1
|
Ma RX. A detective story of intermittent fasting effect on immunity. Immunology 2024; 173:227-247. [PMID: 38922825 DOI: 10.1111/imm.13829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intermittent fasting (IF) refers to periodic fasting routines, that caloric intake is minimized not by meal portion size reduction but by intermittently eliminating ingestion of one or several consecutive meals. IF can instigate comprehensive and multifaceted alterations in energy metabolism, these metabolic channels may aboundingly function as primordial mechanisms that interface with the immune system, instigating intricate immune transformations. This review delivers a comprehensive understanding of IF, paying particular attention to its influence on the immune system, thus seeking to bridge these two research domains. We explore how IF effects lipid metabolism, hormonal levels, circadian rhythm, autophagy, oxidative stress, gut microbiota, and intestinal barrier integrity, and conjecture about the mechanisms orchestrating the intersect between these factors and the immune system. Moreover, the review includes research findings on the implications of IF on the immune system and patients burdened with autoimmune diseases.
Collapse
Affiliation(s)
- Ru-Xue Ma
- School of Medical, Qinghai University, Xining, China
| |
Collapse
|
2
|
Goetz BM, Abeyta MA, Rodriguez-Jimenez S, Opgenorth J, McGill JL, Fensterseifer SR, Arias RP, Lange AM, Galbraith EA, Baumgard LH. Effects of a multistrain Bacillus-based direct-fed microbial on gastrointestinal permeability and biomarkers of inflammation during and following feed restriction in mid-lactation Holstein cows. J Dairy Sci 2024; 107:6192-6210. [PMID: 38395402 DOI: 10.3168/jds.2023-24352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Objectives were to evaluate the effects of a multistrain Bacillus-based (Bacillus subtilis and Bacillus pumilus blend) direct-fed microbial (DFM) on production, metabolism, inflammation biomarkers and gastrointestinal tract (GIT) permeability during and following feed restriction (FR) in mid-lactation Holstein cows. Multiparous cows (n = 36; 138 ± 53 DIM) were randomly assigned to 1 of 3 dietary treatments: (1) control (CON; 7.5 g/d rice hulls; n = 12), (2) DFM10 (10 g/d Bacillus DFM, 4.9 × 109 cfu/d; n = 12) or 3) DFM15 (15 g/d Bacillus DFM, 7.4 × 109 cfu/d; n = 12). Before study initiation, cows were fed their respective treatments for 32 d. Cows continued to receive treatments during the trial, which consisted of 3 experimental periods (P): P1 (5 d) served as baseline for P2 (5 d), during which all cows were restricted to 40% of P1 DMI, and P3 (5 d), a "recovery" where cows were fed ad libitum. On d 4 of P1 and on d 2 and 5 of P2, GIT permeability was evaluated in vivo using the oral paracellular marker Cr-EDTA. As anticipated, FR decreased milk production, insulin, glucagon, and BUN but increased nonesterified fatty acids. During recovery, DMI rapidly increased on d 1 then subsequently decreased (4.9 kg) on d 2 before returning to baseline, whereas milk yield slowly increased but remained decreased (13%) relative to P1. The DFM10 cows had increased DMI and milk yield relative to DFM15 during P3 (10%). Overall, milk lactose content was increased in DFM cows relative to CON (0.10 percentage units), and DFM10 cows tended to have increased lactose yield relative to CON and DFM15 during P3 (8% and 10%, respectively). No overall treatment differences were observed for other milk composition variables. Circulating glucose was quadratically increased in DFM10 cows compared with CON and DFM15 during FR and recovery. Plasma Cr area under the curve was increased in all cows on d 2 (9%) and 5 (6%) relative to P1. Circulating LPS binding protein (LBP), serum amyloid A (SAA), and haptoglobin (Hp) increased in all cows during P2 compared with baseline (31%, 100%, and 9.0-fold, respectively). Circulating Hp concentrations continued to increase during P3 (274%). Overall, circulating LBP and Hp tended to be increased in DFM15 cows relative to DFM10 (29% and 81%, respectively), but no treatment differences were observed for SAA. Following feed reintroduction during P3, fecal pH initially decreased (0.62 units), but returned to baseline levels whereas fecal starch markedly increased (2.5-fold) and remained increased (82%). Absolute quantities of a fecal Butyryl-CoA CoA transferase (but) gene associated with butyrate synthesis, collected by fecal swab were increased in DFM10 cows compared with CON and DFM15 cows. In summary, FR increased GIT permeability, caused inflammation, and decreased production. Feeding DFM10 increased some key production and metabolism variables and upregulated a molecular biomarker of microbial hindgut butyrate synthesis, while DFM15 appeared to augment immune activation.
Collapse
Affiliation(s)
- B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - J L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011
| | | | - R P Arias
- United Animal Health Inc., Sheridan, IN 46069
| | - A M Lange
- Microbial Discovery Group, Oak Creek, WI 53154
| | | | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
3
|
Andres SF, Zhang Y, Kuhn M, Scottoline B. Building better barriers: how nutrition and undernutrition impact pediatric intestinal health. Front Immunol 2023; 14:1192936. [PMID: 37545496 PMCID: PMC10401430 DOI: 10.3389/fimmu.2023.1192936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Chronic undernutrition is a major cause of death for children under five, leaving survivors at risk for adverse long-term consequences. This review focuses on the role of nutrients in normal intestinal development and function, from the intestinal epithelium, to the closely-associated mucosal immune system and intestinal microbiota. We examine what is known about the impacts of undernutrition on intestinal physiology, with focus again on the same systems. We provide a discussion of existing animal models of undernutrition, and review the evidence demonstrating that correcting undernutrition alone does not fully ameliorate effects on intestinal function, the microbiome, or growth. We review efforts to treat undernutrition that incorporate data indicating that improved recovery is possible with interventions focused not only on delivery of sufficient energy, macronutrients, and micronutrients, but also on efforts to correct the abnormal intestinal microbiome that is a consequence of undernutrition. Understanding of the role of the intestinal microbiome in the undernourished state and correction of the phenotype is both complex and a subject that holds great potential to improve recovery. We conclude with critical unanswered questions in the field, including the need for greater mechanistic research, improved models for the impacts of undernourishment, and new interventions that incorporate recent research gains. This review highlights the importance of understanding the mechanistic effects of undernutrition on the intestinal ecosystem to better treat and improve long-term outcomes for survivors.
Collapse
Affiliation(s)
- Sarah F. Andres
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Yang Zhang
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Kuhn
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Brian Scottoline
- Division of Neonatology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
4
|
Takahashi K, Higashizono K, Fukatsu K, Murakoshi S, Takayama H, Noguchi M, Matsumoto N, Seto Y. Prehabilitation Ameliorates Gut Ischemia Reperfusion Injury in Mice. J Surg Res 2023; 282:71-83. [PMID: 36257166 DOI: 10.1016/j.jss.2022.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/01/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION We previously demonstrated that prehabilitation by running on a treadmill leads to improved survival after gut ischemia reperfusion (I/R) in mice. The purpose of this research was to examine whether prehabilitation attenuates inflammatory responses after gut I/R in mice. MATERIALS AND METHODS Male C57BL/6J mice (n = 92) were assigned to the sedentary (n = 46) or the exercise (n = 46) group. The exercise group ran on a treadmill for 4 wk, while the sedentary mice did not exercise. After the 4-week pretreatment, all mice underwent gut I/R and the blood, urine, small intestine, lung, liver, and gastrocnemius were harvested prior to ischemia or at 0, 3, 6, or 24 h after reperfusion. Histologically demonstrated organ damage, cytokine levels in the blood, gut and gastrocnemius, myeloperoxidase activity in the gut, 8-hydroxy-2'-deoxyguanosine levels in urine and the gut, and adenosine triphosphate (ATP) and ATP + ADP + adenosine monophosphate levels in the gut and gastrocnemius were evaluated. RESULTS The treadmill exercise reduced gut and lung injuries at 3 h and liver injury at 6 h after reperfusion. Running on the treadmill also decreased proinflammatory cytokine levels in the blood at 6 h, gut at 3 h and gastrocnemius at 6 h after reperfusion, myeloperoxidase activity in the gut prior to ischemia, and 6 h after reperfusion and the urinary 8-hydroxy-2'-deoxyguanosine level at 24 h after reperfusion, while ATP levels in exercised mice prior to ischemia and 3 h after reperfusion were increased in the intestine as compared to the levels in sedentary mice. CONCLUSIONS Prehabilitation with treadmill exercise reduces inflammatory responses after gut I/R and may exert protective actions against gut I/R.
Collapse
Affiliation(s)
- Kazuya Takahashi
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuya Higashizono
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Fukatsu
- Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Surgical Center, The University of Tokyo Hospital, Tokyo, Japan.
| | - Satoshi Murakoshi
- Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Surgical Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Haruka Takayama
- Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Midori Noguchi
- Surgical Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Nana Matsumoto
- Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Martins DS, Piper HG. Nutrition considerations in pediatric surgical patients. Nutr Clin Pract 2022; 37:510-520. [PMID: 35502496 DOI: 10.1002/ncp.10855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 11/11/2022] Open
Abstract
Children who require surgical interventions are subject to physiologic stress, necessitating a period of healing when nutrition needs may temporarily change. Providing appropriate nutrition to children before and after surgery is an important part of minimizing surgical morbidity. There is a clear link between poor nutrition and surgical outcomes, therefore providing good reason for ensuring an appropriate nutrition plan is in place for children requiring surgery. This review will address recent research investigating nutrition considerations for pediatric surgical patients with a focus on practical tools to guide decision making in the preoperative, intraoperative, and postoperative periods.
Collapse
Affiliation(s)
| | - Hannah G Piper
- Division of Pediatric Surgery, University of British Columbia/BC Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
6
|
Salahuddin M, Hiramatsu K, Kita K. Dietary carbohydrate influences the colocalization pattern of Glucagon-like Peptide-1 with neurotensin in the chicken ileum. Domest Anim Endocrinol 2022; 79:106693. [PMID: 34973620 DOI: 10.1016/j.domaniend.2021.106693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
Glucagon-like peptide (GLP)-1 colocalizes with neurotensin (NT) in the same enteroendocrine cells (EECs) of the chicken ileum. The present study was designed to clarify the influence of dietary carbohydrate (CHO) on the colocalization pattern of GLP-1 with NT in the chicken distal ileum. Male White Leghorn chickens at 6 weeks of age (n = 15) were divided into three groups, a control and two experimental (low-CHO and CHO-free), with five chickens in each, and fed control or experimental diets for 7 d. Distal ileum was collected from each bird as a tissue sample and subjected to double immunofluorescence staining to detect GLP-1 and NT. Three types of EEC, GLP-1+/NT+, GLP-1+/NT- and GLP-1-/NT+, were demonstrated in the chicken ileum. GLP-1+/NT+ cells in the control group had a spindle-like shape with a long cytoplasmic process, but those in the experimental groups were round and lacked a cytoplasmic process. The ratio of GLP-1+/NT+ cells was significantly decreased in the two experimental groups compared with that in the control group. The ratio of GLP-1+/NT+ cells was significantly lower than those of GLP-1+/NT- and GLP-1-/NT+ cells in the two experimental groups. Most cells that were immunoreactive for GLP-1 and NT antisera lacked signals of proglucagon (PG) and NT precursor (NTP) mRNA in the experimental groups. The number of EECs expressing PG and NTP mRNA signals showed tendencies for decreases with a reduction of dietary CHO level. These findings suggest that dietary CHO could be a significant regulator of the pattern of colocalization pattern of GLP-1 with NT in the chicken ileum.
Collapse
Affiliation(s)
- M Salahuddin
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Kami-ina, Nagano 399-4598, Japan
| | - K Hiramatsu
- Laboratory of Animal Functional Anatomy (LAFA), Faculty of Agriculture, Shinshu University, Kami-ina, Nagano 399-4598, Japan.
| | - K Kita
- Laboratory of Animal Nutrition, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
7
|
The effect of enteral stimulation on the immune response of the intestinal mucosa and its application in nutritional support. Eur J Clin Nutr 2021; 75:1533-1539. [PMID: 33608653 DOI: 10.1038/s41430-021-00877-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
The intestine plays a fundamental role as a regulator of the mucosal immune response, mostly through the production and secretion of secretory Immunoglobulin A (sIgA) by the gut-associated lymphoid tissue (GALT). Enteral stimulation, a balance between the commensal microbiota and pathogenic microorganisms, in addition to an adequate nutritional status is required for the optimal immune function of the intestine. Fasting subjects or those supported only with parenteral nutrition, show a progressive anatomical and physiological deterioration of the GALT, triggering a series of alterations resulting in a decrease in the intestinal immune response, modification in the type of microbiota, and changes that lead to or aggravate malnutrition. Patients with malnutrition present an increase in the rate of nosocomial infections, hospital length of stay, and mortality. An adequate nutritional assessment at hospital admission and avoiding long periods of fasting are paramount to prevent these unfavorable outcomes. Herein, we present a mini-state of the art review on the role and importance of enteral stimulation by GALT-mediated immune response.
Collapse
|
8
|
He H, Ma Y, Zheng Z, Deng X, Zhu J, Wang Y. Early versus delayed oral feeding after gastrectomy for gastric cancer: A systematic review and meta-analysis. Int J Nurs Stud 2021; 126:104120. [PMID: 34910976 DOI: 10.1016/j.ijnurstu.2021.104120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Early oral feeding has been shown to be safe and effective for most surgeries, while surgeons and nurses are still hesitant to implement it in gastric cancer patients who undergo gastrectomy. OBJECTIVES This review aimed to investigate the safety and feasibility of early versus delayed oral feeding in gastric cancer patients after gastrectomy. DESIGN A systematic review and meta-analysis of randomized controlled trials. DATA SOURCES The literature search was performed in 7 databases from inception to March 7, 2021. REVIEW METHODS Randomized controlled trials that compared the effects of early oral feeding and delayed oral feeding in gastric cancer patients who undergo gastrectomy were included. The primary outcome was hospital days, and secondary outcomes included hospital costs, postoperative complication rates, feeding intolerance rates, annal exhaust time, albumin levels and prealbumin levels. According to the presence of heterogeneity, fixed or random effect meta-analysis was applied. RESULTS Nine trials involving 1087 gastric cancer patients who undergo gastrectomy were pooled in this systemic review and meta-analysis. The results showed that early oral feeding significantly decreased hospital days (mean difference = -1.50, 95% confidence interval = -1.91 to -1.10, P < 0.001) and hospital costs (mean difference = -4.21, 95% confidence interval = -5.00 to -3.42, P < 0.001) compared to delayed oral feeding, while the incidences of postoperative complications (risk ratio = 0.96, 95% confidence interval = 0.72 to 1.26, P = 0.76) and feeding intolerance (risk ratio = 0.95, 95% confidence interval = 0.79 to 1.15, P = 0.62) were comparable between the two groups. In comparison to delayed oral feeding, early oral feeding was associated with shorter annal exhaust time (mean difference = -0.61, 95% confidence interval = -0.81 to -0.40, P < 0.001) and higher levels of albumin (mean difference = 3.77, 95% confidence interval = 2.42 to 5.12, P < 0.001) and prealbumin (mean difference = 18.11, 95% confidence interval = 15.33 to 20.88, P < 0.001). Furthermore, the results of distal gastrectomy subgroup analysis indicated that hospital days were shorter in the early oral feeding group than in the delayed oral feeding group. CONCLUSIONS For gastric cancer patients who undergo gastrectomy, early oral feeding was associated with shorter hospital days and lower hospital costs, but early oral feeding did not increase the incidences of postoperative complications or feeding intolerance. Moreover, early oral feeding also decreased the annal exhaust time but increased the levels of albumin and prealbumin.
Collapse
Affiliation(s)
- Haiyan He
- Department of Nursing, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanyuan Ma
- Department of Basic Nursing, School of Nursing, Army Medical University, Chongqing, China
| | - Zhiwei Zheng
- Department of Digestion, The 958st Hospital, Chongqing, China
| | - Xiaolian Deng
- Department of Gastrointestinal Colorectal and Anal Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jingci Zhu
- Department of Basic Nursing, School of Nursing, Army Medical University, Chongqing, China.
| | - Yaling Wang
- Department of Nursing, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
9
|
Fukatsu K. Role of nutrition in gastroenterological surgery. Ann Gastroenterol Surg 2019; 3:160-168. [PMID: 30923785 PMCID: PMC6422822 DOI: 10.1002/ags3.12237] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/25/2018] [Accepted: 12/16/2018] [Indexed: 12/14/2022] Open
Abstract
Nutrition plays important roles in recovery after gastroenterological surgery. Severe surgical stress increases muscle breakdown and lipolysis, thereby accelerating wound healing and enhancing host defense against microbes. Malnourished patients have insufficient amounts of muscle and body fat. Therefore, they may not appropriately respond to surgical stress. Perioperative nutritional therapy maintaining nutritional status reduces postoperative complications and accelerates recovery after surgery, particularly for malnourished patients. In addition, perioperative oral or enteral nutrition is now recommended for preserving host defense mechanisms against microbes. Lack of enteral nutrition impairs gut and hepatic immunity, systemic mucosal defense and peritoneal host defense, even when nutrient amounts supplied by parenteral nutrition are adequate. Thus, surgeons should avoid no oral or enteral nutrition periods. Supplemental administration of specific nutrients such as glutamine, arginine and ω-3 fatty acids is termed "immunonutrition", and is expected to reduce the morbidity of infectious complications and length of hospital stay. Nutritional therapy is important even after discharge to maintain body weight and compensate for abnormalities in the digestion and absorption of nutrients. Understanding the significance of nutrition in gastroenterological patients leads to better outcomes.
Collapse
|