinically relevant alterations in rotator cuff structure, function, and gene expression.
Collapse
Affiliation(s)
- Adam C. Abraham
- University of Michigan, Department of Orthopaedic Surgery, Biomedical Science Research Building, 109 Zina Pitcher Pl, Ann Arbor, MI 48109, USA,Corresponding author Adam C. Abraham, Ph.D., Research Investigator, University of Michigan, Department of Orthopaedic Surgery, Ann Arbor, MI 48109, USA,
| | - Fei Fang
- Columbia University Irving Medical Center, Department of Orthopaedic Surgery, New York, NY 10032, USA
| | - Mikhail Golman
- Columbia University, Department of Biomedical Engineering, New York, NY 10027
| | | | - Stavros Thomopoulos
- Columbia University Irving Medical Center, Department of Orthopaedic Surgery, New York, NY 10032, USA,Columbia University, Department of Biomedical Engineering, New York, NY 10027
| |
Collapse
|
15
|
Wu SY, Kim W, Kremen TJ. In Vitro Cellular Strain Models of Tendon Biology and Tenogenic Differentiation. Front Bioeng Biotechnol 2022; 10:826748. [PMID: 35242750 PMCID: PMC8886160 DOI: 10.3389/fbioe.2022.826748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Research has shown that the surrounding biomechanical environment plays a significant role in the development, differentiation, repair, and degradation of tendon, but the interactions between tendon cells and the forces they experience are complex. In vitro mechanical stimulation models attempt to understand the effects of mechanical load on tendon and connective tissue progenitor cells. This article reviews multiple mechanical stimulation models used to study tendon mechanobiology and provides an overview of the current progress in modelling the complex native biomechanical environment of tendon. Though great strides have been made in advancing the understanding of the role of mechanical stimulation in tendon development, damage, and repair, there exists no ideal in vitro model. Further comparative studies and careful consideration of loading parameters, cell populations, and biochemical additives may further offer new insight into an ideal model for the support of tendon regeneration studies.
Collapse
Affiliation(s)
- Shannon Y. Wu
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Won Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Thomas J. Kremen
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- *Correspondence: Thomas J. Kremen Jr,
| |
Collapse
|
16
|
Mienaltowski MJ, Gonzales NL, Beall JM, Pechanec MY. Basic Structure, Physiology, and Biochemistry of Connective Tissues and Extracellular Matrix Collagens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:5-43. [PMID: 34807414 DOI: 10.1007/978-3-030-80614-9_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The physiology of connective tissues like tendons and ligaments is highly dependent upon the collagens and other such extracellular matrix molecules hierarchically organized within the tissues. By dry weight, connective tissues are mostly composed of fibrillar collagens. However, several other forms of collagens play essential roles in the regulation of fibrillar collagen organization and assembly, in the establishment of basement membrane networks that provide support for vasculature for connective tissues, and in the formation of extensive filamentous networks that allow for cell-extracellular matrix interactions as well as maintain connective tissue integrity. The structures and functions of these collagens are discussed in this chapter. Furthermore, collagen synthesis is a multi-step process that includes gene transcription, translation, post-translational modifications within the cell, triple helix formation, extracellular secretion, extracellular modifications, and then fibril assembly, fibril modifications, and fiber formation. Each step of collagen synthesis and fibril assembly is highly dependent upon the biochemical structure of the collagen molecules created and how they are modified in the cases of development and maturation. Likewise, when the biochemical structures of collagens or are compromised or these molecules are deficient in the tissues - in developmental diseases, degenerative conditions, or injuries - then the ultimate form and function of the connective tissues are impaired. In this chapter, we also review how biochemistry plays a role in each of the processes involved in collagen synthesis and assembly, and we describe differences seen by anatomical location and region within tendons. Moreover, we discuss how the structures of the molecules, fibrils, and fibers contribute to connective tissue physiology in health, and in pathology with injury and repair.
Collapse
Affiliation(s)
| | - Nicole L Gonzales
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Jessica M Beall
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Monica Y Pechanec
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
17
|
Delgado Caceres M, Angerpointner K, Galler M, Lin D, Michel PA, Brochhausen C, Lu X, Varadarajan AR, Warfsmann J, Stange R, Alt V, Pfeifer CG, Docheva D. Tenomodulin knockout mice exhibit worse late healing outcomes with augmented trauma-induced heterotopic ossification of Achilles tendon. Cell Death Dis 2021; 12:1049. [PMID: 34741033 PMCID: PMC8571417 DOI: 10.1038/s41419-021-04298-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022]
Abstract
Heterotopic ossification (HO) represents a common problem after tendon injury with no effective treatment yet being developed. Tenomodulin (Tnmd), the best-known mature marker for tendon lineage cells, has important effects in tendon tissue aging and function. We have reported that loss of Tnmd leads to inferior early tendon repair characterized by fibrovascular scaring and therefore hypothesized that its lack will persistently cause deficient repair during later stages. Tnmd knockout (Tnmd-/-) and wild-type (WT) animals were subjected to complete Achilles tendon surgical transection followed by end-to-end suture. Lineage tracing revealed a reduction in tendon-lineage cells marked by ScleraxisGFP, but an increase in alpha smooth muscle actin myofibroblasts in Tnmd-/- tendon scars. At the proliferative stage, more pro-inflammatory M1 macrophages and larger collagen II cartilaginous template were detected in this group. At the remodeling stage, histological scoring revealed lower repair quality in the injured Tnmd-/- tendons, which was coupled with higher HO quantified by micro-CT. Tendon biomechanical properties were compromised in both groups upon injury, however we identified an abnormal stiffening of non-injured Tnmd-/- tendons, which possessed higher static and dynamic E-moduli. Pathologically thicker and abnormally shaped collagen fibrils were observed by TEM in Tnmd-/- tendons and this, together with augmented HO, resulted in diminished running capacity of Tnmd-/- mice. These novel findings demonstrate that Tnmd plays a protecting role against trauma-induced endochondral HO and can inspire the generation of novel therapeutics to accelerate repair.
Collapse
Affiliation(s)
- Manuel Delgado Caceres
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Katharina Angerpointner
- Hand, Elbow and Plastic Surgery Department, Schön Klinik München Harlaching, Munich, Germany
| | - Michael Galler
- Department of Trauma Surgery, Caritas Hospital St. Josef, Regensburg, Germany
| | - Dasheng Lin
- Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Philipp A Michel
- Department of Trauma-, Hand-, and Reconstructive Surgery, University Hospital Münster, Münster, Germany
| | | | - Xin Lu
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Adithi R Varadarajan
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Jens Warfsmann
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University Hospital Münster, Westfälische Wilhelms-University, Münster, Germany
| | - Volker Alt
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Clinic and Policlinic for Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Christian G Pfeifer
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Clinic and Policlinic for Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany.
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
18
|
Moser HL, Abraham AC, Howell K, Laudier D, Zumstein MA, Galatz LM, Huang AH. Cell lineage tracing and functional assessment of supraspinatus tendon healing in an acute repair murine model. J Orthop Res 2021; 39:1789-1799. [PMID: 32497311 PMCID: PMC7714710 DOI: 10.1002/jor.24769] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/25/2020] [Indexed: 02/04/2023]
Abstract
Rotator cuff supraspinatus tendon injuries are common with high rates of anatomic failure after surgical repair. The purpose of the study was to define clinically relevant features of a mouse model of supraspinatus tendon injury to determine painful, functional, and structural outcomes; we further investigated two cell populations mediating healing using genetic lineage tracing after full detachment and repair of the supraspinatus tendon in mice. The pain was assessed using the mouse grimace scale and function by gait analysis and tensile testing. Histological and microCT analyses were used to determine enthesis/tendon and bone structure, respectively. Lineage tracing was carried out using inducible Cre lines for ScxCreERT2 (tendon cells) and αSMACreERT2 (myofibroblasts and mesenchymal progenitors). Mice only expressed pain transiently after surgery despite long-term impairment of functional and structural properties. Gait, tensile mechanical properties, and bone properties were significantly reduced after injury and repair. Lineage tracing showed relatively few Scx lin tendon cells while αSMA lin cells contributed strongly to scar formation. Despite surgical reattachment of healthy tendon, lineage tracing revealed poor preservation of supraspinatus tendon after acute injury and loss of tendon structure, suggesting that tendon degeneration is also a key impediment of successful rotator cuff repair. Scar formation after surgery is mediated largely by αSMA lin cells and results in permanently reduced functional and structural properties.
Collapse
Affiliation(s)
- Helen L. Moser
- Icahn School of Medicine at Mount Sinai, Department of Orthopaedics, 1 Gustave Levy Place, Box 1188, New York, NY 10029, USA,Inselspital, Bern University Hospital, University of Bern, Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, 3010 Bern, Switzerland
| | - Adam C. Abraham
- Columbia University Irving Medical Center, Department of Orthopedic Surgery, New York, NY 10032, USA
| | - Kristen Howell
- Icahn School of Medicine at Mount Sinai, Department of Orthopaedics, 1 Gustave Levy Place, Box 1188, New York, NY 10029, USA
| | - Damien Laudier
- Icahn School of Medicine at Mount Sinai, Department of Orthopaedics, 1 Gustave Levy Place, Box 1188, New York, NY 10029, USA
| | - Matthias A. Zumstein
- Inselspital, Bern University Hospital, University of Bern, Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, 3010 Bern, Switzerland,Shoulder, Elbow and Orthopaedic Sports Medicine, Orthopaedics Sonnenhof, 3006 Bern, Switzerland
| | - Leesa M. Galatz
- Icahn School of Medicine at Mount Sinai, Department of Orthopaedics, 1 Gustave Levy Place, Box 1188, New York, NY 10029, USA
| | - Alice H. Huang
- Icahn School of Medicine at Mount Sinai, Department of Orthopaedics, 1 Gustave Levy Place, Box 1188, New York, NY 10029, USA
| |
Collapse
|
19
|
Alt E, Rothoerl R, Hoppert M, Frank HG, Wuerfel T, Alt C, Schmitz C. First immunohistochemical evidence of human tendon repair following stem cell injection: A case report and review of literature. World J Stem Cells 2021; 13:944-970. [PMID: 34367486 PMCID: PMC8316863 DOI: 10.4252/wjsc.v13.i7.944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current clinical treatment options for symptomatic, partial-thickness rotator cuff tear (sPTRCT) offer only limited potential for true tissue healing and improvement of clinical results. In animal models, injections of adult stem cells isolated from adipose tissue into tendon injuries evidenced histological regeneration of tendon tissue. However, it is unclear whether such beneficial effects could also be observed in a human tendon treated with fresh, uncultured, autologous, adipose derived regenerative cells (UA-ADRCs). A specific challenge in this regard is that UA-ADRCs cannot be labeled and, thus, not unequivocally identified in the host tissue. Therefore, histological regeneration of injured human tendons after injection of UA-ADRCs must be assessed using comprehensive, immunohistochemical and microscopic analysis of biopsies taken from the treated tendon a few weeks after injection of UA-ADRCs.
CASE SUMMARY A 66-year-old patient suffered from sPTRCT affecting the right supraspinatus and infraspinatus tendon, caused by a bicycle accident. On day 18 post injury [day 16 post magnetic resonance imaging (MRI) examination] approximately 100 g of abdominal adipose tissue was harvested by liposuction, from which approximately 75 × 106 UA-ADRCs were isolated within 2 h. Then, UA-ADRCs were injected (controlled by biplanar X-ray imaging) adjacent to the injured supraspinatus tendon immediately after isolation. Despite fast clinical recovery, a follow-up MRI examination 2.5 mo post treatment indicated the need for open revision of the injured infraspinatus tendon, which had not been treated with UA-ADRCs. During this operation, a biopsy was taken from the supraspinatus tendon at the position of the injury. A comprehensive, immunohistochemical and microscopic analysis of the biopsy (comprising 13 antibodies) was indicative of newly formed tendon tissue.
CONCLUSION Injection of UA-ADRCs can result in regeneration of injured human tendons by formation of new tendon tissue.
Collapse
Affiliation(s)
- Eckhard Alt
- Chairman of the Board, Isarklinikum Munich, Munich 80331, Germany
| | - Ralf Rothoerl
- Department of Spine Surgery, Isarklinikum Munich, Munich 80331, Germany
| | - Matthias Hoppert
- Department for Orthopedics and Trauma Surgery, Isarklinikum Munich, Munich 80331, Germany
| | - Hans-Georg Frank
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | - Tobias Wuerfel
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | - Christopher Alt
- Director of Science and Research, InGeneron GmbH, Munich 80331, Germany
| | - Christoph Schmitz
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| |
Collapse
|
20
|
Bobzin L, Roberts RR, Chen HJ, Crump JG, Merrill AE. Development and maintenance of tendons and ligaments. Development 2021; 148:239823. [PMID: 33913478 DOI: 10.1242/dev.186916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tendons and ligaments are fibrous connective tissues vital to the transmission of force and stabilization of the musculoskeletal system. Arising in precise regions of the embryo, tendons and ligaments share many properties and little is known about the molecular differences that differentiate them. Recent studies have revealed heterogeneity and plasticity within tendon and ligament cells, raising questions regarding the developmental mechanisms regulating tendon and ligament identity. Here, we discuss recent findings that contribute to our understanding of the mechanisms that establish and maintain tendon progenitors and their differentiated progeny in the head, trunk and limb. We also review the extent to which these findings are specific to certain anatomical regions and model organisms, and indicate which findings similarly apply to ligaments. Finally, we address current research regarding the cellular lineages that contribute to tendon and ligament repair, and to what extent their regulation is conserved within tendon and ligament development.
Collapse
Affiliation(s)
- Lauren Bobzin
- Division of Biomedical Sciences, Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ryan R Roberts
- Division of Biomedical Sciences, Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hung-Jhen Chen
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amy E Merrill
- Division of Biomedical Sciences, Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
21
|
Tsai SL, Noedl MT, Galloway JL. Bringing tendon biology to heel: Leveraging mechanisms of tendon development, healing, and regeneration to advance therapeutic strategies. Dev Dyn 2021; 250:393-413. [PMID: 33169466 PMCID: PMC8486356 DOI: 10.1002/dvdy.269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Tendons are specialized matrix-rich connective tissues that transmit forces from muscle to bone and are essential for movement. As tissues that frequently transfer large mechanical loads, tendons are commonly injured in patients of all ages. Following injury, mammalian tendons heal poorly through a slow process that forms disorganized fibrotic scar tissue with inferior biomechanical function. Current treatments are limited and patients can be left with a weaker tendon that is likely to rerupture and an increased chance of developing degenerative conditions. More effective, alternative treatments are needed. However, our current understanding of tendon biology remains limited. Here, we emphasize why expanding our knowledge of tendon development, healing, and regeneration is imperative for advancing tendon regenerative medicine. We provide a comprehensive review of the current mechanisms governing tendon development and healing and further highlight recent work in regenerative tendon models including the neonatal mouse and zebrafish. Importantly, we discuss how present and future discoveries can be applied to both augment current treatments and design novel strategies to treat tendon injuries.
Collapse
Affiliation(s)
- Stephanie L. Tsai
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02138
| | - Marie-Therese Noedl
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02138
| | - Jenna L. Galloway
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02138
| |
Collapse
|
22
|
Chen W, Sun Y, Gu X, Cai J, Liu X, Zhang X, Chen J, Hao Y, Chen S. Conditioned medium of human bone marrow-derived stem cells promotes tendon-bone healing of the rotator cuff in a rat model. Biomaterials 2021; 271:120714. [PMID: 33610048 DOI: 10.1016/j.biomaterials.2021.120714] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/26/2021] [Accepted: 02/06/2021] [Indexed: 02/05/2023]
Abstract
Rotator cuff repair is a common surgery in sports medicine. During the surgery, torn tendon was re-fixed onto the bony surface. The majority of patients gain good results. However, re-tear occurs in some patients. The reason under this phenomenon is that the normal tendon-bone enthesis cannot be reconstructed. In order to strengthen the tendon-bone healing and promote enthesis regeneration, numerous manners are tested, among which stem cell related therapies are preferred. Stem cells, due to the ability of multi-lineage differentiation, are widely used in regenerative medicine. However, safety and ethics concerns limit its clinical use. Recent studies found that it is the secretome of stem cells that is biologically effective. On ground of this, we, in the current study, collected the conditioned medium of human bone marrow-derived stem cells (hBMSC-CM) and tested whether this acellular method could promote tendon-bone healing in a rat model of rotator cuff repair. By using histological, radiological, and biomechanical methods, we found that hBMSC-CM promoted tendon-bone healing of the rat rotator cuff. Then, we noticed that hBMSC-CM exerted an impact on macrophage polarization both in vivo and in vitro by inhibiting M1 phenotype and promoting M2 phenotype. Further, we proved that the benefit of hBMSC-CM on tendon-bone healing was related to its regulation on macrophage. Finally, we proved that, hBMSC-CM influenced macrophage polarization, which was, at least partially, related to Smad2/3 signaling pathway. Based on the experiments above, we confirmed the benefit of hBMSC-CM on tendon-bone healing, which relied on its immune-regulative property. Considering the accessibility and safety of acellular hBMSC-CM, we believe it is a promising candidate clinically for tendon-bone healing.
Collapse
Affiliation(s)
- Wenbo Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xueping Gu
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, China
| | - Jiangyu Cai
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xingwang Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xingyu Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuefeng Hao
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, China.
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
23
|
Sun Y, Lin J, Luo Z, Zhang Y, Chen J. The Serum from Patients with Secondary Frozen Shoulder Following Rotator Cuff Repair Induces Shoulder Capsule Fibrosis and Promotes Macrophage Polarization and Fibroblast Activation. J Inflamm Res 2021; 14:1055-1068. [PMID: 33790620 PMCID: PMC8001608 DOI: 10.2147/jir.s304555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/10/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Disorders with systematic inflammation were prognostic for secondary frozen shoulder (sFS) following rotator cuff repair (RCR); however, how systematic inflammation affects sFS remains unclear. The aim of this study was to observe the effect of pre-operative serum from patients with sFS and the serum from those without on shoulder capsule in mice, and on macrophages and fibroblasts in vitro. METHODS Serum samples of a consecutive cohort of patients for RCR were collected pre-operatively. Three months after RCR, patients who developed sFS (Group S) were identified. Serum samples from gender- and age-matched controls without sFS (group NS) were also picked out. Firstly, the effect of serum on shoulder capsule fibrosis was observed histologically and biomechanically in a mouse model of RCR. Secondly, the roles of the serum on macrophage polarization and fibroblast activation were investigated, and the potentially involved signaling pathways were identified. Finally, inflammation and fibrosis-related cytokines in serum were quantified. RESULTS In our cohort, all patients had free pre-operative shoulder range of motion. Seven patients developed sFS at 3 months after surgery. Seven matched patients without sFS were selected as control. The inter-group difference of basic characteristics was not significant. Compared to the serum of group NS, the serum of group S significantly induced hypercellularity, capsular thickening, and range of motion deficiency in mice shoulders after RCR. Compared to the serum of group NS, samples of group S significantly promoted M2 polarization of THP-1 human macrophages and the activation of human capsule-derived fibroblasts. Meanwhile, Smad3 and p-Smad3 in macrophages and fibroblasts were significantly up-regulated. On the other hand, levels of inflammation and fibrosis-related cytokines were not significantly different between serum in group S and group NS. CONCLUSION Although all patients in this cohort had free range of motion pre-operatively, the pre-operative serum from patients with sFS at 3 months after RCR could act as a trigger of shoulder capsule fibrosis post-operatively. This effect may be related to its promotion on macrophage polarization to M2 phenotype and fibroblast activation.
Collapse
Affiliation(s)
- Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yuhan Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Correspondence: Jiwu Chen Department of Sports Medicine, Huashan Hospital, Fudan University, 12# Middle Wulumuqi Road, Jing’an District, Shanghai, 200040, People’s Republic of ChinaFax +86 21 52888255 Email
| |
Collapse
|
24
|
Liu Y, Fu SC, Leong HT, Ling SKK, Oh JH, Yung PSH. Evaluation of animal models and methods for assessing shoulder function after rotator cuff tear: A systematic review. J Orthop Translat 2021; 26:31-38. [PMID: 33437620 PMCID: PMC7773935 DOI: 10.1016/j.jot.2020.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Restoring the shoulder function is a crucial demand of patients with rotator cuff (RC) tears. Most preclinical studies only focused on biological and mechanical measurements. Functional assessment was less investigated in the preclinical studies. This study aims to review the literature of shoulder function in animal models for RC tears and evaluate the strengths and weaknesses of different shoulder functional assessments and animal models. METHOD A literature search for studies used RC tear animal models to evaluate changes in shoulder function was performed. We searched databases of PubMed, Embase, Web of Science, and Scopus from inception to September 2019. Animal species, functional parameters, injury and repair types, and study durations were summarised. Cluster analyses were then used to separate animal models with different levels of injury and timings of repair. The reliability and clinical relevance of the included assessments and animal models were then discussed. RESULTS Fourteen animal studies that related to shoulder function in animal models of RC tears were reviewed. Five methods (gait analysis, passive range of motion test, open field test, staircase test, and running endurance test) to assess shoulder function were identified. Single or massive RC tendon tears and immediate or delayed RC repair models were found. We reported and discussed factors to be considered when researchers would select assessments and animal models for different study purposes. CONCLUSION Based on current evidences, gait analysis is the most appropriate method to assess changes in shoulder function of animal models of RC tears. More studies are required to further elucidate the reliability of passive range of motion measurement, open field test, staircase test, and running endurance test. Models that use massive tears and delayed repair better represent the clinical condition found in humans. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Using more clinically relevant animal models and assessments for shoulder function identified in this review may help to investigate the value of preclinical researches and promote translation of preclinical interventions into clinical practices.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sai C. Fu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- LuiChe Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hio T. Leong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Samuel Ka-Kin Ling
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joo H. Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Republic of Korea
| | - Patrick Shu-Hang Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Giduthuri AT, Theodossiou SK, Schiele NR, Srivastava SK. Dielectrophoresis as a tool for electrophysiological characterization of stem cells. BIOPHYSICS REVIEWS 2020; 1:011304. [PMID: 38505626 PMCID: PMC10903368 DOI: 10.1063/5.0025056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/20/2020] [Indexed: 03/21/2024]
Abstract
Dielectrophoresis (DEP), a nonlinear electrokinetic technique caused by Maxwell-Wagner interfacial polarization of neutral particles in an electrolyte solution, is a powerful cell manipulation method used widely for various applications such as enrichment, trapping, and sorting of heterogeneous cell populations. While conventional cell characterization and sorting methods require tagging or labeling of cells, DEP has the potential to manipulate cells in a label-free way. Due to its unique ability to characterize and sort cells without the need of labeling, there is renewed interest in using DEP for stem cell research and regenerative medicine. Stem cells have the potential to differentiate into various lineages, but achieving homogeneous cell phenotypes from an initially heterogeneous cell population is a challenge. Using DEP to efficiently and affordably identify, sort, and enrich either undifferentiated or differentiated stem cell populations in a label-free way would advance their potential uses for applications in tissue engineering and regenerative medicine. This review summarizes recent, significant research findings regarding the electrophysiological characterization of stem cells, with a focus on cellular dielectric properties, i.e., permittivity and conductivity, and on studies that have obtained these measurements using techniques that preserve cell viability, such as crossover frequency. Potential applications for DEP in regenerative medicine are also discussed. Overall, DEP is a promising technique and, when used to characterize, sort, and enrich stem cells, will advance stem cell-based regenerative therapies.
Collapse
Affiliation(s)
- Anthony T. Giduthuri
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| | - Sophia K. Theodossiou
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| | - Nathan R. Schiele
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| | - Soumya K. Srivastava
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| |
Collapse
|
26
|
Ideo K, Tokunaga T, Shukunami C, Takimoto A, Yoshimoto Y, Yonemitsu R, Karasugi T, Mizuta H, Hiraki Y, Miyamoto T. Role of Scx+/Sox9+ cells as potential progenitor cells for postnatal supraspinatus enthesis formation and healing after injury in mice. PLoS One 2020; 15:e0242286. [PMID: 33259516 PMCID: PMC7707462 DOI: 10.1371/journal.pone.0242286] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/29/2020] [Indexed: 01/24/2023] Open
Abstract
A multipotent cell population co-expressing a basic-helix-loop-helix transcription factor scleraxis (Scx) and SRY-box 9 (Sox9) has been shown to contribute to the establishment of entheses (tendon attachment sites) during mouse embryonic development. The present study aimed to investigate the involvement of Scx+/Sox9+ cells in the postnatal formation of fibrocartilaginous entheses and in the healing process after injury, using ScxGFP transgenic mice. We demonstrate that Scx+/Sox9+ cells are localized in layers at the insertion site during the postnatal formation of fibrocartilaginous entheses of supraspinatus tendon until postnatal 3 weeks. Further, these cells were rarely seen at postnatal 6 weeks, when mature fibrocartilaginous entheses were formed. Furthermore, we investigated the involvement of Scx+/Sox9+ cells in the healing process after supraspinatus tendon enthesis injury, comparing the responses of 20- and 3-week-old mice. In the healing process of 20-week-old mice with disorganized fibrovascular tissue in response to injury, a small number of Scx+/Sox9+ cells transiently appeared from 1 week after injury, but they were rarely seen at 4 weeks after injury. Meanwhile, in 3-week-old mice, a thin layer of fibrocartilaginous tissue with calcification was formed at healing enthesis at 4 weeks after injury. From 1 to 2 weeks after injury, more Scx+/Sox9+ cells, widely distributed at the injured site, were seen compared with the 20-week-old mice. At 4 weeks after injury, these cells were located near the surface of the recreated fibrocartilaginous layer. This spatiotemporal localization pattern of Scx+/Sox9+ cells at the injured enthesis in our 3-week-old mouse model was similar to that in postnatal fibrocartilaginous enthesis formation. These findings indicate that Scx+/Sox9+ cells may have a role as entheseal progenitor-like cells during postnatal maturation of fibrocartilaginous entheses and healing after injury in a manner similar to that seen in embryonic development.
Collapse
Affiliation(s)
- Katsumasa Ideo
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuya Tokunaga
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- * E-mail:
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Aki Takimoto
- Laboratory of Cellular Differentiation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryuji Yonemitsu
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuki Karasugi
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Mizuta
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Hiraki
- Laboratory of Cellular Differentiation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeshi Miyamoto
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
27
|
Chen C, Chen Y, Li M, Xiao H, Shi Q, Zhang T, Li X, Zhao C, Hu J, Lu H. Functional decellularized fibrocartilaginous matrix graft for rotator cuff enthesis regeneration: A novel technique to avoid in-vitro loading of cells. Biomaterials 2020; 250:119996. [PMID: 32334201 DOI: 10.1016/j.biomaterials.2020.119996] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
Abstract
Rapid and functional enthesis regeneration after rotator cuff tear (RCT) remains a challenge in clinic. Current tissue-engineering strategies for solving this challenge are focused on developing grafts with the mode of in-vitro loading cells on a scaffold. However, this mode is complicated and time-inefficient, moreover the preservation of this graft outside a cell incubator is highly inconvenient, thus limiting their clinical application. Developing a cell-free graft with chemotaxis to recruit postoperative injected cells may be a promising approach to solve these problems. Herein, we prepared a recombinant SDF-1α (termed as C-SDF-1α) capable of binding collagen and chemotaxis, which were then tethered on the collagen fibers of book-shaped decellularized fibrocartilage matrix (BDFM) to fabricate this cell-free graft (C-SDF-1α/BDFM). This C-SDF-1α/BDFM is noncytotoxicity and low-immunogenicity, allows synovium-derived mesenchymal stem cells (SMSCs) attachment and proliferation, and shows superior chondrogenic inducibility. More importantly, C-SDF-1α/BDFM released the tethered SDF-1α with a sustained release profile in-vitro and in-vivo, thus steadily recruiting chemokine (C-X-C motif) receptor 4 positive (CXCR4+) cells. Rats with RCT were repaired acutely with C-SDF-1α/BDFM together with postoperative CXCR4+SMSCs injection (C-SDF-1α/BDFM + CXCR4+SMSCs), BDFM in-vitro pre-loaded CXCR4+SMSCs (BDFM/CXCR4+SMSCs), or direct suture only (CTL). At postoperative 14-day, compared with BDFM/CXCR4+SMSCs, C-SDF-1α/BDFM + CXCR4+SMSCs showed a little more CXCR4+SMSCs at the healing site. At postoperative week 4 or 8, rats treated with C-SDF-1α/BDFM + CXCR4+SMSCs presented a similar RC healing quality as BDFM/CXCR4+SMSCs, both of which were significantly better than the CTL. Collectively, compared with conventional BDFM/CXCR4+SMSCs, C-SDF-1α/BDFM, as a cell-free graft with chemotaxis, could recruit postoperative injected CXCR4+cells into the healing site to participating RC healing, thus avoiding the complex process of in-vitro loading cells on a scaffold and necessitating immense care for the graft outside cell incubator, making it very convenient for clinical application.
Collapse
Affiliation(s)
- Can Chen
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Xiangya Hospital-International Chinese Musculeskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Chen
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Xiangya Hospital-International Chinese Musculeskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Muzh Li
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Xiangya Hospital-International Chinese Musculeskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Han Xiao
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Xiangya Hospital-International Chinese Musculeskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiang Shi
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Xiangya Hospital-International Chinese Musculeskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tao Zhang
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Xiangya Hospital-International Chinese Musculeskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xing Li
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China; Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chunfeng Zhao
- Division of Orthopedic Research and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Jianzhong Hu
- Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Xiangya Hospital-International Chinese Musculeskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Xiangya Hospital-International Chinese Musculeskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
28
|
Abstract
Tendons link muscle to bone and transfer forces necessary for normal movement. Tendon injuries can be debilitating and their intrinsic healing potential is limited. These challenges have motivated the development of model systems to study the factors that regulate tendon formation and tendon injury. Recent advances in understanding of embryonic and postnatal tendon formation have inspired approaches that aimed to mimic key aspects of tendon development. Model systems have also been developed to explore factors that regulate tendon injury and healing. We highlight current model systems that explore developmentally inspired cellular, mechanical, and biochemical factors in tendon formation and tenogenic stem cell differentiation. Next, we discuss in vivo, in vitro, ex vivo, and computational models of tendon injury that examine how mechanical loading and biochemical factors contribute to tendon pathologies and healing. These tendon development and injury models show promise for identifying the factors guiding tendon formation and tendon pathologies, and will ultimately improve regenerative tissue engineering strategies and clinical outcomes.
Collapse
Affiliation(s)
- Sophia K Theodossiou
- Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| | - Nathan R Schiele
- Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| |
Collapse
|