1
|
Chen K, Liu Z, Zhou X, Zheng W, Cao H, Yang Z, Wang Z, Ning C, Li Q, Zhao H. Hierarchy Reproduction: Multiphasic Strategies for Tendon/Ligament-Bone Junction Repair. Biomater Res 2025; 29:0132. [PMID: 39844867 PMCID: PMC11751208 DOI: 10.34133/bmr.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/15/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Tendon/ligament-bone junctions (T/LBJs) are susceptible to damage during exercise, resulting in anterior cruciate ligament rupture or rotator cuff tear; however, their intricate hierarchical structure hinders self-regeneration. Multiphasic strategies have been explored to fuel heterogeneous tissue regeneration and integration. This review summarizes current multiphasic approaches for rejuvenating functional gradients in T/LBJ healing. Synthetic, natural, and organism-derived materials are available for in vivo validation. Both discrete and gradient layouts serve as sources of inspiration for organizing specific cues, based on the theories of biomaterial topology, biochemistry, mechanobiology, and in situ delivery therapy, which form interconnected network within the design. Novel engineering can be constructed by electrospinning, 3-dimensional printing, bioprinting, textiling, and other techniques. Despite these efforts being limited at present stage, multiphasic scaffolds show great potential for precise reproduction of native T/LBJs and offer promising solutions for clinical dilemmas.
Collapse
Affiliation(s)
- Kaiting Chen
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Zezheng Liu
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Xinying Zhou
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Wanyu Zheng
- School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - He Cao
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Zijian Yang
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Zhengao Wang
- School of Materials Science and Engineering,
South China University of Technology, Guangzhou 510006, P. R. China
| | - Chengyun Ning
- School of Materials Science and Engineering,
South China University of Technology, Guangzhou 510006, P. R. China
| | - Qingchu Li
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Huiyu Zhao
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| |
Collapse
|
2
|
Zhang J, Zhu X, Chen S, Li P, Yang L, Zhang J. The research status of biodegradable polymers in repair of Achilles tendon defects. INT J POLYM MATER PO 2024; 73:771-784. [DOI: 10.1080/00914037.2023.2206658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/19/2023] [Indexed: 01/06/2025]
Affiliation(s)
- Jinchi Zhang
- Department of Biomaterials, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
- Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang 110031, PR China
- College of Kinesiology, Shenyang Sport University, Shenyang 110102, PR China
| | - Xiaolin Zhu
- Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang 110031, PR China
| | - Siyu Chen
- China Medical University and Queen’s University Belfast, Shenyang 110122, PR China
| | - Peng Li
- Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang 110031, PR China
| | - Liqun Yang
- Department of Biomaterials, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
- Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang 110031, PR China
| | - Jinzhe Zhang
- Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang 110031, PR China
| |
Collapse
|
3
|
Shi Q, Chen Y, Xu Y, Chen C, Lu H. Engineering a functional ACL reconstruction graft containing a triphasic enthesis-like structure in bone tunnel for the enhancement of graft-to-bone integration. J Orthop Translat 2024; 45:155-167. [PMID: 38559900 PMCID: PMC10979121 DOI: 10.1016/j.jot.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024] Open
Abstract
Background Anterior cruciate ligament (ACL) rupture is a common sports injury, which causes knee instability and abnormal joint kinematics. The current ACL graft was single-phasic, and not convenient for the formation of enthesis-like tissue in the bone tunnel, resulting in poor integration of graft-to-bone. Methods A band-shaped acellular tendon (BAT) was prepared as the core component of the ACL reconstruction graft at first, while sleeve-shaped acellular cartilage (SAC) or sleeve-shaped acellular bone (SAB) was fabricated using a vacuum aspiration system (VAS)-based decellularization protocol. The biocompatibility of the three acellular matrixes was evaluated. Furthermore, a collagen-binding peptide (CBP) derived from the A3 domain of von Willebrand factor was respectively fused into the N-terminal of GDF7, TGFβ3, or BMP2 to synthesize three recombinant growth factors capable of binding collagen (named C-GDF7, C-TGFβ3, or C-BMP2), which were respectively tethered to the BAT, SAC or SAB for improving their inducibilities in stem cell differentiation. An in-vitro experiment was performed to evaluate theirs osteogenic, chondrogenic, and tenogenic inducibilities. Then, C-TGFβ3-tethering SAC (C-TGFβ3@SAC) and C-BMP2-tethering SAB (C-BMP2@SAB) were sequentially surrounded at the bone tunnel part of C-GDF7-tethering BAT (C-GDF7@BAT), thus a sleeve-shaped acellular graft with a triphasic enthesis-like structure in bone tunnel part (named tissue-engineered graft, TE graft) was engineered. Lastly, a canine ACL reconstruction model was used to evaluate the in-vivo performance of this TE graft in enhancing graft-to-bone integration. Results The BAT, SAC, and SAB well preserved the structure and components of native tendon, cartilage, and bone, showing good biocompatibility. C-GDF7, C-TGFβ3, or C-BMP2 showed a stronger binding ability to BAT, SAC, and SAB. The C-GDF7@BAT, C-TGFβ3@SAC, or C-BMP2@SAB was a controlled delivery system for the scaffold-specific release of GDF7, TGFβ3, and BMP2, thus showing superior tenogenic, chondrogenic, or osteogenic inducibility, respectively. Using a canine ACL reconstruction model, abundant newly-formed bone and connective collagen fibers could be observed at the integration site between TE graft and bone tunnel at postoperative 16 weeks. Meanwhile, the failure load of the reconstructed ACL by TE graft was significantly higher than that of the autograft. Conclusion The TE graft could be used to reconstruct ruptured ACL and augment graft-to-bone integration, thus demonstrating high potential for clinical translation in ACL reconstruction. Translational potential of this article The findings of the study indicated that the TE graft could be a novel graft for ACL reconstruction with the ability to augment graft-to-bone integration, which may provide a foundation for future clinical application.
Collapse
Affiliation(s)
- Qiang Shi
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Can Chen
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
4
|
Golebiowska AA, Intravaia JT, Sathe VM, Kumbar SG, Nukavarapu SP. Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects. Bioact Mater 2024; 32:98-123. [PMID: 37927899 PMCID: PMC10622743 DOI: 10.1016/j.bioactmat.2023.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Tissue engineering and regenerative medicine have shown potential in the repair and regeneration of tissues and organs via the use of engineered biomaterials and scaffolds. However, current constructs face limitations in replicating the intricate native microenvironment and achieving optimal regenerative capacity and functional recovery. To address these challenges, the utilization of decellularized tissues and cell-derived extracellular matrix (ECM) has emerged as a promising approach. These biocompatible and bioactive biomaterials can be engineered into porous scaffolds and grafts that mimic the structural and compositional aspects of the native tissue or organ microenvironment, both in vitro and in vivo. Bioactive dECM materials provide a unique tissue-specific microenvironment that can regulate and guide cellular processes, thereby enhancing regenerative therapies. In this review, we explore the emerging frontiers of decellularized tissue-derived and cell-derived biomaterials and bio-inks in the field of tissue engineering and regenerative medicine. We discuss the need for further improvements in decellularization methods and techniques to retain structural, biological, and physicochemical characteristics of the dECM products in a way to mimic native tissues and organs. This article underscores the potential of dECM biomaterials to stimulate in situ tissue repair through chemotactic effects for the development of growth factor and cell-free tissue engineering strategies. The article also identifies the challenges and opportunities in developing sterilization and preservation methods applicable for decellularized biomaterials and grafts and their translation into clinical products.
Collapse
Affiliation(s)
| | - Jonathon T. Intravaia
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Vinayak M. Sathe
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Syam P. Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| |
Collapse
|
5
|
Li Y, Deng T, Aili D, Chen Y, Zhu W, Liu Q. Cell Sheet Technology: An Emerging Approach for Tendon and Ligament Tissue Engineering. Ann Biomed Eng 2024; 52:141-152. [PMID: 37731091 DOI: 10.1007/s10439-023-03370-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Tendon and ligament injuries account for a substantial proportion of disorders in the musculoskeletal system. While non-operative and operative treatment strategies have advanced, the restoration of native tendon and ligament structures after injury is still challenging due to its innate limited regenerative ability. Cell sheet technology is an innovative tool for tissue fabrication and cell transplantation in regenerative medicine. In this review, we first summarize different harvesting procedures and advantages of cell sheet technology, which preserves intact cell-to-cell connections and extracellular matrix. We then describe the recent progress of cell sheet technology from preclinical studies, focusing on the application of stem cell-derived sheets in treating tendon and ligament injuries, as well as highlighting its effects on mitigating inflammation and promoting tendon/graft-bone interface healing. Finally, we discuss several prerequisites for future clinical translation including the selection of appropriate cell source, optimization of preparation process, establishment of suitable animal model, and the fabrication of vascularized complex tissue. We believe this review could potentially provoke new ideas and drive the development of more functional biomimetic tissues using cell sheet technology to meet the needs of clinical patients.
Collapse
Affiliation(s)
- Yexin Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ting Deng
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Dilihumaer Aili
- Department of Orthopedic Surgery, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Ürümqi, People's Republic of China
| | - Yang Chen
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qian Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
6
|
Anjum S, Li T, Saeed M, Ao Q. Exploring polysaccharide and protein-enriched decellularized matrix scaffolds for tendon and ligament repair: A review. Int J Biol Macromol 2024; 254:127891. [PMID: 37931866 DOI: 10.1016/j.ijbiomac.2023.127891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Tissue engineering (TE) has become a primary research topic for the treatment of diseased or damaged tendon/ligament (T/L) tissue. T/L injuries pose a severe clinical burden worldwide, necessitating the development of effective strategies for T/L repair and tissue regeneration. TE has emerged as a promising strategy for restoring T/L function using decellularized extracellular matrix (dECM)-based scaffolds. dECM scaffolds have gained significant prominence because of their native structure, relatively high bioactivity, low immunogenicity, and ability to function as scaffolds for cell attachment, proliferation, and differentiation, which are difficult to imitate using synthetic materials. Here, we review the recent advances and possible future prospects for the advancement of dECM scaffolds for T/L tissue regeneration. We focus on crucial scaffold properties and functions, as well as various engineering strategies employed for biomaterial design in T/L regeneration. dECM provides both the physical and mechanical microenvironments required by cells to survive and proliferate. Various decellularization methods and sources of allogeneic and xenogeneic dECM in T/L repair and regeneration are critically discussed. Additionally, dECM hydrogels, bio-inks in 3D bioprinting, and nanofibers are briefly explored. Understanding the opportunities and challenges associated with dECM-based scaffold development is crucial for advancing T/L repairs in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ting Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Mohammad Saeed
- Dr. A.P.J Abdul Kalam Technical University, Lucknow 226031, India
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
7
|
Huang L, Chen L, Chen H, Wang M, Jin L, Zhou S, Gao L, Li R, Li Q, Wang H, Zhang C, Wang J. Biomimetic Scaffolds for Tendon Tissue Regeneration. Biomimetics (Basel) 2023; 8:246. [PMID: 37366841 DOI: 10.3390/biomimetics8020246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Tendon tissue connects muscle to bone and plays crucial roles in stress transfer. Tendon injury remains a significant clinical challenge due to its complicated biological structure and poor self-healing capacity. The treatments for tendon injury have advanced significantly with the development of technology, including the use of sophisticated biomaterials, bioactive growth factors, and numerous stem cells. Among these, biomaterials that the mimic extracellular matrix (ECM) of tendon tissue would provide a resembling microenvironment to improve efficacy in tendon repair and regeneration. In this review, we will begin with a description of the constituents and structural features of tendon tissue, followed by a focus on the available biomimetic scaffolds of natural or synthetic origin for tendon tissue engineering. Finally, we will discuss novel strategies and present challenges in tendon regeneration and repair.
Collapse
Affiliation(s)
- Lvxing Huang
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Le Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hengyi Chen
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Manju Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310000, China
| | - Letian Jin
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Shenghai Zhou
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Lexin Gao
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Ruwei Li
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Quan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hanchang Wang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Can Zhang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Junjuan Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
8
|
Shiroud Heidari B, Ruan R, Vahabli E, Chen P, De-Juan-Pardo EM, Zheng M, Doyle B. Natural, synthetic and commercially-available biopolymers used to regenerate tendons and ligaments. Bioact Mater 2023; 19:179-197. [PMID: 35510172 PMCID: PMC9034322 DOI: 10.1016/j.bioactmat.2022.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
Tendon and ligament (TL) injuries affect millions of people annually. Biopolymers play a significant role in TL tissue repair, whether the treatment relies on tissue engineering strategies or using artificial tendon grafts. The biopolymer governs the mechanical properties, biocompatibility, degradation, and fabrication method of the TL scaffold. Many natural, synthetic and hybrid biopolymers have been studied in TL regeneration, often combined with therapeutic agents and minerals to engineer novel scaffold systems. However, most of the advanced biopolymers have not advanced to clinical use yet. Here, we aim to review recent biopolymers and discuss their features for TL tissue engineering. After introducing the properties of the native tissue, we discuss different types of natural, synthetic and hybrid biopolymers used in TL tissue engineering. Then, we review biopolymers used in commercial absorbable and non-absorbable TL grafts. Finally, we explain the challenges and future directions for the development of novel biopolymers in TL regenerative treatment.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rui Ruan
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Ebrahim Vahabli
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Peilin Chen
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Elena M. De-Juan-Pardo
- School of Engineering, The University of Western Australia, Perth, Australia
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Minghao Zheng
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- BHF Centre for Cardiovascular Science, The University of Edinburgh, UK
| |
Collapse
|
9
|
Enhancement of Tendon Repair Using Tendon-Derived Stem Cells in Small Intestinal Submucosa via M2 Macrophage Polarization. Cells 2022; 11:cells11172770. [PMID: 36078178 PMCID: PMC9454771 DOI: 10.3390/cells11172770] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Reconstruction of Achilles tendon defects and prevention of postoperative tendon adhesions were two serious clinical problems. In the treatment of Achilles tendon defects, decellularized matrix materials and mesenchymal stem cells (MSCs) were thought to address both problems. (2) Methods: In vitro, cell adhesion, proliferation, and tenogenic differentiation of tendon-derived stem cells (TDSCs) on small intestinal submucosa (SIS) were evaluated. RAW264.7 was induced by culture medium of TDSCs and TDSCs–SIS scaffold groups. A rat Achilles tendon defect model was used to assess effects on tendon regeneration and antiadhesion in vivo. (3) Results: SIS scaffold facilitated cell adhesion and tenogenic differentiation of TDSCs, while SIS hydrogel coating promoted proliferation of TDSCs. The expression of TGF-β and ARG-1 in the TDSCs-SIS scaffold group were higher than that in the TDSCs group on day 3 and 7. In vivo, the tendon regeneration and antiadhesion capacity of the implanted TDSCs–SIS scaffold was significantly enhanced. The expression of CD163 was significantly highest in the TDSCs–SIS scaffold group; meanwhile, the expression of CD68 decreased more significantly in the TDSCs–SIS scaffold group than the other two groups. (4) Conclusion: This study showed that biologically prepared SIS scaffolds synergistically promote tendon regeneration with TDSCs and achieve antiadhesion through M2 polarization of macrophages.
Collapse
|
10
|
Ning LJ, Cui J, He SK, Hu RN, Yao X, Zhang Y, Ding W, Zhang YJ, Luo JC, Qin TW. Constructing a highly bioactive tendon-regenerative scaffold by surface modification of tissue-specific stem cell derived extracellular matrix. Regen Biomater 2022; 9:rbac020. [PMID: 35480863 PMCID: PMC9036902 DOI: 10.1093/rb/rbac020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/28/2022] [Accepted: 03/06/2022] [Indexed: 02/05/2023] Open
Abstract
Developing highly bioactive scaffold materials to promote stem cell migration, proliferation and tissue-specific differentiation is a crucial requirement in current tissue engineering and regenerative medicine. Our previous work has demonstrated that the decellularized tendon slices (DTSs) are able to promote stem cell proliferation and tenogenic differentiation in vitro and show certain pro-regenerative capacity for rotator cuff tendon regeneration in vivo. In this study, we present a strategy to further improve the bioactivity of the DTSs for constructing a novel highly bioactive tendon-regenerative scaffold by surface modification of tendon-specific stem cell-derived extracellular matrix (tECM), which is expected to greatly enhance the capacity of scaffold material in regulating stem cell behavior, including migration, proliferation and tenogenic differentiation. We prove that the modification of tECM could change the highly aligned surface topographical cues of the DTSs, retain the surface stiffness of the DTSs and significantly increase the content of multiple ECM components in the tECM-DTSs. As a result, the tECM-DTSs dramatically enhance the migration, proliferation as well as tenogenic differentiation of rat bone marrow-derived stem cells compared with the DTSs. Collectively, this strategy would provide a new way for constructing ECM-based biomaterials with enhanced bioactivity for in situ tendon regeneration applications. ![]()
Collapse
Affiliation(s)
- Liang-Ju Ning
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
| | - Jing Cui
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
| | - Shu-Kun He
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Ruo-Nan Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
| | - Xuan Yao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
| | - Yi Zhang
- Core Facility, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Wei Ding
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
| | - Yan-Jing Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
- Core Facility, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Jing-Cong Luo
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
| | - Ting-Wu Qin
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
| |
Collapse
|
11
|
Shengnan Q, Bennett S, Wen W, Aiguo L, Jiake X. The role of tendon derived stem/progenitor cells and extracellular matrix components in the bone tendon junction repair. Bone 2021; 153:116172. [PMID: 34506992 DOI: 10.1016/j.bone.2021.116172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022]
Abstract
Fibrocartilage enthesis is the junction between bone and tendon with a typical characteristics of fibrocartilage transition zones. The regeneration of this transition zone is the bottleneck for functional restoration of bone tendon junction (BTJ). Biomimetic approaches, especially decellularized extracellular matrix (ECM) materials, are strategies which aim to mimic the components of tissues to the utmost extent, and are becoming popular in BTJ healing because of their ability not only to provide scaffolds to allow cells to attach and migrate, but also to provide a microenvironment to guide stem/progenitor cells lineage-specific differentiation. However, the cellular and molecular mechanisms of those approaches, especially the ECM proteins, remain unclear. For BTJ reconstruction, fibrocartilage regeneration is the key for good integrity of bone and tendon as well as its mechanical recovery, so the components which can guide stem cells to a chondrogenic commitment in biomimetic approaches might well be the key for fibrocartilage regeneration and eventually for the better BTJ healing. In this review, we firstly discuss the importance of cartilage-like formation in the healing process of BTJ. Next, we explore the possibility of tendon-derived stem/progenitor cells as cell sources for BTJ regeneration due to their multi-differentiation potential. Finally, we summarize the role of extracellular matrix components of BTJ in guiding stem cell fate to a chondrogenic commitment, so as to provide cues for understanding the mechanisms of lineage-specific potential of biomimetic approaches as well as to inspire researchers to incorporate unique ECM components that facilitate BTJ repair into design.
Collapse
Affiliation(s)
- Qin Shengnan
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Wang Wen
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Li Aiguo
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.
| | - Xu Jiake
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia.
| |
Collapse
|
12
|
Hou J, Yang R, Vuong I, Li F, Kong J, Mao HQ. Biomaterials strategies to balance inflammation and tenogenesis for tendon repair. Acta Biomater 2021; 130:1-16. [PMID: 34082095 DOI: 10.1016/j.actbio.2021.05.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
Adult tendon tissue demonstrates a limited regenerative capacity, and the natural repair process leaves fibrotic scar tissue with inferior mechanical properties. Surgical treatment is insufficient to provide the mechanical, structural, and biochemical environment necessary to restore functional tissue. While numerous strategies including biodegradable scaffolds, bioactive factor delivery, and cell-based therapies have been investigated, most studies have focused exclusively on either suppressing inflammation or promoting tenogenesis, which includes tenocyte proliferation, ECM production, and tissue formation. New biomaterials-based approaches represent an opportunity to more effectively balance the two processes and improve regenerative outcomes from tendon injuries. Biomaterials applications that have been explored for tendon regeneration include formation of biodegradable scaffolds presenting topographical, mechanical, and/or immunomodulatory cues conducive to tendon repair; delivery of immunomodulatory or tenogenic biomolecules; and delivery of therapeutic cells such as tenocytes and stem cells. In this review, we provide the biological context for the challenges in tendon repair, discuss biomaterials approaches to modulate the immune and regenerative environment during the healing process, and consider the future development of comprehensive biomaterials-based strategies that can better restore the function of injured tendon. STATEMENT OF SIGNIFICANCE: Current strategies for tendon repair focus on suppressing inflammation or enhancing tenogenesis. Evidence indicates that regulated inflammation is beneficial to tendon healing and that excessive tissue remodeling can cause fibrosis. Thus, it is necessary to adopt an approach that balances the benefits of regulated inflammation and tenogenesis. By reviewing potential treatments involving biodegradable scaffolds, biological cues, and therapeutic cells, we contrast how each strategy promotes or suppresses specific repair steps to improve the healing outcome, and highlight the advantages of a comprehensive approach that facilitates the clearance of necrotic tissue and recruitment of cells during the inflammatory stage, followed by ECM synthesis and organization in the proliferative and remodeling stages with the goal of restoring function to the tendon.
Collapse
|
13
|
Moro SDDS, de Oliveira Fujii L, Teodoro LFR, Frauz K, Mazoni AF, Esquisatto MAM, Rodrigues RAF, Pimentel ER, de Aro AA. Acmella oleracea extract increases collagen content and organization in partially transected tendons. Microsc Res Tech 2021; 84:2588-2597. [PMID: 33973686 DOI: 10.1002/jemt.23809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/18/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Acmella oleracea contains spilanthol as the main active compound, which possesses analgesic and anti-inflammatory effects that can favor tendon reorganization. To analyze the effect of A. oleracea on the content and organization of collagen in injured tendons, the calcaneal tendon of male Lewis rats was partially transected and treated at the site of injury with a topical application of 20% A. oleracea ointment (AO group) or with the ointment base without the plant extract (B group). The animals were euthanized 21 days after partial transection. Higher collagen concentration was observed in the AO group than in the B group, and morphological analysis using polarization microscopy showed higher birefringence in the AO group than in the B group, indicating higher collagen organization. No difference was observed in the number of fibroblasts, blood vessels, proteoglycan distribution, and maximum load between the B and AO groups. In conclusion, topical application of 20% A. oleracea ointment increased the molecular organization and content of collagen, thus indicating a potential application in tendon repair. Studies on the later phases of the tendon healing process are necessary to demonstrate the possible biomechanical changes after the application of A. oleracea ointment.
Collapse
Affiliation(s)
- Selma Delgado de Souza Moro
- Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| | - Lucas de Oliveira Fujii
- Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| | - Luis Felipe Rodrigues Teodoro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Katleen Frauz
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | | | | | | | - Edson Rosa Pimentel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Andrea Aparecida de Aro
- Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| |
Collapse
|
14
|
Xiao H, Chen Y, Li M, Shi Q, Xu Y, Hu J, Li X, Chen C, Lu H. Cell-Free Book-Shaped Decellularized Tendon Matrix Graft Capable of Controlled Release of BMP-12 to Improve Tendon Healing in a Rat Model. Am J Sports Med 2021; 49:1333-1347. [PMID: 33667134 DOI: 10.1177/0363546521994555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Achilles tendon (AT) defects often occur in traumatic and chronic injuries. Currently, no graft can satisfactorily regenerate parallel tendinous tissue at the defect site to completely restore AT function. PURPOSE To develop a cell-free functional graft by tethering bone morphogenetic protein 12 (BMP-12) on a book-shaped decellularized tendon matrix (BDTM) and to determine whether this graft is more beneficial for AT defect healing than an autograft. STUDY DESIGN Controlled laboratory study. METHODS Canine patellar tendon was sectioned into a book shape and decellularized to fabricate a BDTM. The collagen-binding domain (CBD) was fused into the N-terminus of BMP-12 to synthesize a recombinant BMP-12 (CBD-BMP-12), which was tethered to the BDTM to prepare a cell-free functional graft (CBD-BMP-12/BDTM). After its tensile resistance, tenogenic inducibility, and BMP-12 release dynamics were evaluated, the efficacy of the graft for tendon regeneration was determined in a rat model. A total of 140 mature male Sprague-Dawley rats underwent AT tenotomy. The defect was reconstructed with reversed AT (autograft group), native BMP-12 tethered to an intact decellularized tendon matrix (IDTM; NAT-BMP-12/IDTM group), native BMP-12 tethered to a BDTM (NAT-BMP-12/BDTM group), CBD-BMP-12 tethered on an IDTM (CBD-BMP-12/IDTM group), and CBD-BMP-12 tethered on a BDTM (CBD-BMP-12/BDTM group). The rats were sacrificed 4 or 8 weeks after surgery to harvest AT specimens. Six specimens from each group at each time point were used for histological evaluation; the remaining 8 specimens were used for biomechanical testing. RESULTS In vitro CBD-BMP-12/BDTM was noncytotoxic, showed high biomimetics with native tendons, was suitable for cell adhesion and growth, and had superior tenogenic inducibility. In vivo the defective AT in the CBD-BMP-12/BDTM group regenerated more naturally than in the other groups, as indicated by more spindle-shaped fibroblasts embedded in a matrix of parallel fibers. The biomechanical properties of the regenerated AT in the CBD-BMP-12/BDTM group also increased more significantly than in the other groups. CONCLUSION CBD-BMP-12/BDTM is more beneficial than autograft for healing AT defects in a rat model. CLINICAL RELEVANCE The findings of this study demonstrate that CBD-BMP-12/BDTM can serve as a practical graft for reconstructing AT defects.
Collapse
Affiliation(s)
- Han Xiao
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
| | - Yang Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
| | - Muzhi Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
| | - Qiang Shi
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
| | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xing Li
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can Chen
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
| |
Collapse
|
15
|
Ruiz-Alonso S, Lafuente-Merchan M, Ciriza J, Saenz-Del-Burgo L, Pedraz JL. Tendon tissue engineering: Cells, growth factors, scaffolds and production techniques. J Control Release 2021; 333:448-486. [PMID: 33811983 DOI: 10.1016/j.jconrel.2021.03.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Tendon injuries are a global health problem that affects millions of people annually. The properties of tendons make their natural rehabilitation a very complex and long-lasting process. Thanks to the development of the fields of biomaterials, bioengineering and cell biology, a new discipline has emerged, tissue engineering. Within this discipline, diverse approaches have been proposed. The obtained results turn out to be promising, as increasingly more complex and natural tendon-like structures are obtained. In this review, the nature of the tendon and the conventional treatments that have been applied so far are underlined. Then, a comparison between the different tendon tissue engineering approaches that have been proposed to date is made, focusing on each of the elements necessary to obtain the structures that allow adequate regeneration of the tendon: growth factors, cells, scaffolds and techniques for scaffold development. The analysis of all these aspects allows understanding, in a global way, the effect that each element used in the regeneration of the tendon has and, thus, clarify the possible future approaches by making new combinations of materials, designs, cells and bioactive molecules to achieve a personalized regeneration of a functional tendon.
Collapse
Affiliation(s)
- Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Laura Saenz-Del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
| |
Collapse
|
16
|
Zhang X, Liu Y, Clark KL, Padget AM, Alexander PG, Dai J, Zhu W, Lin H. Mesenchymal stem cell-derived extracellular matrix (mECM): a bioactive and versatile scaffold for musculoskeletal tissue engineering. ACTA ACUST UNITED AC 2020; 16:012002. [PMID: 32906098 DOI: 10.1088/1748-605x/abb6b3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cell-derived extracellular matrix (mECM) has received increased attention in the fields of tissue engineering and scaffold-assisted regeneration. mECM exhibits many unique characteristics, such as robust bioactivity, biocompatibility, ease of use, and the potential for autologous tissue engineering. As the use of mECM has increased in musculoskeletal tissue engineering, it should be noted that mECM generated from current methods has inherited insufficiencies, such as low mechanical properties and lack of internal architecture. In this review, we first summarize the development and use of mECM as a scaffold for musculoskeletal tissue regeneration and highlight our current progress on moving this technology toward clinical application. Then we review recent methods to improve the properties of mECM that will overcome current weaknesses. Lastly, we propose future studies that will pave the road for mECM application in regenerating tissues in humans.
Collapse
Affiliation(s)
- Xiurui Zhang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America. Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China. These authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chen Y, Xu Y, Li M, Shi Q, Chen C. Application of Autogenous Urine-Derived Stem Cell Sheet Enhances Rotator Cuff Healing in a Canine Model. Am J Sports Med 2020; 48:3454-3466. [PMID: 33136424 DOI: 10.1177/0363546520962774] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND A repaired rotator cuff (RC) often heals with interposed scar tissue, making repairs prone to failure. Urine-derived stem cells (USCs), with robust proliferation ability and multilineage differentiation, can be isolated from urine, avoiding invasive and painful surgical procedures for harvesting the cells. These advantages make it a novel cell source for autologous transplantation to enhance RC healing. HYPOTHESIS Implantation of an autogenous USC sheet to the injury site will enhance RC healing. STUDY DESIGN Controlled laboratory study. METHODS USCs isolated from urine were cultured using ascorbic acid and transforming growth factor β3 to form a cell sheet. Sixteen male mature beagles underwent bilateral shoulder surgery. The right shoulder underwent infraspinatus tendon (IT) insertion detachment and repair only, and the other was subjected to IT insertion detachment and repair, followed by autogenous USC sheet implantation. Among the animals, 3 received a Dil (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate)- labeled USC sheet implant in the right shoulder and were sacrificed at postoperative 6 weeks for cell tracking. The other animals were sacrificed at postoperative 12 weeks, and the IT-humerus complexes were harvested for gross observation, micro-computed tomography evaluation and histological analysis (n = 5), and mechanical testing (n = 8). Additionally, 13 unpaired canine cadaveric shoulders were included as native controls. RESULTS Micro-computed tomography analysis showed that the USC sheet group had a significant increase in bone volume/total volume and trabecular thickness at the RC healing site when compared with the control group (P < .05 for all). Histologically, the Dil-labeled USC sheet was still visible at the RC healing site, which suggested that the implanted USCs remained viable at postoperative 6 weeks. Meanwhile, the healing interface in the USC sheet group regenerated significantly more enthesis-like tissue than did that of the control group (P < .05). Additionally, the healing interface in the USC sheet group presented a larger fibrocartilage area, more proteoglycan deposition, and higher collagen birefringence than did that of the control group (P < .05 for all). Biomechanically, the USC sheet group showed significantly higher failure load and stiffness versus the control group (P < .05 for all). CONCLUSION A USC sheet was able to enhance RC healing in a canine model. CLINICAL RELEVANCE The findings of the study showed that USC sheet implantation could serve as a practical application for RC healing.
Collapse
Affiliation(s)
- Yang Chen
- Department of Sport Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Xu
- Department of Sport Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Muzhi Li
- Department of Sport Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Qiang Shi
- Department of Sport Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Can Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Shi Q, Chen Y, Li M, Zhang T, Ding S, Xu Y, Hu J, Chen C, Lu H. Designing a novel vacuum aspiration system to decellularize large-size enthesis with preservation of physicochemical and biological properties. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1364. [PMID: 33313109 PMCID: PMC7723548 DOI: 10.21037/atm-20-3661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background Functional and rapid enthesis regeneration remains a challenge after arthroscopic rotator cuff (RC) repair. Tissue-engineering a large-size biomimetic scaffold may be an adjuvant strategy to improve this clinical dilemma. Herein, we developed an optimized protocol to decellularize large-size enthesis as scaffolds for augmenting RC tear. Methods A novel vacuum aspiration system (VAS) was set up, which can provide a negative pressure to suck out cellular substances from tissue blocks without using chemical detergents. Large-size enthesis tissue specimens were harvested from canine infraspinatus tendon (IT) insertion, and then decellularized with an optimized protocol [freeze-thaw processing followed by nuclease digestion and phosphate buffer saline (PBS) rinsing in the custom-designed VAS], or a conventional protocol (freeze-thaw processing followed by nuclease digestion and PBS rinsing), thus fabricating two kinds of acellular enthesis matrix (AEM), namely C-AEM and O-AEM. After that, the C-AEM and O-AEM were comparatively evaluated from the aspect of their physicochemical and biological properties. Results Physiochemically, the O-AEM preserved the morphologies, ingredients, and tensile properties much better than the C-AEM. Biologically, in vitro studies demonstrated that both C-AEM and O-AEM show no cytotoxicity and low immunogenicity, which could promote stem cells attachment and proliferation. Interestingly, O-AEM showed better region-specific inducibility on the interacted stem cell down osteogenic, chondrogenic and tenogenic lineages compared with C-AEM. Additionally, using a canine IT repair model, the injured enthesis patched with O-AEM showed a significant improvement compared with the injured enthesis patched with C-AEM or direct suture histologically. Conclusions The proposed VAS may help us fabricate large-size AEM with good physicochemical and biological properties, and this AEM may have potential clinical applications in patching large/massive RC tear.
Collapse
Affiliation(s)
- Qiang Shi
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Yang Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Muzhi Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Shulin Ding
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Jianzhong Hu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
19
|
Wang Z, Long Z, Amadio PC, Gingery A, Moran SL, Steinmann SP, Zhao C. Biomechanical Comparison of Augmentation of Engineered Tendon-Fibrocartilage-Bone Composite With Acellular Dermal Graft Using Double Rip-Stop Technique for Canine Rotator Cuff Repair. Orthop J Sports Med 2020; 8:2325967120939001. [PMID: 32953920 PMCID: PMC7476351 DOI: 10.1177/2325967120939001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 01/08/2023] Open
Abstract
Background The retear rate after rotator cuff repair remains unacceptably high. Various biological engineered scaffolds have been proposed to reduce the retear rate. We have developed a double rip-stop repair with medial row knot (DRSK) technique to enhance suture-tendon strength and a novel engineered tendon-fibrocartilage-bone composite (TFBC) for rotator cuff repair. Hypothesis DRSK rotator cuff repair augmented with TFBC will have better biomechanical properties than that of DRSK repair with an acellular dermal graft (DG). Study Design Controlled laboratory study. Methods Fresh-frozen canine shoulders (n = 30) and knees (n = 10) were used. TFBCs were harvested from the patellar tendon-tibia complex and prepared for rotator cuff repair. The infraspinatus tendon was sharply detached from its bony attachment and randomly assigned to the (1) control group: DRSK repair alone, (2) TFBC group: DRSK repair with TFBC, and (3) DG group: DRSK repair with DG. All specimens were tested to failure, and videos were recorded. The footprint area, tendon thickness, load to create 3-mm gap formation, failure load, failure modes, and stiffness were recorded and compared. Data were recorded as mean ± SD. Results The mean load to create a 3-mm gap in both the control group (206.8 ± 55.7 N) and TFBC group (208.9 ± 39.1 N) was significantly higher than that in the DG group (157.7 ± 52.3 N) (P < .05 for all). The failure load of the control group (275.7 ± 75.0 N) and TFBC group (275.2 ± 52.5 N) was significantly higher compared with the DG group (201.5 ± 49.7 N) (P < .05 for both comparisons). The stiffness of the control group (26.4 ± 4.7 N/mm) was significantly higher than of the TFBC group (20.4 ± 4.4 N/mm) and the DG group (21.1 ± 4.8 N/mm) (P < .05 for both comparisons). Conclusion TFBC augmentation showed superior biomechanical performance to DG augmentation in rotator cuff tears repaired using the DRSK technique, while there was no difference between the TFBC and control groups. Clinical Relevance TFBC may help to reduce retear or gap formation after rotator cuff repair using the DRSK technique.
Collapse
Affiliation(s)
- Zhanwen Wang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, PR China
| | - Zeling Long
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter C Amadio
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Anne Gingery
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven L Moran
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott P Steinmann
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
20
|
Wu YF, Chen C, Tang JB, Mao WF. Growth and Stem Cell Characteristics of Tendon-Derived Cells with Different Initial Seeding Densities: An In Vitro Study in Mouse Flexor Tendon Cells. Stem Cells Dev 2020; 29:1016-1025. [PMID: 32443957 DOI: 10.1089/scd.2020.0036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tendon stem/progenitor cells (TSPCs) are considered promising seed cells for tendon regeneration. Previous studies reported that a low seeding density favors TSPC growth, whereas a high seeding density favors tenocyte growth. We aimed to distinguish TSPCs from tenocytes by seeding tendon-derived cells at a density gradient. In this study, tendon-derived cells were isolated from flexor digitorum profundus tendons of mice and seeded at the initial densities of 50, 500, 5,000, and 50,000/cm2. We found that distinct cell colonies were formed from cells with initial seeding densities of 50 and 500/cm2, but colonies were not discernible for cells seeded at 5,000 and 50,000/cm2. There was a positive correlation between cell proliferation rate and seeding density, but a negative correlation between cell senescence and seeding density. The cell proliferation rate decreased gradually during serial passages. All cells exhibited restricted differentiation potentials, and expressed stem cell markers and relatively high levels of tenogenic markers without notable differences among cells seeded at different densities. We concluded that a pure population of TSPCs could not be isolated from mouse digital flexor tendons through culturing cells at a density gradient. Cells seeded at low densities had very limited proliferative ability and did not show more prominent stem cell characteristics when compared with cells seeded at high densities.
Collapse
Affiliation(s)
- Ya Fang Wu
- Department of Hand Surgery, Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Chen Chen
- Department of Hand Surgery, Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Jin Bo Tang
- Department of Hand Surgery, Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Feng Mao
- Department of Hand Surgery, Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Department of Anatomy, Medical School, Nantong University, Nantong, China
| |
Collapse
|
21
|
Tang Y, Chen C, Liu F, Xie S, Qu J, Li M, Li Z, Li X, Shi Q, Li S, Li X, Hu J, Lu H. Structure and ingredient-based biomimetic scaffolds combining with autologous bone marrow-derived mesenchymal stem cell sheets for bone-tendon healing. Biomaterials 2020; 241:119837. [PMID: 32109704 DOI: 10.1016/j.biomaterials.2020.119837] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/10/2020] [Accepted: 01/30/2020] [Indexed: 12/21/2022]
Abstract
Tendon attaches to bone across a robust fibrocartilaginous tissue termed the bone-tendon interface (BTI), commonly injured in the field of sports medicine and orthopedics with poor prognosis. So far, there is still a lack of effective clinical interventions to achieve functional healing post BTI injury. However, tissue-engineering may be a promising treatment strategy. In this study, a gradient book-type triphasic (bone-fibrocartilage-tendon) scaffold is fabricated based on the heterogeneous structure and ingredient of BTI. After decellularization, the scaffold exhibits no residual cells, while the characteristic extracellular matrix of the original bone, fibrocartilage and tendon is well preserved. Meanwhile, the bone, fibrocartilage and tendon regions of the acellular scaffold are superior in osteogenic, chondrogenic and tenogenic inducibility, respectively. Furthermore, autologous bone marrow mesenchymal stem cell (BMSC) sheets (CS) combined with the acellular scaffolds is transplanted into the lesion site of a rabbit BTI injury model to investigate the therapeutic effects. Our results show that the CS modified scaffold not only successfully achieves triple biomimetic of BTI in structure, ingredient and cell distribution, but also effectively accelerates bone-tendon (B-T) healing. In general, this work demonstrates book-type acellular triphasic scaffold combined with autologous BMSCs sheets is a promising graft for repairing BTI injury.
Collapse
Affiliation(s)
- Yifu Tang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Can Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Fei Liu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, People's Republic of China
| | - Shanshan Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China; Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, People's Republic of China
| | - Jin Qu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Muzhi Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Zan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Xiaoning Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Qiang Shi
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Xing Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Jianzhong Hu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China; Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China; Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, People's Republic of China.
| |
Collapse
|
22
|
Qi F, Deng Z, Ma Y, Wang S, Liu C, Lyu F, Wang T, Zheng Q. From the perspective of embryonic tendon development: various cells applied to tendon tissue engineering. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:131. [PMID: 32175424 DOI: 10.21037/atm.2019.12.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is a high risk of injury from damage to the force-bearing tissue of the tendon. Due to its poor self-healing ability, clinical interventions for tendon injuries are limited and yield unsatisfying results. Tissue engineering might supply an alternative to this obstacle. As one of the key elements of tissue engineering, various cell sources have been used for tendon engineering, but there is no consensue concerning a single optimal source. In this review, we summarized the development of tendon tissue from the embryonic stage and categorized the used cell sources in tendon engineering. By comparing various cell sources as the candidates for tendon regeneration, each cell type was found to have its advantages and limitations; therefore, it is difficult to define the best cell source for tendon engineering. The microenvironment cells located is also crucial for cell growth and differentiation; so, the optimal cells are unlikely to be the same for each patient. In the future, the clinical application of tendon engineering might be more precise and customized in contrast to the current use of a standardized/generic one-size-fits-all procedure. The best cell source for tendon engineering will require a case-based assessment.
Collapse
Affiliation(s)
- Fangjie Qi
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Shuai Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Chang Liu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Fengjuan Lyu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Tao Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
23
|
Weng CJ, Lee D, Ho J, Liu SJ. Doxycycline-Embedded Nanofibrous Membranes Help Promote Healing of Tendon Rupture. Int J Nanomedicine 2020; 15:125-136. [PMID: 32021169 PMCID: PMC6966150 DOI: 10.2147/ijn.s217697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022] Open
Abstract
Background Despite recent advancements in surgical techniques, the repair of tendon rupture remains a challenge for surgeons. The purpose of this study was to develop novel doxycycline-loaded biodegradable nanofibrous membranes and evaluate their efficacy for the repair of Achilles tendon rupture in a rat model. Materials and Methods The drug-loaded nanofibers were prepared using the electrospinning process and drug release from the prepared membranes was investigated both in vitro and in vivo. Furthermore, the safety and efficacy of the drug-loaded nanofibrous membranes were evaluated in rats that underwent tendon surgeries. An animal behavior cage was employed to monitor the post-surgery activity of the animals. Results The experimental results demonstrated that poly(D,L-lactide-co-glycolide) (PLGA) nanofibers released effective concentrations of doxycycline for more than 40 days post-surgery, and the systemic plasma drug concentration was low. Rats receiving implantation of doxycycline-loaded nanofibers also showed greater activities and stronger tendons post-operation. Conclusion Nanofibers loaded with doxycycline may have great potential in the repair of Achilles tendon rupture.
Collapse
Affiliation(s)
- Chun-Jui Weng
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Demei Lee
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Jui Ho
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Jung Liu
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
24
|
Nguyen PK, Baek K, Deng F, Criscione JD, Tuan RS, Kuo CK. Tendon Tissue-Engineering Scaffolds. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Leong NL, Kator JL, Clemens TL, James A, Enamoto-Iwamoto M, Jiang J. Tendon and Ligament Healing and Current Approaches to Tendon and Ligament Regeneration. J Orthop Res 2020; 38:7-12. [PMID: 31529731 PMCID: PMC7307866 DOI: 10.1002/jor.24475] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/10/2019] [Indexed: 02/04/2023]
Abstract
Ligament and tendon injuries are common problems in orthopedics. There is a need for treatments that can expedite nonoperative healing or improve the efficacy of surgical repair or reconstruction of ligaments and tendons. Successful biologically-based attempts at repair and reconstruction would require a thorough understanding of normal tendon and ligament healing. The inflammatory, proliferative, and remodeling phases, and the cells involved in tendon and ligament healing will be reviewed. Then, current research efforts focusing on biologically-based treatments of ligament and tendon injuries will be summarized, with a focus on stem cells endogenous to tendons and ligaments. Statement of clinical significance: This paper details mechanisms of ligament and tendon healing, as well as attempts to apply stem cells to ligament and tendon healing. Understanding of these topics could lead to more efficacious therapies to treat ligament and tendon injuries. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:7-12, 2020.
Collapse
Affiliation(s)
- Natalie L Leong
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
- Department of Surgery, Baltimore VA Medical Center, Baltimore, Maryland
| | - Jamie L Kator
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Aaron James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Motomi Enamoto-Iwamoto
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| | - Jie Jiang
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| |
Collapse
|
26
|
Xu Y, Zhang T, Chen Y, Shi Q, Li M, Qin T, Hu J, Lu H, Liu J, Chen C. Isolation and Characterization of Multipotent Canine Urine-Derived Stem Cells. Stem Cells Int 2020; 2020:8894449. [PMID: 33061993 PMCID: PMC7545436 DOI: 10.1155/2020/8894449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Current cell-based therapies on musculoskeletal tissue regeneration were mostly determined in rodent models. However, a direct translation of those promising cell-based therapies to humans exists a significant hurdle. For solving this problem, canine has been developed as a new large animal model to bridge the gap from rodents to humans. In this study, we reported the isolation and characterization of urine-derived stem cells (USCs) from mature healthy beagle dogs. The isolated cells showed fibroblast-like morphology and had good clonogenicity and proliferation. Meanwhile, these cells positively expressed multiple markers of MSCs (CD29, CD44, CD90, and CD73), but negatively expressed for hematopoietic antigens (CD11b, CD34, and CD45). Additionally, after induction culturing, the isolated cells can be differentiated into osteogenic, adipogenic, chondrogenic, and tenogenic lineages. The successful isolation and verification of USCs from canine were useful for studying cell-based therapies and developing new treatments for musculoskeletal injuries using the preclinical canine model.
Collapse
Affiliation(s)
- Yan Xu
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Tao Zhang
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Yang Chen
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Qiang Shi
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Muzhi Li
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Tian Qin
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 5Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Jianzhong Hu
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 5Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Hongbin Lu
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Jun Liu
- 6Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou No.1 People's Hospital, Southern Medical University, Chenzhou, China 423000
| | - Can Chen
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 7Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China 410008
| |
Collapse
|
27
|
Affiliation(s)
- Philipp Leucht
- Department of Orthopaedic Surgery, New York University Langone Health, New York, NY
- Department of Cell Biology, New York University School of Medicine, New York, NY
| | - Thomas A Einhorn
- Department of Orthopaedic Surgery, New York University Langone Health, New York, NY
| |
Collapse
|
28
|
Del Bakhshayesh AR, Asadi N, Alihemmati A, Tayefi Nasrabadi H, Montaseri A, Davaran S, Saghati S, Akbarzadeh A, Abedelahi A. An overview of advanced biocompatible and biomimetic materials for creation of replacement structures in the musculoskeletal systems: focusing on cartilage tissue engineering. J Biol Eng 2019; 13:85. [PMID: 31754372 PMCID: PMC6854707 DOI: 10.1186/s13036-019-0209-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023] Open
Abstract
Tissue engineering, as an interdisciplinary approach, is seeking to create tissues with optimal performance for clinical applications. Various factors, including cells, biomaterials, cell or tissue culture conditions and signaling molecules such as growth factors, play a vital role in the engineering of tissues. In vivo microenvironment of cells imposes complex and specific stimuli on the cells, and has a direct effect on cellular behavior, including proliferation, differentiation and extracellular matrix (ECM) assembly. Therefore, to create appropriate tissues, the conditions of the natural environment around the cells should be well imitated. Therefore, researchers are trying to develop biomimetic scaffolds that can produce appropriate cellular responses. To achieve this, we need to know enough about biomimetic materials. Scaffolds made of biomaterials in musculoskeletal tissue engineering should also be multifunctional in order to be able to function better in mechanical properties, cell signaling and cell adhesion. Multiple combinations of different biomaterials are used to improve above-mentioned properties of various biomaterials and to better imitate the natural features of musculoskeletal tissue in the culture medium. These improvements ultimately lead to the creation of replacement structures in the musculoskeletal system, which are closer to natural tissues in terms of appearance and function. The present review article is focused on biocompatible and biomimetic materials, which are used in musculoskeletal tissue engineering, in particular, cartilage tissue engineering.
Collapse
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Montaseri
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|