1
|
Dubner AM, Lu S, Jolly AJ, Noble T, Hinthorn T, Nemenoff RA, Moulton KS, Majesky MW, Weiser-Evans MCM. Confounding Effects of Tamoxifen: Cautionary and Practical Considerations for the Use of Tamoxifen-Inducible Mouse Models in Atherosclerosis Research-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:2223-2230. [PMID: 37706321 PMCID: PMC10615862 DOI: 10.1161/atvbaha.123.319922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND In recent years, fate-mapping lineage studies in mouse models have led to major advances in vascular biology by allowing investigators to track specific cell populations in vivo. One of the most frequently used lineage tracing approaches involves tamoxifen-inducible CreERT-LoxP systems. However, tamoxifen treatment can also promote effects independent of Cre recombinase activation, many of which have not been fully explored. METHODS To elucidate off-target effects of tamoxifen, male and female mice were either unmanipulated or injected with tamoxifen or corn oil. All mice received PCSK9 (proprotein convertase subtilisin/kexin type 9)-AAV (adeno-associated virus) injections and a modified Western diet to induce hypercholesterolemia. After 2 weeks, serum cholesterol and liver morphology were assessed. To determine the duration of any tamoxifen effects in long-term atherosclerosis experiments, mice received either 12 days of tamoxifen at baseline or 12 days plus 2 sets of 5-day tamoxifen boosters; all mice received PCSK9-AAV injections and a modified Western diet to induce hypercholesterolemia. After 24 weeks, serum cholesterol and aortic sinus plaque burden were measured. RESULTS After 2 weeks of atherogenic treatment, mice injected with tamoxifen demonstrated significantly reduced serum cholesterol levels compared with uninjected- or corn oil-treated mice. However, there were no differences in PCSK9-mediated knockdown of LDL (low-density lipoprotein) receptors between the groups. Additionally, tamoxifen-treated mice exhibited significantly increased hepatic lipid accumulation compared with the other groups. Finally, the effects of tamoxifen remained for at least 8 weeks after completion of injections, with mice demonstrating persistent decreased serum cholesterol and impaired atherosclerotic plaque formation. CONCLUSIONS In this study, we establish that tamoxifen administration results in decreased serum cholesterol, decreased plaque formation, and increased hepatic lipid accumulation. These alterations represent significant confounding variables in atherosclerosis research, and we urge future investigators to take these findings into consideration when planning and executing their own atherosclerosis experiments.
Collapse
Affiliation(s)
- Allison M Dubner
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Integrated Physiology PhD Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Sizhao Lu
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Austin J Jolly
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Tysen Noble
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Biomedical Sciences and Biotechnology MS program, University of Colorado Graduate School, Anschutz Medical Campus, Aurora, CO, USA
| | - Tyler Hinthorn
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Biomedical Sciences and Biotechnology MS program, University of Colorado Graduate School, Anschutz Medical Campus, Aurora, CO, USA
| | - Raphael A Nemenoff
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karen S Moulton
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101
- Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, 98195
| | - Mary CM Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Integrated Physiology PhD Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Pulmonary Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Carsote M, Nistor C. Reshaping the Concept of Riedel's Thyroiditis into the Larger Frame of IgG4-Related Disease (Spectrum of IgG4-Related Thyroid Disease). Biomedicines 2023; 11:1691. [PMID: 37371786 DOI: 10.3390/biomedicines11061691] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Recently, Riedel's thyroiditis (RT) was assimilated into the larger spectrum of immunoglobulin IgG4-related disease (IgG4-RD) in addition to a particular frame of IgG4-related thyroid disease (IgG4-RTD), underlying IgG4-RT, IgG4-associated Hashimoto's thyroiditis (and its fibrotic variant), and IgG4-related Graves's disease. Our objective was to overview recent data on RT, particularly IgG4-RD and IgG4-RTD. The case and study- sample analysis (2019-2023) included 293 articles and selected 18 original studies: nine single case reports (N = 9, female/male = 2/1, aged: 34-79 years, 5/9 patients with serum IgG4 available data, 2/5 with high serum IgG4) and four case series (N = 21; 4/5 series provided data on IgG4 profile, 3/21 had serum IgG4 assays, and 2/3 had abnormally high values). IgG4-RD and thyroid findings were analyzed in three cohorts (N = 25). Another two studies (N = 11) specifically addressed IgG4-RTD components. On presentation, the patients may have hypothyroidism, transitory thyrotoxicosis, goiter, long-term history of positive anti-thyroid antibodies, and hypoechoic ultrasound thyroid pattern. The 5-year analysis (N = 66) showed the rate of serum IgG4 evaluation remained low; normal values do not exclude RT. Mandatory histological and immunohistochemistry reports point out a high content of IgG4-carrying plasma cells and IgG4/IgG ratio. Unless clinically evident, histological confirmation provides a prompt indication of starting corticoid therapy since this is the first-line option. Surgery, if feasible, is selective (non-responders to medical therapy, emergency tracheal intervention, and open/core needle biopsy). Current open issues are identifying the role of serum IgG4 assays in patients with IgG4-RD, finding out if all cases of RT are IgG4-mediated, applying IgG4-RTD criteria of differentiation among four entities, and providing an RT/IgG4-RTD guideline from diagnosis to therapy. It remains that the central aim of approaching RT in daily practice is the early index of suspicion in order to select patients referred for further procedures that provide enough histological/immunohistochemistry material to confirm RT and its high IgG4 burden.
Collapse
Affiliation(s)
- Mara Carsote
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy & C.I. Parhon National Institute of Endocrinology, 011863 Bucharest, Romania
| | - Claudiu Nistor
- Department 4-Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Carol Davila University of Medicine and Pharmacy & Thoracic Surgery Department, Dr. Carol Davila Central Emergency University Military Hospital, 050474 Bucharest, Romania
| |
Collapse
|
3
|
Beach ZM, Dekhne MS, Rodriguez AB, Weiss SN, Adams TH, Adams SM, Sun M, Birk DE, Soslowsky LJ. Decorin knockdown is beneficial for aged tendons in the presence of biglycan expression. Matrix Biol Plus 2022; 15:100114. [PMID: 35818471 PMCID: PMC9270257 DOI: 10.1016/j.mbplus.2022.100114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Decorin and biglycan are two major small leucine-rich proteoglycans (SLRPs) present in the tendon extracellular matrix that facilitate collagen fibrillogenesis, tissue turnover, and cell signal transduction. Previously, we demonstrated that knockout of decorin prevented the decline of tendon mechanical properties that are associated with aging. The objective of this study was to determine the effects of decorin and biglycan knockdown on tendon structure and mechanics in aged tendons using tamoxifen-inducible knockdown models. We hypothesized that the knockdown of decorin and compound knockdown of decorin and biglycan would prevent age-related declines in tendon mechanics and structure compared to biglycan knockdown and wild-type controls, and that these changes would be exacerbated as the tendons progress towards geriatric ages. To achieve this objective, we created tamoxifen-inducible mouse knockdown models to target decorin and biglycan gene inactivation without the abnormal tendon development associated with traditional knockout models. Knockdown of decorin led to increased midsubstance modulus and decreased stress relaxation in aged tendons. However, these changes were not sustained in the geriatric tendons. Knockdown in biglycan led to no changes in mechanics in the aged or geriatric tendons. Contrary to our hypothesis, the compound decorin/biglycan knockdown tendons did not resemble the decorin knockdown tendons, but resulted in increased viscoelastic properties in the aged and geriatric tendons. Structurally, knockdown of SLRPs, except for the 570d I-Dcn-/-/Bgn-/- group, resulted in alterations to the collagen fibril diameter relative to wild-type controls. Overall, this study identified the differential roles of decorin and biglycan throughout tendon aging in the maintenance of tendon structural and mechanical properties and revealed that the compound decorin and biglycan knockdown phenotype did not resemble the single gene decorin or biglycan models and was detrimental to tendon properties throughout aging.
Collapse
|
5
|
Couasnay G, Madel MB, Lim J, Lee B, Elefteriou F. Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. J Bone Miner Res 2021; 36:1661-1679. [PMID: 34278610 DOI: 10.1002/jbmr.4415] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
The Cre/Lox system is a powerful tool in the biologist's toolbox, allowing loss-of-function and gain-of-function studies, as well as lineage tracing, through gene recombination in a tissue-specific and inducible manner. Evidence indicates, however, that Cre transgenic lines have a far more nuanced and broader pattern of Cre activity than initially thought, exhibiting "off-target" activity in tissues/cells other than the ones they were originally designed to target. With the goal of facilitating the comparison and selection of optimal Cre lines to be used for the study of gene function, we have summarized in a single manuscript the major sites and timing of Cre activity of the main Cre lines available to target bone mesenchymal stem cells, chondrocytes, osteoblasts, osteocytes, tenocytes, and osteoclasts, along with their reported sites of "off-target" Cre activity. We also discuss characteristics, advantages, and limitations of these Cre lines for users to avoid common risks related to overinterpretation or misinterpretation based on the assumption of strict cell-type specificity or unaccounted effect of the Cre transgene or Cre inducers. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Greig Couasnay
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Siadat SM, Zamboulis DE, Thorpe CT, Ruberti JW, Connizzo BK. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:45-103. [PMID: 34807415 DOI: 10.1007/978-3-030-80614-9_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In his Lissner Award medal lecture in 2000, Stephen Cowin asked the question: "How is a tissue built?" It is not a new question, but it remains as relevant today as it did when it was asked 20 years ago. In fact, research on the organization and development of tissue structure has been a primary focus of tendon and ligament research for over two centuries. The tendon extracellular matrix (ECM) is critical to overall tissue function; it gives the tissue its unique mechanical properties, exhibiting complex non-linear responses, viscoelasticity and flow mechanisms, excellent energy storage and fatigue resistance. This matrix also creates a unique microenvironment for resident cells, allowing cells to maintain their phenotype and translate mechanical and chemical signals into biological responses. Importantly, this architecture is constantly remodeled by local cell populations in response to changing biochemical (systemic and local disease or injury) and mechanical (exercise, disuse, and overuse) stimuli. Here, we review the current understanding of matrix remodeling throughout life, focusing on formation and assembly during the postnatal period, maintenance and homeostasis during adulthood, and changes to homeostasis in natural aging. We also discuss advances in model systems and novel tools for studying collagen and non-collagenous matrix remodeling throughout life, and finally conclude by identifying key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Danae E Zamboulis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|