1
|
Bove GM, McMillan H, Barbe MF. Evaluating massage therapy for radiation-induced fibrosis in rats: preliminary findings and palpation results. Cancer Biol Ther 2024; 25:2436694. [PMID: 39620471 PMCID: PMC11622610 DOI: 10.1080/15384047.2024.2436694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024] Open
Abstract
Radiation-induced fibrosis (RIF) is a common side effect of cancer treatment, but can manifest into a devastating syndrome for which there is no preventive measure or cure. In rats who perform a repetitive work task, who left untreated develop signs and symptoms that resemble repetitive motion disorders in humans, we have shown that manual therapy prevents the development of fibrosis and other key biomarkers. The fibrosis of RIF and repetitive motion disorders has similar biomarkers. In rats, we sought to determine if manual therapy would alter key biomarkers of post-irradiation fibrosis following X-ray irradiation given to the rat forelimb. One limb of rats was given a damaging dose of X-ray irradiation. Some limbs were massaged using a protocol previously described and characterized. Serum inflammatory markers, histological assays of tissue fibrosis and nerve pathology, and electrophysiology for neuropathic discharge were assayed after 8 weeks. We also tested if an experienced therapist could identify the irradiated limb using blinded palpation at the 8 week end-point. While preliminary assays showed robust changes compared to control limbs, the other assays did not show similar pathology. Our therapist could detect each irradiated limb. Serum inflammatory markers were reduced by massage to the irradiated limb. We conclude that blinded palpation is sensitive to detect subtle changes in tissue following irradiation. In contrast to the preliminary studies, the dose of irradiation used was insufficient to induce long-lasting deep fibrosis or nerve degeneration. We suspect that a difference in housing, and thus physical activity, was the plausible reason for this difference.
Collapse
Affiliation(s)
- Geoffrey M. Bove
- Owner and Principal Investigator, Bove Consulting, Kennebunkport, ME, USA
| | - Holly McMillan
- Department of Head and Neck Surgery, Senior Speech Pathologist and Clinical Research Fellow, Texas School of Public Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary F. Barbe
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Klyne DM, Smith SS, Hall M. Should cognitive behavioral therapy for insomnia be considered for preventing and managing chronic pain? Sleep 2024; 47:zsae177. [PMID: 39093687 PMCID: PMC11467058 DOI: 10.1093/sleep/zsae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Indexed: 08/04/2024] Open
Affiliation(s)
- David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Simon S Smith
- Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Michelle Hall
- Sydney Musculoskeletal Health, The Kolling Institute, School of Health Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Lambi AG, DeSante RJ, Patel PR, Hilliard BA, Popoff SN, Barbe MF. Blocking CCN2 Reduces Established Palmar Neuromuscular Fibrosis and Improves Function Following Repetitive Overuse Injury. Int J Mol Sci 2023; 24:13866. [PMID: 37762168 PMCID: PMC10531056 DOI: 10.3390/ijms241813866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
The matricellular protein cell communication factor 2/connective tissue growth factor (CCN2/CTGF) is critical to development of neuromuscular fibrosis. Here, we tested whether anti-CCN2 antibody treatment will reduce established forepaw fibro-degenerative changes and improve function in a rat model of overuse injury. Adult female rats performed a high repetition high force (HRHF) task for 18 weeks. Tissues were collected from one subset after 18 wks (HRHF-Untreated). Two subsets were provided 6 wks of rest with concurrent treatment with anti-CCN2 (HRHF-Rest/anti-CCN2) or IgG (HRHF-Rest/IgG). Results were compared to IgG-treated Controls. Forepaw muscle fibrosis, neural fibrosis and entheseal damage were increased in HRHF-Untreated rats, compared to Controls, and changes were ameliorated in HRHF-Rest/anti-CCN2 rats. Anti-CCN2 treatment also reduced phosphorylated-β-catenin (pro-fibrotic protein) in muscles and distal bone/entheses complex, and increased CCN3 (anti-fibrotic) in the same tissues, compared to HRHF-Untreated rats. Grip strength declines and mechanical sensitivity observed in HRHF-Untreated improved with rest; grip strength improved further in HRHF-Rest/anti-CCN2. Grip strength declines correlated with muscle fibrosis, entheseal damage, extraneural fibrosis, and decreased nerve conduction velocity, while enhanced mechanical sensitivity (a pain-related behavior) correlated with extraneural fibrosis. These studies demonstrate that blocking CCN2 signaling reduces established forepaw neuromuscular fibrosis and entheseal damage, which improves forepaw function, following overuse injury.
Collapse
Affiliation(s)
- Alex G. Lambi
- Department of Surgery, Plastic Surgery Section, New Mexico Veterans Administration Health Care System, Albuquerque, NM 87108, USA;
- Division of Plastic Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Robert J. DeSante
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (R.J.D.); (P.R.P.); (B.A.H.)
| | - Parth R. Patel
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (R.J.D.); (P.R.P.); (B.A.H.)
| | - Brendan A. Hilliard
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (R.J.D.); (P.R.P.); (B.A.H.)
| | - Steven N. Popoff
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA;
| | - Mary F. Barbe
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (R.J.D.); (P.R.P.); (B.A.H.)
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
4
|
Lambi AG, Morrell NT, Popoff SN, Benhaim P, Barbe MF. Let's Focus on the Fibrosis in Dupuytren Disease: Cell Communication Network Factor 2 as a Novel Target. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2023; 5:682-688. [PMID: 37790821 PMCID: PMC10543811 DOI: 10.1016/j.jhsg.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 10/05/2023] Open
Abstract
Dupuytren disease is a progressive, benign fibroproliferative disorder of the hands that can lead to debilitating hand contractures. Once symptomatic, treatment involves either surgical intervention, specifically fasciectomy or percutaneous needle aponeurotomy, or enzymatic degradation with clostridial collagenase. Currently, collagenase is the only pharmacotherapy that has been approved for the treatment of Dupuytren contracture. There is a need for a pharmacotherapeutic that can be administered to limit disease progression and prevent recurrence after treatment. Targeting the underlying fibrotic pathophysiology is critical. We propose a novel target to be considered in Dupuytren disease-cell communication network factor 2/connective tissue growth factor-an established mediator of musculoskeletal tissue fibrosis.
Collapse
Affiliation(s)
- Alex G. Lambi
- Department of Orthopedics and Rehabilitation, University of New Mexico School of Medicine, Albuquerque, NM
- Department of Surgery Division of Plastic Surgery, University of New Mexico School of Medicine, Albuquerque, NM
- Department of Surgery Plastic Surgery Section, New Mexico Veterans Affairs Health Science Center, Albuquerque, NM
| | - Nathan T. Morrell
- Department of Orthopedics and Rehabilitation, University of New Mexico School of Medicine, Albuquerque, NM
| | - Steven N. Popoff
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
- Department of Orthopaedic Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Prosper Benhaim
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA
| | - Mary F. Barbe
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
5
|
Lambi AG, Harris MY, Amin M, Joiner PG, Hilliard BA, Assari S, Popoff SN, Barbe MF. Blocking CCN2 Reduces Established Bone Loss Induced by Prolonged Intense Loading by Increasing Osteoblast Activity in Rats. JBMR Plus 2023; 7:e10783. [PMID: 37701153 PMCID: PMC10494513 DOI: 10.1002/jbm4.10783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 09/14/2023] Open
Abstract
We have an operant model of reaching and grasping in which detrimental bone remodeling is observed rather than beneficial adaptation when rats perform a high-repetition, high-force (HRHF) task long term. Here, adult female Sprague-Dawley rats performed an intense HRHF task for 18 weeks, which we have shown induces radial trabecular bone osteopenia. One cohort was euthanized at this point (to assay the bone changes post task; HRHF-Untreated). Two other cohorts were placed on 6 weeks of rest while being simultaneously treated with either an anti-CCN2 (FG-3019, 40 mg/kg body weight, ip; twice per week; HRHF-Rest/anti-CCN2), or a control IgG (HRHF-Rest/IgG), with the purpose of determining which might improve the trabecular bone decline. Results were compared with food-restricted control rats (FRC). MicroCT analysis of distal metaphysis of radii showed decreased trabecular bone volume fraction (BV/TV) and thickness in HRHF-Untreated rats compared with FRCs; responses improved with HRHF-Rest/anti-CCN2. Rest/IgG also improved trabecular thickness but not BV/TV. Histomorphometry showed that rest with either treatment improved osteoid volume and task-induced increases in osteoclasts. Only the HRHF-Rest/anti-CCN2 treatment improved osteoblast numbers, osteoid width, mineralization, and bone formation rate compared with HRHF-Untreated rats (as well as the latter three attributes compared with HRHF-Rest/IgG rats). Serum ELISA results were in support, showing increased osteocalcin and decreased CTX-1 in HRHF-Rest/anti-CCN2 rats compared with both HRHF-Untreated and HRHF-Rest/IgG rats. These results are highly encouraging for use of anti-CCN2 for therapeutic treatment of bone loss, such as that induced by chronic overuse. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alex G Lambi
- Department of Orthopedics and RehabilitationUniversity of New MexicoAlbuquerqueNMUSA
| | - Michele Y Harris
- Center for Translational Medicine, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPAUSA
| | - Mamta Amin
- Center for Translational Medicine, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPAUSA
| | - Patrice G Joiner
- Center for Translational Medicine, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPAUSA
| | - Brendan A Hilliard
- Center for Translational Medicine, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPAUSA
| | | | - Steven N Popoff
- Department of Biomedical Education and Data Science, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPAUSA
| | - Mary F Barbe
- Center for Translational Medicine, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPAUSA
| |
Collapse
|
6
|
Yeger H. CCN proteins: opportunities for clinical studies-a personal perspective. J Cell Commun Signal 2023:10.1007/s12079-023-00761-y. [PMID: 37195381 DOI: 10.1007/s12079-023-00761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
The diverse members of the CCN family now designated as CCN1(CYR61), CCN2 (CTGF), CCN3(NOV), CCN4(WISP1), CCN5(WISP2), CCN6(WISP3) are a conserved matricellular family of proteins exhibiting a spectrum of functional properties throughout all organs in the body. Interaction with cell membrane receptors such as integrins trigger intracellular signaling pathways. Proteolytically cleaved fragments (constituting the active domains) can be transported to the nucleus and perform transcriptional relevant functional activities. Notably, as also found in other protein families some members act opposite to others creating a system of functionally relevant checks and balances. It has become apparent that these proteins are secreted into the circulation, are quantifiable, and can serve as disease biomarkers. How they might also serve as homeostatic regulators is just becoming appreciated. In this review I have attempted to highlight the most recent evidence under the subcategories of cancer and non-cancer relevant that could lead to potential therapeutic approaches or ideas that can be factored into clinical advances. I have added my own personal perspective on feasibility.
Collapse
Affiliation(s)
- Herman Yeger
- Developmental and Stem Cell Biology, Research Institute, SickKids, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Dilley A, Harris M, Barbe MF, Bove GM. Aberrant Neuronal Activity in a Model of Work-Related Upper Limb Pain and Dysfunction. THE JOURNAL OF PAIN 2022; 23:852-863. [PMID: 34958943 PMCID: PMC9086086 DOI: 10.1016/j.jpain.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/26/2021] [Accepted: 12/03/2021] [Indexed: 05/03/2023]
Abstract
Work-related musculoskeletal disorders associated with intense repetitive tasks are highly prevalent. Painful symptoms associated with such disorders can be attributed to neuropathy. In this study, we characterized the neuronal discharge from the median nerve in rats trained to perform an operant repetitive task. After 3-weeks of the task, rats developed pain behaviors and a decline in grip strength. Ongoing activity developed in 17.7% of slowly conducting neurons at 3-weeks, similar to neuritis. At 12-weeks, an irregular high frequency neuronal discharge was prevalent in >88.4% of slow and fast conducting neurons. At this time point, 8.3% of slow and 21.2% of fast conducting neurons developed a bursting discharge, which, combined with a reduction in fast-conducting neurons with receptive fields (38.4%), is consistent with marked neuropathology. Taken together, we have shown that an operant repetitive task leads to an active and progressive neuropathy that is characterized by marked neuropathology following 12-weeks task that mainly affects fast conducting neurons. Such aberrant neuronal activity may underlie painful symptoms in patients with work-related musculoskeletal disorders. PERSPECTIVE: Aberrant neuronal activity, similar to that reported in this study, may contribute to upper limb pain and dysfunction in patients with work-related musculoskeletal disorders. In addition, profiles of instantaneous frequencies may provide an effective way of stratifying patients with painful neuropathies.
Collapse
Affiliation(s)
- Andrew Dilley
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, England
| | - Michele Harris
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Mary F Barbe
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Geoffrey M Bove
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; Bove Consulting, Kennebunkport, Maine.
| |
Collapse
|
8
|
Plaut S. Scoping review and interpretation of myofascial pain/fibromyalgia syndrome: An attempt to assemble a medical puzzle. PLoS One 2022; 17:e0263087. [PMID: 35171940 PMCID: PMC8849503 DOI: 10.1371/journal.pone.0263087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Myofascial Pain Syndrome (MPS) is a common, overlooked, and underdiagnosed condition and has significant burden. MPS is often dismissed by clinicians while patients remain in pain for years. MPS can evolve into fibromyalgia, however, effective treatments for both are lacking due to absence of a clear mechanism. Many studies focus on central sensitization. Therefore, the purpose of this scoping review is to systematically search cross-disciplinary empirical studies of MPS, focusing on mechanical aspects, and suggest an organic mechanism explaining how it might evolve into fibromyalgia. Hopefully, it will advance our understanding of this disease. METHODS Systematically searched multiple phrases in MEDLINE, EMBASE, COCHRANE, PEDro, and medRxiv, majority with no time limit. Inclusion/exclusion based on title and abstract, then full text inspection. Additional literature added on relevant side topics. Review follows PRISMA-ScR guidelines. PROSPERO yet to adapt registration for scoping reviews. FINDINGS 799 records included. Fascia can adapt to various states by reversibly changing biomechanical and physical properties. Trigger points, tension, and pain are a hallmark of MPS. Myofibroblasts play a role in sustained myofascial tension. Tension can propagate in fascia, possibly supporting a tensegrity framework. Movement and mechanical interventions treat and prevent MPS, while living sedentarily predisposes to MPS and recurrence. CONCLUSIONS MPS can be seen as a pathological state of imbalance in a natural process; manifesting from the inherent properties of the fascia, triggered by a disrupted biomechanical interplay. MPS might evolve into fibromyalgia through deranged myofibroblasts in connective tissue ("fascial armoring"). Movement is an underemployed requisite in modern lifestyle. Lifestyle is linked to pain and suffering. The mechanism of needling is suggested to be more mechanical than currently thought. A "global percutaneous needle fasciotomy" that respects tensegrity principles may treat MPS/fibromyalgia more effectively. "Functional-somatic syndromes" can be seen as one entity (myofibroblast-generated-tensegrity-tension), sharing a common rheuma-psycho-neurological mechanism.
Collapse
Affiliation(s)
- Shiloh Plaut
- School of Medicine, St. George’s University of London, London, United Kingdom
| |
Collapse
|
9
|
Barbe MF, Panibatla ST, Harris MY, Amin M, Dorotan JT, Cruz GE, Bove GM. Manual Therapy With Rest as a Treatment for Established Inflammation and Fibrosis in a Rat Model of Repetitive Strain Injury. Front Physiol 2021; 12:755923. [PMID: 34803739 PMCID: PMC8600143 DOI: 10.3389/fphys.2021.755923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Repetitive strain injuries caused by repetitive occupational work are difficult to prevent for multiple reasons. Therefore, we examined the effectiveness of manual therapy (MT) with rest to treat the inflammation and fibrosis that develops through the performance of a repetitive task. We hypothesized that this treatment would reduce task-induced sensorimotor declines and neuromuscular inflammation. Methods: Twenty-nine female Sprague-Dawley rats performed a reaching and lever-pulling task for 14weeks. All ceased performing the task at 14weeks. Ten were euthanized at this timepoint (TASK). Nine received manual therapy to their upper extremities while resting 7weeks (MTR); 10 were assigned to rest alone (REST). Ten additional food restricted rats were included that neither performed the task nor received manual therapy (FRC). Results: Confirming previous experiments, TASK rats showed behavioral changes (forepaw mechanical hypersensitivity, reduced grip strength, lowered forelimb/forepaw agility, and noxious cold temperature sensitivity), reduced median nerve conduction velocity (NCV), and pathological tissue changes (myelin degradation, increased median nerve and muscle inflammation, and collagen production). Manual therapy with rest (MTR) ameliorated cold sensitivity seen in REST rats, enhanced muscle interleukin 10 (IL-10) more than in REST rats, lead to improvement in most other measures, compared to TASK rats. REST rats showed improved grip strength, lowered nerve inflammation and degraded myelin, and lowered muscle tumor necrosis factor alpha (TNFα) and collagen I levels, compared to TASK rats, yet maintained lowered forelimb/forepaw agility and NCV, and increased neural fibrosis. Conclusion: In our model of repetitive motion disorder, manual therapy during rest had modest effects on behavioral, histological, and physiological measures, compared to rest alone. These findings stand in contrast to the robust preventive effects of manual therapy in this same model.
Collapse
Affiliation(s)
- Mary F Barbe
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Siva Tejaa Panibatla
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michele Y Harris
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Mamta Amin
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jocelynne T Dorotan
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Geneva E Cruz
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Geoffrey M Bove
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Bove Consulting, Kennebunkport, ME, United States
| |
Collapse
|
10
|
Rebolledo DL, Lipson KE, Brandan E. Driving fibrosis in neuromuscular diseases: Role and regulation of Connective tissue growth factor (CCN2/CTGF). Matrix Biol Plus 2021; 11:100059. [PMID: 34435178 PMCID: PMC8377001 DOI: 10.1016/j.mbplus.2021.100059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Connective tissue growth factor or cellular communication network 2 (CCN2/CTGF) is a matricellular protein member of the CCN family involved in several crucial biological processes. In skeletal muscle, CCN2/CTGF abundance is elevated in human muscle biopsies and/or animal models for diverse neuromuscular pathologies, including muscular dystrophies, neurodegenerative disorders, muscle denervation, and muscle overuse. In this context, CCN2/CTGF is deeply involved in extracellular matrix (ECM) modulation, acting as a strong pro-fibrotic factor that promotes excessive ECM accumulation. Reducing CCN2/CTGF levels or biological activity in pathological conditions can decrease fibrosis, improve muscle architecture and function. In this work, we summarize information about the role of CCN2/CTGF in fibrosis associated with neuromuscular pathologies and the mechanisms and signaling pathways that regulate their expression in skeletal muscle.
Collapse
Affiliation(s)
- Daniela L Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Punta Arenas, Chile
| | | | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Chile.,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile.,Fundación Ciencia y Vida, Santiago, Chile
| |
Collapse
|
11
|
Rebolledo DL, Acuña MJ, Brandan E. Role of Matricellular CCN Proteins in Skeletal Muscle: Focus on CCN2/CTGF and Its Regulation by Vasoactive Peptides. Int J Mol Sci 2021; 22:5234. [PMID: 34063397 PMCID: PMC8156781 DOI: 10.3390/ijms22105234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023] Open
Abstract
The Cellular Communication Network (CCN) family of matricellular proteins comprises six proteins that share conserved structural features and play numerous biological roles. These proteins can interact with several receptors or soluble proteins, regulating cell signaling pathways in various tissues under physiological and pathological conditions. In the skeletal muscle of mammals, most of the six CCN family members are expressed during embryonic development or in adulthood. Their roles during the adult stage are related to the regulation of muscle mass and regeneration, maintaining vascularization, and the modulation of skeletal muscle fibrosis. This work reviews the CCNs proteins' role in skeletal muscle physiology and disease, focusing on skeletal muscle fibrosis and its regulation by Connective Tissue Growth factor (CCN2/CTGF). Furthermore, we review evidence on the modulation of fibrosis and CCN2/CTGF by the renin-angiotensin system and the kallikrein-kinin system of vasoactive peptides.
Collapse
Affiliation(s)
- Daniela L. Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
| | - María José Acuña
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, Santiago 8370854, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Fundación Ciencia & Vida, Santiago 7810000, Chile
| |
Collapse
|
12
|
Barbe MF, Harris MY, Cruz GE, Amin M, Billett NM, Dorotan JT, Day EP, Kim SY, Bove GM. Key indicators of repetitive overuse-induced neuromuscular inflammation and fibrosis are prevented by manual therapy in a rat model. BMC Musculoskelet Disord 2021; 22:417. [PMID: 33952219 PMCID: PMC8101118 DOI: 10.1186/s12891-021-04270-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/07/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND We examined the effectiveness of a manual therapy consisting of forearm skin rolling, muscle mobilization, and upper extremity traction as a preventive treatment for rats performing an intensive lever-pulling task. We hypothesized that this treatment would reduce task-induced neuromuscular and tendon inflammation, fibrosis, and sensorimotor declines. METHODS Sprague-Dawley rats performed a reaching and lever pulling task for a food reward, 2 h/day, 3 days/week, for 12 weeks, while simultaneously receiving the manual therapy treatment 3 times per week for 12 weeks to either the task-involved upper extremities (TASK-Tx), or the lower extremities as an active control group (TASK-Ac). Results were compared to similarly treated control rats (C-Tx and C-Ac). RESULTS Median nerves and forearm flexor muscles and tendons of TASK-Ac rats showed higher numbers of inflammatory CD68+ and fibrogenic CD206+ macrophages, particularly in epineurium, endomysium and epitendons than TASK-Tx rats. CD68+ and CD206+ macrophages numbers in TASK-Tx rats were comparable to the non-task control groups. TASK-Ac rats had more extraneural fibrosis in median nerves, pro-collagen type I levels and immunoexpression in flexor digitorum muscles, and fibrogenic changes in flexor digitorum epitendons, than TASK-Tx rats (which showed comparable responses as control groups). TASK-Ac rats showed cold temperature, lower reflexive grip strength, and task avoidance, responses not seen in TASK-Tx rats (which showed comparable responses as the control groups). CONCLUSIONS Manual therapy of forelimbs involved in performing the reaching and grasping task prevented the development of inflammatory and fibrogenic changes in forearm nerves, muscle, and tendons, and sensorimotor declines.
Collapse
Affiliation(s)
- Mary F Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA.
| | - Michele Y Harris
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Geneva E Cruz
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Mamta Amin
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Nathan M Billett
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Jocelynne T Dorotan
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Emily P Day
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Seung Y Kim
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Geoffrey M Bove
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA.,Bove Consulting, Kennebunkport, ME, 04046, USA
| |
Collapse
|
13
|
The linkage between inflammation and fibrosis in muscular dystrophies: The axis autotaxin-lysophosphatidic acid as a new therapeutic target? J Cell Commun Signal 2021; 15:317-334. [PMID: 33689121 PMCID: PMC8222483 DOI: 10.1007/s12079-021-00610-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Muscular dystrophies (MDs) are a diverse group of severe disorders characterized by increased skeletal muscle feebleness. In many cases, respiratory and cardiac muscles are also compromised. Skeletal muscle inflammation and fibrosis are hallmarks of several skeletal muscle diseases, including MDs. Until now, several keys signaling pathways and factors that regulate inflammation and fibrosis have been identified. However, no curative treatments are available. Therefore, it is necessary to find new therapeutic targets to fight these diseases and improve muscle performance. Lysophosphatidic acid (LPA) is an active glycerophospholipid mainly synthesized by the secreted enzyme autotaxin (ATX), which activates six different G protein-coupled receptors named LPA1 to LPA6 (LPARs). In conjunction, they are part of the ATX/LPA/LPARs axis, involved in the inflammatory and fibrotic response in several organs-tissues. This review recapitulates the most relevant aspects of inflammation and fibrosis in MDs. It analyzes experimental evidence of the effects of the ATX/LPA/LPARs axis on inflammatory and fibrotic responses. Finally, we speculate about its potential role as a new therapeutic pharmacological target to treat these diseases.
Collapse
|
14
|
Leguit RJ, Raymakers RAP, Hebeda KM, Goldschmeding R. CCN2 (Cellular Communication Network factor 2) in the bone marrow microenvironment, normal and malignant hematopoiesis. J Cell Commun Signal 2021; 15:25-56. [PMID: 33428075 PMCID: PMC7798015 DOI: 10.1007/s12079-020-00602-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
CCN2, formerly termed Connective Tissue Growth Factor, is a protein belonging to the Cellular Communication Network (CCN)-family of secreted extracellular matrix-associated proteins. As a matricellular protein it is mainly considered to be active as a modifier of signaling activity of several different signaling pathways and as an orchestrator of their cross-talk. Furthermore, CCN2 and its fragments have been implicated in the regulation of a multitude of biological processes, including cell proliferation, differentiation, adhesion, migration, cell survival, apoptosis and the production of extracellular matrix products, as well as in more complex processes such as embryonic development, angiogenesis, chondrogenesis, osteogenesis, fibrosis, mechanotransduction and inflammation. Its function is complex and context dependent, depending on cell type, state of differentiation and microenvironmental context. CCN2 plays a role in many diseases, especially those associated with fibrosis, but has also been implicated in many different forms of cancer. In the bone marrow (BM), CCN2 is highly expressed in mesenchymal stem/stromal cells (MSCs). CCN2 is important for MSC function, supporting its proliferation, migration and differentiation. In addition, stromal CCN2 supports the maintenance and longtime survival of hematopoietic stem cells, and in the presence of interleukin 7, stimulates the differentiation of pro-B lymphocytes into pre-B lymphocytes. Overexpression of CCN2 is seen in the majority of B-acute lymphoblastic leukemias, especially in certain cytogenetic subgroups associated with poor outcome. In acute myeloid leukemia, CCN2 expression is increased in MSCs, which has been associated with leukemic engraftment in vivo. In this review, the complex function of CCN2 in the BM microenvironment and in normal as well as malignant hematopoiesis is discussed. In addition, an overview is given of data on the remaining CCN family members regarding normal and malignant hematopoiesis, having many similarities and some differences in their function.
Collapse
Affiliation(s)
- Roos J. Leguit
- Department of Pathology, University Medical Center Utrecht, H04-312, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Reinier A. P. Raymakers
- Department of Hematology, UMCU Cancer Center, Heidelberglaan 100 B02.226, 3584 CX Utrecht, The Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
15
|
Barbe MF, Hilliard BA, Amin M, Harris MY, Hobson LJ, Cruz GE, Dorotan JT, Paul RW, Klyne DM, Popoff SN. Blocking CTGF/CCN2 reverses neural fibrosis and sensorimotor declines in a rat model of overuse-induced median mononeuropathy. J Orthop Res 2020; 38:2396-2408. [PMID: 32379362 PMCID: PMC7647961 DOI: 10.1002/jor.24709] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 02/04/2023]
Abstract
Encapsulation of median nerves is a hallmark of overuse-induced median mononeuropathy and contributes to functional declines. We tested if an antibody against CTGF/CCN2 (termed FG-3019 or Pamrevlumab) reduces established neural fibrosis and sensorimotor declines in a clinically relevant rodent model of overuse in which median mononeuropathy develops. Young adult female rats performed a high repetition high force (HRHF) lever-pulling task for 18 weeks. Rats were then euthanised at 18 weeks (HRHF untreated), or rested and systemically treated for 6 weeks with either an anti-CCN2 monoclonal antibody (HRHF-Rest/FG-3019) or IgG (HRHF-Rest/IgG), with results compared with nontask control rats. Neuropathology was evident in HRHF-untreated and HRHF-Rest/IgG rats as increased perineural collagen deposition and degraded myelin basic protein (dMBP) in median nerves, and increased substance P in lower cervical dorsal root ganglia (DRG), compared with controls. Both groups showed functional declines, specifically, decreased sensory conduction velocity in median nerves, noxious cold temperature hypersensitivity, and grip strength declines, compared with controls. There were also increases of ATF3-immunopositive nuclei in ventral horn neurons in HRHF-untreated rats, compared with controls (which showed none). FG-3019-treated rats showed no increase above control levels of perineural collagen or dMBP in median nerves, Substance P in lower cervical DRGs, or ATF3-immunopositive nuclei in ventral horns, and similar median nerve conduction velocities and thermal sensitivity, compared with controls. We hypothesize that neural fibrotic processes underpin the sensorimotor declines by compressing or impeding median nerves during movement, and that inhibiting fibrosis using an anti-CCN2 treatment reverses these effects.
Collapse
Affiliation(s)
- Mary F. Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvania
| | - Brendan A. Hilliard
- Department of Anatomy and Cell Biology, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvania
| | - Mamta Amin
- Department of Anatomy and Cell Biology, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvania
| | - Michele Y. Harris
- Department of Anatomy and Cell Biology, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvania
| | - Lucas J. Hobson
- Department of Anatomy and Cell Biology, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvania
| | - Geneva E. Cruz
- Department of Anatomy and Cell Biology, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvania
| | - Jocelynne T. Dorotan
- Department of Anatomy and Cell Biology, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvania
| | - Ryan W. Paul
- Department of Anatomy and Cell Biology, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvania
| | - David M. Klyne
- Department of Anatomy and Cell Biology, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvania,NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Steven N. Popoff
- Department of Anatomy and Cell Biology, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvania
| |
Collapse
|
16
|
Chen Z, Zhang N, Chu HY, Yu Y, Zhang ZK, Zhang G, Zhang BT. Connective Tissue Growth Factor: From Molecular Understandings to Drug Discovery. Front Cell Dev Biol 2020; 8:593269. [PMID: 33195264 PMCID: PMC7658337 DOI: 10.3389/fcell.2020.593269] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/09/2020] [Indexed: 01/18/2023] Open
Abstract
Connective tissue growth factor (CTGF) is a key signaling and regulatory molecule involved in different biological processes, such as cell proliferation, angiogenesis, and wound healing, as well as multiple pathologies, such as tumor development and tissue fibrosis. Although the underlying mechanisms of CTGF remain incompletely understood, a commonly accepted theory is that the interactions between different protein domains in CTGF and other various regulatory proteins and ligands contribute to its variety of functions. Here, we highlight the structure of each domain of CTGF and its biology functions in physiological conditions. We further summarized main diseases that are deeply influenced by CTGF domains and the potential targets of these diseases. Finally, we address the advantages and disadvantages of current drugs targeting CTGF and provide the perspective for the drug discovery of the next generation of CTGF inhibitors based on aptamers.
Collapse
Affiliation(s)
- Zihao Chen
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zong-Kang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|