1
|
Yang D, Zhao Y, Wang Z, Shi H, Huang Y, Zhou Y. Soft tissue elasticity in total knee arthroplasty: An in vivo quantitative analysis. Clin Biomech (Bristol, Avon) 2024; 120:106335. [PMID: 39298860 DOI: 10.1016/j.clinbiomech.2024.106335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Soft tissue balance is essential for total knee arthroplasty success. The elastic properties of soft tissues affect knee-joint stability and flexibility. This study proposed a novel methodology for in vivo quantitative analysis of soft tissue elasticity during total knee arthroplasty. In this study, we aimed to (1) establish a mathematical model to depict medial and lateral soft tissue elasticity, (2) report the individual differences and interindividual commonalities in soft tissue elasticity. METHODS A specifically designed knee tensor was used to evaluate soft tissue elasticity by dynamically applying sequential tensions to medial and lateral compartments while measuring knee joint gaps in both compartments. Measurements were performed on ten knees of six cadavers. Bivariate polynomial regression was used for analysis, and the equivalent elastic coefficient (N/mm) was calculated. FINDINGS Soft-tissue elasticity showed high individual differences. The equivalent elastic coefficient was larger in the medial compartment than in the lateral compartment, and the equivalent elastic coefficient of the lateral compartment gradually decreased while the medial equivalent elastic coefficient remained constant when the knee was flexed. The lateral gaps increased from 0.1 to 3.9 mm, and the medial gaps increased from 0 to 1.5 mm when the tension increased from 60 to 90 N. The shapes and distributions of the silkworm-like lattices in elasticity and balance evaluations are clinically relevant to knee balance. INTERPRETATION Soft-tissue balance in total knee arthroplasty is significantly affected by soft-tissue elasticity. An intraoperative quantitative analysis of elasticity helps to tail an individualized balancing target for total knee arthroplasty.
Collapse
Affiliation(s)
- Dejin Yang
- Department of Orthopaedic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yongqiang Zhao
- Tian Ji Laboratory, Beijing Tinavi Medical Technology Co., Beijing, China
| | - Zhaolun Wang
- Department of Orthopaedic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Hongwei Shi
- Tian Ji Laboratory, Beijing Tinavi Medical Technology Co., Beijing, China
| | - Yong Huang
- Department of Orthopaedic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yixin Zhou
- Department of Orthopaedic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Jerban S, Shaterian Mohammadi H, Athertya JS, Afsahi AM, Shojaeiadib N, Moazamian D, Ward SR, Woods G, Chung CB, Du J, Chang EY. Significant age-related differences between lower leg muscles of older and younger female subjects detected by ultrashort echo time magnetization transfer modeling. NMR IN BIOMEDICINE 2024:e5237. [PMID: 39155273 DOI: 10.1002/nbm.5237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
Magnetization transfer (MT) magnetic resonance imaging (MRI) can be used to estimate the fraction of water and macromolecular proton pools in tissues. MT modeling paired with ultrashort echo time acquisition (UTE-MT modeling) has been proposed to improve the evaluation of the myotendinous junction and fibrosis in muscle tissues, which the latter increases with aging. This study aimed to determine if the UTE-MT modeling technique is sensitive to age-related changes in the skeletal muscles of the lower leg. Institutional review board approval was obtained, and all recruited subjects provided written informed consent. The legs of 31 healthy younger (28.1 ± 6.1 years old, BMI = 22.3 ± 3.5) and 20 older (74.7 ± 5.5 years old, BMI = 26.7 ± 5.9) female subjects were imaged using UTE sequences on a 3 T MRI scanner. MT ratio (MTR), macromolecular fraction (MMF), macromolecular T2 (T2-MM), and water T2 (T2-W) were calculated using UTE-MT modeling for the anterior tibialis (ATM), posterior tibialis (PTM), soleus (SM), and combined lateral muscles. Results were compared between groups using the Wilcoxon rank sum test. Three independent observers selected regions of interest (ROIs) and processed UTE-MRI images separately, and the intraclass correlation coefficient (ICC) was calculated for a reproducibility study. Significantly lower mean MTR and MMF values were present in the older compared with the younger group in all studied lower leg muscles. T2-MM showed significantly lower values in the older group only for PTM and SM muscles. In contrast, T2-W showed significantly higher values in the older group. The age-related differences were more pronounced for MMF (-17 to -19%) and T2-W (+20 to 47%) measurements in all muscle groups compared with other investigated MR measures. ICCs were higher than 0.93, indicating excellent consistency between the ROI selection and MRI measurements of independent readers. As demonstrated by significant differences between younger and older groups, this research emphasizes the potential of UTE-MT MRI techniques in evaluating age-related skeletal muscle changes.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA
| | | | - Jiyo S Athertya
- Department of Radiology, University of California, San Diego, CA, USA
| | | | | | - Dina Moazamian
- Department of Radiology, University of California, San Diego, CA, USA
| | - Samuel R Ward
- Department of Orthopaedic Surgery, University of California San Diego, San Diego, CA, USA
| | - Gina Woods
- Department of Medicine, University of California, San Diego, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
3
|
Casula V, Kajabi AW. Quantitative MRI methods for the assessment of structure, composition, and function of musculoskeletal tissues in basic research and preclinical applications. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01174-7. [PMID: 38904746 DOI: 10.1007/s10334-024-01174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Osteoarthritis (OA) is a disabling chronic disease involving the gradual degradation of joint structures causing pain and dysfunction. Magnetic resonance imaging (MRI) has been widely used as a non-invasive tool for assessing OA-related changes. While anatomical MRI is limited to the morphological assessment of the joint structures, quantitative MRI (qMRI) allows for the measurement of biophysical properties of the tissues at the molecular level. Quantitative MRI techniques have been employed to characterize tissues' structural integrity, biochemical content, and mechanical properties. Their applications extend to studying degenerative alterations, early OA detection, and evaluating therapeutic intervention. This article is a review of qMRI techniques for musculoskeletal tissue evaluation, with a particular emphasis on articular cartilage. The goal is to describe the underlying mechanism and primary limitations of the qMRI parameters, their association with the tissue physiological properties and their potential in detecting tissue degeneration leading to the development of OA with a primary focus on basic and preclinical research studies. Additionally, the review highlights some clinical applications of qMRI, discussing the role of texture-based radiomics and machine learning in advancing OA research.
Collapse
Affiliation(s)
- Victor Casula
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Abdul Wahed Kajabi
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Socha DE, Pownder SL, Kayano M, Koff MF, Hayashi K. Ultrashort Echo Time Quantitative Magnetic Resonance Imaging of the Cruciate Ligaments in Normal Beagles. Vet Comp Orthop Traumatol 2024; 37:145-150. [PMID: 38290532 DOI: 10.1055/s-0043-1778684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
OBJECTIVE The aim of this study was to provide normative ultrashort echo time magnetic resonance imaging (UTE MRI) data of the patellar ligament (PL), cranial cruciate ligament (CrCL) and caudal cruciate ligament (CdCL) in non-lame Beagles. STUDY DESIGN Eight stifles from four subjects obtained immediately postmortem were imaged using UTE MRI in the true sagittal plane. Regions of interest were drawn manually and the total (T2*), short T2* (T2*S) and long T2* (T2*L) values of the signal decay were calculated to evaluate the bound and free water components of the tendon. The T2*S, T2*L and T2* values were compared between the PL, CrCL and CdCL RESULTS: The mean and standard deviation of T2*S, T2*L and T2* were as follows: 0.54 ± 0.13, 4.65 ± 1.08 and 8.35 ± 0.82 ms for the PL; 0.46 ± 0.14, 5.99 ± 0.52 and 8.88 ± 0.4 ms for the CrCL and 0.41 ± 0.13, 7.06 ± 0.57 and 9.26 ± 0.18 ms for the CdCL. Significant differences were found between the T2*L component of the PL and each CrCL/CdCL and a smaller difference was noted between the T2*L of the CrCL and CdCL (p = 0.05). No difference of the T2*S value was found between any of the ligaments. CONCLUSION Establishing normative UTE data of the canine stifle is valuable for comparison in future studies in which normal and damaged ligaments may be evaluated, particularly in those affected limbs in which no instability is identified on physical examination in which normal and damaged ligaments may be evaluated.
Collapse
Affiliation(s)
- Dennis E Socha
- VCA Colonial Animal Hospital, Ithaca, New York, United States
| | - Sarah L Pownder
- Hospital for Special Surgery, New York, New York, United States
| | - Mitsunori Kayano
- Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Matthew F Koff
- Hospital for Special Surgery, New York, New York, United States
| | - Kei Hayashi
- Cornell University College of Veterinary Medicine, Ithaca, New York, United States
| |
Collapse
|
5
|
Akatsuka Y, Teramoto A, Murahashi Y, Takahashi K, Imamura R, Takashima H, Watanabe K, Yamashita T. Quantitative assessment of anterior talofibular ligament quality in chronic lateral ankle instability using magnetic resonance imaging T2* value. Skeletal Radiol 2024; 53:733-739. [PMID: 37857750 DOI: 10.1007/s00256-023-04480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE To determine T2* normal reference values for anterior talofibular ligament (ATFL) and to investigate the feasibility of the quantitative ATFL quality evaluation in chronic lateral ankle instability (CLAI) using T2* values. MATERIALS AND METHODS This study enrolled 15 patients with CLAI and 30 healthy volunteers. The entire ATFL T2* values from the MRI T2* mapping were measured. The prediction equation (variables: age, height, and weight) in a multiple linear regression model was used to calculate the T2* normal reference value in the healthy group. T2* ratio was defined as the ratio of the actual T2* value of the patient's ATFL to the normal reference value for each patient. A Telos device was used to measure the talar tilt angle (TTA) from the stress radiograph. RESULTS T2* values of ATFL in the healthy and CLAI groups were 10.82 ± 1.84 ms and 14.36 ± 4.30 ms, respectively, which are significantly higher in the CLAI group (P < 0.05). The prediction equation of the normal reference T2* value was [14.9 + 0.14 × age (years) - 4.7 × height (m) - 0.03 × weight (kg)] (R2 = 0.65, P < 0.0001). A significant positive correlation was found between the T2* ratio and TTA (r = 0.66, P = 0.007). CONCLUSION MRI T2* values in patients with CLAI were higher than those in healthy participants, and the T2* ratio correlated with TTA, suggesting that T2* values are promising for quantitative assessment of ATFL quality preoperatively.
Collapse
Affiliation(s)
- Yoshihiro Akatsuka
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Atsushi Teramoto
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan.
| | - Yasutaka Murahashi
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Katsunori Takahashi
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Rui Imamura
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Hiroyuki Takashima
- Faculty of Health Sciences, Hokkaido University, North-12, West-15, Kita-ku, Sapporo, 060-0812, Japan
| | - Kota Watanabe
- Second Division of Physical Therapy, Sapporo Medical University School of Health Sciences, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| |
Collapse
|
6
|
Moazamian D, Athertya JS, Dwek S, Lombardi AF, Mohammadi HS, Sedaghat S, Jang H, Ma Y, Chung CB, Du J, Jerban S, Chang EY. Achilles tendon and enthesis assessment using ultrashort echo time magnetic resonance imaging (UTE-MRI) T1 and magnetization transfer (MT) modeling in psoriatic arthritis. NMR IN BIOMEDICINE 2024; 37:e5040. [PMID: 37740595 PMCID: PMC10754405 DOI: 10.1002/nbm.5040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023]
Abstract
The purpose of this study is to investigate the use of ultrashort echo time (UTE) magnetic resonance imaging (MRI) techniques (T1 and magnetization transfer [MT] modeling) for imaging of the Achilles tendons and entheses in patients with psoriatic arthritis (PsA) compared with asymptomatic volunteers. The heels of twenty-six PsA patients (age 59 ± 15 years, 41% female) and twenty-seven asymptomatic volunteers (age 33 ± 11 years, 47% female) were scanned in the sagittal plane with UTE-T1 and UTE-MT modeling sequences on a 3-T clinical scanner. UTE-T1 and macromolecular proton fraction (MMF; the main outcome of MT modeling) were calculated in the tensile portions of the Achilles tendon and at the enthesis (close to the calcaneus bone). Mann-Whitney-U tests were used to examine statistically significant differences between the two cohorts. UTE-T1 in the entheses was significantly higher for the PsA group compared with the asymptomatic group (967 ± 145 vs. 872 ± 133 ms, p < 0.01). UTE-T1 in the tendons was also significantly higher for the PsA group (950 ± 145 vs. 850 ± 138 ms, p < 0.01). MMF in the entheses was significantly lower in the PsA group compared with the asymptomatic group (15% ± 3% vs. 18% ± 3%, p < 0.01). MMF in the tendons was also significantly lower in the PsA group compared with the asymptomatic group (17% ± 4% vs. 20% ± 5%, p < 0.01). Percentage differences in MMF between the asymptomatic and PsA groups (-16.6% and -15.0% for the enthesis and tendon, respectively) were higher than the T1 differences (10.8% and 11.7% for the enthesis and tendon, respectively). The results suggest higher T1 and lower MMF in the Achilles tendons and entheses in PsA patients compared with the asymptomatic group. This study highlights the potential of UTE-T1 and UTE-MT modeling for quantitative evaluation of entheses and tendons in PsA patients.
Collapse
Affiliation(s)
- Dina Moazamian
- Department of Radiology, University of California, San Diego, CA
| | - Jiyo S Athertya
- Department of Radiology, University of California, San Diego, CA
| | - Sophia Dwek
- Department of Radiology, University of California, San Diego, CA
| | | | | | - Sam Sedaghat
- Department of Radiology, University of California, San Diego, CA
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA
| | - Christine B. Chung
- Department of Radiology, University of California, San Diego, CA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, CA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
7
|
Wu Z, Zaylor W, Sommer S, Xie D, Zhong X, Liu K, Kim J, Beveridge JE, Zhang X, Li X. Assessment of ultrashort echo time (UTE) T 2* mapping at 3T for the whole knee: repeatability, the effects of fat suppression, and knee position. Quant Imaging Med Surg 2023; 13:7893-7909. [PMID: 38106304 PMCID: PMC10722028 DOI: 10.21037/qims-23-459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/07/2023] [Indexed: 12/19/2023]
Abstract
Background Knee tissues such as tendon, ligament and meniscus have short T2* relaxation times and tend to show little to no signal in conventional magnetic resonance acquisitions. An ultrashort echo time (UTE) technique offers a unique tool to probe fast-decaying signals in these tissues. Clinically relevant factors should be evaluated to quantify the sensitivity needed to distinguish diseased from control tissues. Therefore, the objectives of this study were to (I) quantify the repeatability of UTE-T2* relaxation time values, and (II) evaluate the effects of fat suppression and (III) knee positioning on UTE-T2* relaxation time quantification. Methods A dual-echo, three-dimensional center-out radially sampling UTE and conventional gradient echo sequences were utilized to image gadolinium phantoms, one ex-vivo specimen, and five in-vivo subjects on a clinical 3T scanner. Scan-rescan images from the phantom and in-vivo experiments were used to evaluate the repeatability of T2* relaxation time values. Fat suppressed and non-suppressed images were acquired for phantoms and the ex-vivo specimen to evaluate the effect of fat suppression on T2* relaxation time quantifications. The effect of knee positioning was evaluated by imaging in-vivo subjects in extended and flexed positions within the knee coil and comparing T2* relaxation times quantified from tissues in each position. Results Phantom and in-vivo measurements demonstrated repeatable T2* mapping, where the percent difference between T2* relaxation time quantified from scan-rescan images was less than 8% for the phantom and knee tissues. The coefficient of variation across fat suppressed and non-suppressed images was less than 5% for the phantoms and ex-vivo knee tissues, showing that fat suppression had a minimal effect on T2* relaxation time quantification. Knee position introduced variability to T2* quantification of the anterior cruciate ligament, posterior cruciate ligament, and patellar tendon, with percent differences exceeding 20%, but the meniscus showed a percent difference less than 10%. Conclusions The 3D radial UTE sequence presented in this study could potentially be used to detect clinically relevant changes in mean T2* relaxation time, however, reproducibility of these values is impacted by knee position consistency between scans.
Collapse
Affiliation(s)
- Zhenzhou Wu
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | - William Zaylor
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | - Stefan Sommer
- Advanced Clinical Imaging Technology (ACIT), Siemens Healthineers International AG, Zurich and Lausanne, Switzerland
- Swiss Center for Musculoskeletal Imaging (SCMI), Balgrist Campus, Zurich, Switzerland
| | - Dongxing Xie
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaodong Zhong
- Siemens Medical Solutions USA, Inc., Los Angeles, CA, USA
| | - Kecheng Liu
- Siemens Medical Solutions USA, Inc., Malvern, PA, USA
| | - Jeehun Kim
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | - Jillian E. Beveridge
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Xiaojuan Li
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
8
|
Jerban S, Afsahi AM, Ma Y, Moazamian D, Statum S, Lombardi AF, Kakos L, Dorthe E, Dlima D, Du J, Chung CB, Chang EY. Correlations between elastic modulus and ultrashort echo time (UTE) adiabatic T1ρ relaxation time (UTE-Adiab-T1ρ) in Achilles tendons and entheses. J Biomech 2023; 160:111825. [PMID: 37856976 PMCID: PMC10991081 DOI: 10.1016/j.jbiomech.2023.111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Patients with psoriatic arthritis commonly have abnormalities of their entheses, which are the connections between tendons and bone. There are shortcomings with the use of conventional magnetic resonance imaging (MRI) sequences for the evaluation of entheses and tendons, whereas ultrashort echo time (UTE) sequences are superior for the detection of high signals, and can also be used for non-invasive quantitative assessments of these structures. The combination of UTE-MRI with an adiabatic-T1ρ preparation (UTE-Adiab-T1ρ) allows for reliable assessment of entheses and tendons with decreased susceptibility to detrimental magic angle effects. This study aimed to investigate the relationship between quantitative UTE-MRI measures and the biomechanical properties of Achilles tendons and entheses. In total, 28 tendon-enthesis sections were harvested from 11 fresh-frozen human cadaveric foot-ankle specimens (52 ± years old). Tendon-enthesis sections were scanned using the UTE-Adiab-T1ρ and UTE-T1 sequences on a clinical 3 T scanner. MRI-based measures and indentation tests were performed on the enthesis, transitional, and tensile tendon zones of the specimens. Hayes' elastic modulus showed significant inverse correlations (Spearman's) with UTE-Adiab-T1ρ in all zones (R= - 0.46, - 0.54, and - 0.61 in enthesis, transition, and tensile tendon zones, respectively). Oliver-Pharr's elastic modulus showed significant inverse correlations with UTE-Adiab-T1ρ in transition (R= - 0.52) and tensile tendon zone (R=- 0.60). UTE-T1 did not show significant correlations with the elastic modulus. UTE-MRI and elastic modulus were significantly lower in the tensile tendon compared with the enthesis regions This study highlights the potential of the UTE-Adiab-T1ρ technique for the non-invasive evaluation of tendons and enthuses.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA; Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA.
| | - Amir Masoud Afsahi
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Sheronda Statum
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Alecio F Lombardi
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Lena Kakos
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Erik Dorthe
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Daryll Dlima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Jerban S, Ma Y, Tang Q, Fu E, Szeverenyi N, Jang H, Chung CB, Du J, Chang EY. Robust Assessment of Macromolecular Fraction (MMF) in Muscle with Differing Fat Fraction Using Ultrashort Echo Time (UTE) Magnetization Transfer Modeling with Measured T1. Diagnostics (Basel) 2023; 13:876. [PMID: 36900019 PMCID: PMC10001337 DOI: 10.3390/diagnostics13050876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Magnetic resonance imaging (MRI) is widely regarded as the most comprehensive imaging modality to assess skeletal muscle quality and quantity. Magnetization transfer (MT) imaging can be used to estimate the fraction of water and macromolecular proton pools, with the latter including the myofibrillar proteins and collagen, which are related to the muscle quality and its ability to generate force. MT modeling combined with ultrashort echo time (UTE-MT modeling) may improve the evaluation of the myotendinous junction and regions with fibrotic tissues in the skeletal muscles, which possess short T2 values and higher bound-water concentration. The fat present in muscle has always been a source of concern in macromolecular fraction (MMF) calculation. This study aimed to investigate the impact of fat fraction (FF) on the estimated MMF in bovine skeletal muscle phantoms embedded in pure fat. MMF was calculated for several regions of interest (ROIs) with differing FFs using UTE-MT modeling with and without T1 measurement and B1 correction. Calculated MMF using measured T1 showed a robust trend, particularly with a negligible error (<3%) for FF < 20%. Around 5% MMF reduction occurred for FF > 30%. However, MMF estimation using a constant T1 was robust only for regions with FF < 10%. The MTR and T1 values were also robust for only FF < 10%. This study highlights the potential of the UTE-MT modeling with accurate T1 measurement for robust muscle assessment while remaining insensitive to fat infiltration up to moderate levels.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
- Department of Orthopedic Surgery, University of California, La Jolla, San Diego, CA 92093, USA
| | - Yajun Ma
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Qingbo Tang
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Eddie Fu
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Nikolaus Szeverenyi
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Christine B. Chung
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Jiang Du
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| |
Collapse
|
10
|
Ultrashort echo time magnetization transfer imaging of knee cartilage and meniscus after long-distance running. Eur Radiol 2023:10.1007/s00330-023-09462-x. [PMID: 36814033 DOI: 10.1007/s00330-023-09462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/20/2022] [Accepted: 01/22/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVE To assess the detection of changes in knee cartilage and meniscus of amateur marathon runners before and after long-distance running using a 3D ultrashort echo time MRI sequence with magnetization transfer preparation (UTE-MT). METHODS We recruited 23 amateur marathon runners (46 knees) in this prospective cohort study. MRI scans using UTE-MT and UTE-T2* sequences were performed pre-race, 2 days post-race, and 4 weeks post-race. UTE-MT ratio (UTE-MTR) and UTE-T2* were measured for knee cartilage (eight subregions) and meniscus (four subregions). The sequence reproducibility and inter-rater reliability were also investigated. RESULTS Both the UTE-MTR and UTE-T2* measurements showed good reproducibility and inter-rater reliability. For most subregions of cartilage and meniscus, the UTE-MTR values decreased 2 days post-race and increased after 4 weeks of rest. Conversely, the UTE-T2* values increased 2 days post-race and decreased after 4 weeks. The UTE-MTR values in lateral tibial plateau, central medial femoral condyle, and medial tibial plateau showed a significant decrease at 2 days post-race compared to the other two time points (p < 0.05). By comparison, no significant UTE-T2* changes were found for any cartilage subregions. For meniscus, the UTE-MTR values in medial posterior horn and lateral posterior horn regions at 2 days post-race were significantly lower than those at pre-race and 4 weeks post-race (p < 0.05). By comparison, only the UTE-T2* values in medial posterior horn showed a significant difference. CONCLUSIONS UTE-MTR is a promising method for the detection of dynamic changes in knee cartilage and meniscus after long-distance running. KEY POINTS • Long-distance running causes changes in the knee cartilage and meniscus. • UTE-MT monitors dynamic changes of knee cartilage and meniscal non-invasively. • UTE-MT is superior to UTE-T2* in monitoring dynamic changes in knee cartilage and meniscus.
Collapse
|
11
|
Jerban S, Ma Y, Afsahi AM, Lombardi A, Wei Z, Shen M, Wu M, Le N, Chang DG, Chung CB, Du J, Chang EY. Lower Macromolecular Content in Tendons of Female Patients with Osteoporosis versus Patients with Osteopenia Detected by Ultrashort Echo Time (UTE) MRI. Diagnostics (Basel) 2022; 12:1061. [PMID: 35626217 PMCID: PMC9140093 DOI: 10.3390/diagnostics12051061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/30/2023] Open
Abstract
Tendons and bones comprise a special interacting unit where mechanical, biochemical, and metabolic interplays are continuously in effect. Bone loss in osteoporosis (OPo) and its earlier stage disease, osteopenia (OPe), may be coupled with a reduction in tendon quality. Noninvasive means for quantitatively evaluating tendon quality during disease progression may be critically important for the improvement of characterization and treatment optimization in patients with bone mineral density disorders. Though clinical magnetic resonance imaging (MRI) sequences are not typically capable of directly visualizing tendons, ultrashort echo time MRI (UTE-MRI) is able to acquire a high signal from tendons. Magnetization transfer (MT) modeling combined with UTE-MRI (i.e., UTE-MT-modeling) can indirectly assess macromolecular proton content in tendons. This study aimed to determine whether UTE-MT-modeling could detect differences in tendon quality across a spectrum of bone health. The lower legs of 14 OPe (72 ± 6 years) and 31 OPo (73 ± 6 years) female patients, as well as 30 female participants with normal bone (Normal-Bone, 36 ± 19 years), are imaged using UTE sequences on a 3T MRI scanner. Institutional review board approval is obtained for the study, and all recruited subjects provided written informed consent. A T1 measurement and UTE-MT-modeling are performed on the anterior tibialis tendon (ATT), posterior tibialis tendon (PTT), and the proximal Achilles tendon (PAT) of all subjects. The macromolecular fraction (MMF) is estimated as the main measure from UTE-MT-modeling. The mean MMF in all the investigated tendons was significantly lower in OPo patients compared with the Normal-Bone cohort (mean difference of 24.2%, p < 0.01), with the largest Normal-Bone vs. OPo difference observed in the ATT (mean difference of 32.1%, p < 0.01). Average MMF values of all the studied tendons are significantly lower in the OPo cohort compared with the OPe cohort (mean difference 16.8%, p = 0.02). Only the PPT shows significantly higher T1 values in OPo patients compared with the Normal-Bone cohort (mean difference 17.6%, p < 0.01). Considering the differences between OPo and OPe groups with similar age ranges, tendon deterioration associated with declining bone health was found to be larger than a priori detected differences caused purely by aging, highlighting UTE-MT MRI techniques as useful methods in assessing tendon quality over the course of progressive bone weakening.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
| | - Amir Masoud Afsahi
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
| | - Alecio Lombardi
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Zhao Wei
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
| | - Meghan Shen
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
| | - Mei Wu
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
| | - Nicole Le
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Douglas G. Chang
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
| | - Christine B. Chung
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|