1
|
Dumas AA, Friedman RM, Smith KWY, Gottardi R. Breathing room: Toward next-generation tracheal engineering. Cell Stem Cell 2023; 30:1563-1565. [PMID: 38065065 DOI: 10.1016/j.stem.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
The creation of an engineered trachea with robust phenotype and sufficient mechanical properties for clinical application remains a challenge. In their work, Tang et al.1 propose a stacked approach of alternating cartilaginous and fibrous rings to form a tracheal segment, which integrated and retain patency in rabbits for 8 weeks.
Collapse
Affiliation(s)
- Alexandra A Dumas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ryan M Friedman
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kyra W Y Smith
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Riccardo Gottardi
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Pulmonary Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Fondazione Ri.MED, 90133 Palermo, Italy.
| |
Collapse
|
2
|
Lin YL, Yu L, Yan M, Zimmel K, Qureshi O, Imholt F, Li T, Ivanov I, Brunauer R, Dawson L, Muneoka K. Induced regeneration of articular cartilage - identification of a dormant regeneration program for a non-regenerative tissue. Development 2023; 150:dev201894. [PMID: 37882667 PMCID: PMC10651102 DOI: 10.1242/dev.201894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
A mouse organoid culture model was developed to regenerate articular cartilage by sequential treatment with BMP2 and BMP9 (or GDF2) that parallels induced joint regeneration at digit amputation wounds in vivo. BMP9-induced chondrogenesis was used to identify clonal cell lines for articular chondrocyte and hypertrophic chondrocyte progenitor cells from digit fibroblasts. A protocol that includes cell aggregation enhanced by BMP2 followed by BMP9-induced chondrogenesis resulted in the differentiation of organized layers of articular chondrocytes, similar to the organization of middle and deep zones of articular cartilage in situ, and retained a differentiated phenotype following transplantation. In addition, the differentiation of a non-chondrogenic connective tissue layer containing articular chondrocyte progenitor cells demonstrated that progenitor cell sequestration is coupled with articular cartilage differentiation at a clonal level. The studies identify a dormant endogenous regenerative program for a non-regenerative tissue in which fibroblast-derived progenitor cells can be induced to initiate morphogenetic and differentiative programs that include progenitor cell sequestration. The identification of dormant regenerative programs in non-regenerative tissues such as articular cartilage represents a novel strategy that integrates regeneration biology with regenerative medicine.
Collapse
Affiliation(s)
- Yu-Lieh Lin
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ling Yu
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Katherine Zimmel
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Felisha Imholt
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tao Li
- Department of Hand Surgery, Union Hospital, Tongli Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lindsay Dawson
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Zhu S, Li Y, He Z, Ji L, Zhang W, Tong Y, Luo J, Yu D, Zhang Q, Bi Q. Advanced injectable hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2022; 10:954501. [PMID: 36159703 PMCID: PMC9493100 DOI: 10.3389/fbioe.2022.954501] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023] Open
Abstract
The rapid development of tissue engineering makes it an effective strategy for repairing cartilage defects. The significant advantages of injectable hydrogels for cartilage injury include the properties of natural extracellular matrix (ECM), good biocompatibility, and strong plasticity to adapt to irregular cartilage defect surfaces. These inherent properties make injectable hydrogels a promising tool for cartilage tissue engineering. This paper reviews the research progress on advanced injectable hydrogels. The cross-linking method and structure of injectable hydrogels are thoroughly discussed. Furthermore, polymers, cells, and stimulators commonly used in the preparation of injectable hydrogels are thoroughly reviewed. Finally, we summarize the research progress of the latest advanced hydrogels for cartilage repair and the future challenges for injectable hydrogels.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Li
- Zhejiang University of Technology, Hangzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Dongsheng Yu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qiong Zhang
- Center for Operating Room, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Stem Cells Promote the Regeneration of Knee Joint Degenerative Bone and Articular Cartilage. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9533211. [PMID: 35368953 PMCID: PMC8970849 DOI: 10.1155/2022/9533211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022]
Abstract
Cartilage damage has a certain ability to spontaneously repair, but the repaired tissue often shows the phenomenon of cartilage terminal differentiation, which causes irreversible damage to its structure and function and seriously affects the quality of life and work of patients. It is of great significance to study the problems encountered in the process of cartilage damage repair. This article mainly studied stem cells to promote the regeneration of knee joint degenerative bone articular cartilage. First, the animal articular cartilage defect is modeled, 10 ml of animal venous blood is drawn, 0.5 ml of PRP is collected by centrifugation, mixed with cartilage fragments, and transplanted into the defect area into a gel. In the BMSCs group, 1 ml of BMSCs with a cell concentration of 107 cells/ml was injected intra-articularly. The histological chromosomes were observed after 6 weeks and 12 weeks, and the effect of cartilage tissue repair was analyzed and evaluated, and the related data were statistically analyzed. We evaluated the spontaneous repair ability of partial cartilage damage, full-thickness cartilage damage, and osteochondral damage. Furthermore, for partial cartilage damage repair, by using the cartilage damage in vitro model and biomaterials to simulate the in vivo microenvironment, the adhesion and cell morphology on the surface of partial- and full-thickness cartilage damage were evaluated, and the experiments were further used to evaluate the exogenous and internal induced migration effect of source on cultured cells in vitro. In the cell concentration study, the cartilage repair effect increased with the increase in concentration within a certain range, and the tissue repair ability remained stable when the concentration exceeded 107 cells/ml. Using ECM-oriented scaffolds to compound autologous BMSCs, tissue-engineered cartilage was successfully constructed, which had the histological and biochemical characteristics of normal cartilage tissue, and better repaired the damaged articular cartilage of large animals.
Collapse
|
5
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
6
|
Zhu M, Zhong W, Cao W, Zhang Q, Wu G. Chondroinductive/chondroconductive peptides and their-functionalized biomaterials for cartilage tissue engineering. Bioact Mater 2022; 9:221-238. [PMID: 34820567 PMCID: PMC8585793 DOI: 10.1016/j.bioactmat.2021.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
The repair of articular cartilage defects is still challenging in the fields of orthopedics and maxillofacial surgery due to the avascular structure of articular cartilage and the limited regenerative capacity of mature chondrocytes. To provide viable treatment options, tremendous efforts have been made to develop various chondrogenically-functionalized biomaterials for cartilage tissue engineering. Peptides that are derived from and mimic the functions of chondroconductive cartilage extracellular matrix and chondroinductive growth factors, represent a unique group of bioactive agents for chondrogenic functionalization. Since they can be chemically synthesized, peptides bear better reproducibility, more stable efficacy, higher modifiability and yielding efficiency in comparison with naturally derived biomaterials and recombinant growth factors. In this review, we summarize the current knowledge in the designs of the chondroinductive/chondroconductive peptides, the underlying molecular mechanisms and their-functionalized biomaterials for cartilage tissue engineering. We also systematically compare their in-vitro and in-vivo efficacies in inducing chondrogenesis. Our vision is to stimulate the development of novel peptides and their-functionalized biomaterials for cartilage tissue engineering.
Collapse
Affiliation(s)
- Mingjing Zhu
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
| | - Wenchao Zhong
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Wei Cao
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Kobak KA, Batushansky A, Borowik AK, Lopes EPB, Peelor III FF, Donovan EL, Kinter MT, Miller BF, Griffin TM. An In Vivo Stable Isotope Labeling Method to Investigate Individual Matrix Protein Synthesis, Ribosomal Biogenesis, and Cellular Proliferation in Murine Articular Cartilage. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac008. [PMID: 35399495 PMCID: PMC8991031 DOI: 10.1093/function/zqac008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023]
Abstract
Targeting chondrocyte dynamics is a strategy for slowing osteoarthritis progression during aging. We describe a stable-isotope method using in vivo deuterium oxide labeling and mass spectrometry to measure protein concentration, protein half-life, cell proliferation, and ribosomal biogenesis in a single sample of murine articular cartilage. We hypothesized that a 60-d labeling period would capture age-related declines in cartilage matrix protein content, protein synthesis rates, and cellular proliferation. Knee cartilage was harvested to the subchondral bone from 25- to 90-wk-old female C57BL/6J mice treated with deuterium oxide for 15, 30, 45, and 60 d. We measured protein concentration and half-lives using targeted high resolution accurate mass spectrometry and d2ome data processing software. Deuterium enrichment was quantified in isolated DNA and RNA to measure cell proliferation and ribosomal biogenesis, respectively. Most collagen isoforms were less abundant in aged animals, with negligible collagen synthesis at either age. In contrast, age altered the concentration and half-lives of many proteoglycans and other matrix proteins, including several with greater concentration and half-lives in older mice such as proteoglycan 4, clusterin, and fibronectin-1. Cellular proteins were less abundant in older animals, consistent with reduced cellularity. Nevertheless, deuterium was maximally incorporated into 60% of DNA and RNA by 15 d of labeling in both age groups, suggesting the presence of two large pools of either rapidly (<15 d) or slowly (>60 d) proliferating cells. Our findings indicate that age-associated changes in cartilage matrix protein content and synthesis occur without detectable changes in the relative number of proliferating cells.
Collapse
Affiliation(s)
- Kamil A Kobak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA,Institute of Heart Diseases, Wroclaw Medical University, Wroclaw 50-367, Poland
| | | | - Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Erika Prado Barboza Lopes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Frederick F Peelor III
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | | | - Michael T Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | | | | |
Collapse
|
8
|
Katoh S, Yoshioka H, Senthilkumar R, Preethy S, Abraham SJK. Enhanced expression of hyaluronic acid in osteoarthritis-affected knee-cartilage chondrocytes during three-dimensional in vitro culture in a hyaluronic-acid-retaining polymer scaffold. Knee 2021; 29:365-373. [PMID: 33690017 DOI: 10.1016/j.knee.2021.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Chondrocyte transplantation to address cartilage damage is an established solution. Because hyaluronic acid (HA) is an essential component for homeostasis of the cartilage, in order to arrive at methodologies to utilize its advantages in cell-based therapies, we compared the HA retention capability of a thermoreversible gelation polymer scaffold-based environment (3D-TGP) with conventional in vitro cell culture methodologies. METHODS Chondrocytes derived from osteoarthritis-affected knee joint cartilage of elderly patients were used and accomplished in three phases. In Phase I, the levels of HA secreted by chondrocytes were measured in culture supernatant. In Phase II, retention capacity of externally added HA was quantified indirectly by measuring the HA released in culture supernatant, and in Phase III, the expression of CD44 on cells was analysed by immunohistochemistry. RESULTS In Phase I, the average HA in the 3D supernatant was 3% that of 2D. In phase II, 80% of externally added HA was detected in the 2D on day 7, while in 3D-TGP, only 0.1% was released until day 21. In Phase III, 2D yielded individual cells that started degenerating from the third week; in 3D-TGP cells grew for a longer duration, formed a tissue-like architecture with extracellular matrix with significantly intense staining of CD44 than 2D. CONCLUSION The capability of the 3D-TGP culture environment to retain HA and support chondrocytes to grow with a tissue-like architecture expressing higher HA content is considered advantageous as it serves as an in vitro culture platform that enables tissue engineering of cartilage tissue with native hyaline phenotype and higher HA expression. The in vitro environment being conducive, based on this data, we also recommend that the TGP be tried as an encapsulation material in clinical studies of chondrocyte implantation for optimal clinical outcome.
Collapse
Affiliation(s)
- Shojiro Katoh
- Edogawa Evolutionary Lab of Science, Edogawa Hospital Campus, Edogawa-Ku, Tokyo, Japan; Department of Orthopaedic Surgery, Edogawa Hospital, Edogawa-Ku, Tokyo, Japan
| | | | - Rajappa Senthilkumar
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, Tamil Nadu, India
| | - Senthilkumar Preethy
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, Tamil Nadu, India
| | - Samuel J K Abraham
- II Department of Surgery & CACR, Yamanashi University-Faculty of Medicine, Yamanashi, Japan; The Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, Tamil Nadu, India; JBM Inc., Edogawa-Ku, Tokyo, Japan; GN Corporation Co. Ltd., Yamanashi, Japan.
| |
Collapse
|
9
|
Farooqi AR, Zimmermann J, Bader R, van Rienen U. Computational study on electromechanics of electroactive hydrogels for cartilage-tissue repair. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 197:105739. [PMID: 32950923 DOI: 10.1016/j.cmpb.2020.105739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE The self-repair capability of articular cartilage is limited because of non-vascularization and low turnover of its extracellular matrix. Regenerating hyaline cartilage remains a significant clinical challenge as most non-surgical and surgical treatments provide only mid-term relief. Eventually, further pain and mobility loss occur for many patients in the long run due to further joint deterioration. Repair of articular cartilage tissue using electroactive scaffolds and biophysical stimuli like electrical and osmotic stimulation may have the potential to heal cartilage defects occurring due to trauma, osteoarthritis, or sport-related injuries. Therefore, the focus of the current study is to present a computational model of electroactive hydrogels for the cartilage-tissue repair as a first step towards an optimized experimental design. METHODS The multiphysics transport model that mainly includes the Poisson-Nernst-Planck equations and the mechanical equation is used to find the electrical stimulation response of the polyelectrolyte hydrogels. Based upon this, a numerical model on electromechanics of electroactive hydrogels seeded with chondrocytes is presented employing the open-source software FEniCS, which is a Python library for finite-element analysis. RESULTS We analyzed the ionic concentrations and electric potential in a hydrogel sample and the cell culture medium, the osmotic pressure created due to ionic concentration variations and the resulting hydrogel displacement. The proposed mathematical model was validated with examples from literature. CONCLUSIONS The presented model for the electrical and osmotic stimulation of a hydrogel sample can serve as a useful tool for the development and analysis of a cartilaginous scaffold employing electrical stimulation. By analyzing various parameters, we pave the way for future research on a finer scale using open-source software.
Collapse
Affiliation(s)
- Abdul Razzaq Farooqi
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Albert Einstein Str. 2, Rostock 18059, Germany; Department of Electronic Engineering, Faculty of Engineering, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Julius Zimmermann
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Albert Einstein Str. 2, Rostock 18059, Germany
| | - Rainer Bader
- Department of Orthopaedics, University Medical Center Rostock, Rostock 18057, Germany; Department Life, Light & Matter, University of Rostock, Rostock 18051, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Albert Einstein Str. 2, Rostock 18059, Germany; Department Life, Light & Matter, University of Rostock, Rostock 18051, Germany
| |
Collapse
|
10
|
Overcoming Current Dilemma in Cartilage Regeneration: Will Direct Conversion Provide a Breakthrough? Tissue Eng Regen Med 2020; 17:829-834. [PMID: 33098546 DOI: 10.1007/s13770-020-00303-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/05/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Direct reprogramming/direct conversion/transdifferentiation is a process that induces conversion between completely different matured (differentiated) cells in higher organisms. Unlike the process of reprogramming of differentiated cells into induced pluripotent stem cells (iPSCs) and re-differentiation into the desired cell types, differentiated cells undergo the conversion into another type of differentiated cells without going through the iPSCs state. Osteoarthritis (OA) is the most common type of arthritis that causes a significant deterioration in patients' quality of life. The high prevalence of OA as well as the current lack of disease-modifying drugs has led to a rise in regenerative strategy for OA treatment. Regenerative therapy in OA started with the concept of engraftment of the administered cells within the cartilage lesion and differentiation to chondrocytes after the engraftment. However, recent studies show that cells, particularly when injected in suspension, rapidly undergo apoptosis after exerting a transient paracrine effect. In this perspective review, the general overview and current status of direct conversion are introduced along with the conceptual strategy and future directions for possible application of regenerative therapy using stem cells in OA. In vivo direct conversion may open a new stage of regenerative medicine for OA treatment. Recent advances in in vivo gene transfer and smart biomaterials can bring the concept into reality in near future. Direct conversion can be a new type of treatment technology that has the potential to overcome the limitations of current cell therapy.
Collapse
|