1
|
Zarrintan A, Ghozy S, Thirupathi K, Walden K, Brinjikji W, Kallmes DF, Kadirvel R. Bacterial signature in retrieved thrombi of patients with acute ischemic stroke-a systematic review. Ther Adv Neurol Disord 2024; 17:17562864241296713. [PMID: 39525877 PMCID: PMC11550500 DOI: 10.1177/17562864241296713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Acute ischemic stroke (AIS) imposes a major healthcare burden. It is hypothesized that bacterial infection could influence atherosclerosis and thrombus formation, potentially contributing to AIS. Objectives We aim to systematically review all studies that have investigated the presence of bacterial signatures within thrombi retrieved following mechanical thrombectomy (MT) procedures in patients with AIS. Design This systematic review is designed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 checklist. Data sources and methods A comprehensive search was conducted in the Web of Sciences, PubMed, Scopus, and Embase databases to identify relevant studies. Results The literature search and screening included 11 studies involving 674 patients, with 414 (61.4%) being male and 260 (38.6%) females. Among all the patients, 393 (58.3%) were positive for bacterial presence in their retrieved thrombi. The most utilized technique for bacterial signature detection was bacterial DNA extraction followed by polymerase chain reaction amplification of the 16S rRNA gene sequence. Staphylococcus aureus was the most studied bacteria among the studies analyzed. Conclusion Bacterial infections and the presence of bacteria within thrombi may significantly contribute to AIS by initiating or exacerbating atherosclerosis or thrombosis. Understanding the mechanisms by which bacteria affect vascular health is crucial for developing effective preventive and therapeutic strategies for stroke patients.
Collapse
Affiliation(s)
- Armin Zarrintan
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55902, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Sherief Ghozy
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Kalah Walden
- Arizona College of Osteopathic Medicine, Glendale, AZ, USA
| | - Waleed Brinjikji
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Ramanathan Kadirvel
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Leonov G, Salikhova D, Starodubova A, Vasilyev A, Makhnach O, Fatkhudinov T, Goldshtein D. Oral Microbiome Dysbiosis as a Risk Factor for Stroke: A Comprehensive Review. Microorganisms 2024; 12:1732. [PMID: 39203574 PMCID: PMC11357103 DOI: 10.3390/microorganisms12081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Stroke represents a significant global health burden, with a substantial impact on mortality, morbidity, and long-term disability. The examination of stroke biomarkers, particularly the oral microbiome, offers a promising avenue for advancing our understanding of the factors that contribute to stroke risk and for developing strategies to mitigate that risk. This review highlights the significant correlations between oral diseases, such as periodontitis and caries, and the onset of stroke. Periodontal pathogens within the oral microbiome have been identified as a contributing factor in the exacerbation of risk factors for stroke, including obesity, dyslipidemia, atherosclerosis, hypertension, and endothelial dysfunction. The alteration of the oral microbiome may contribute to these conditions, emphasizing the vital role of oral health in the prevention of cardiovascular disease. The integration of dental and medical health practices represents a promising avenue for enhancing stroke prevention efforts and improving patient outcomes.
Collapse
Affiliation(s)
- Georgy Leonov
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
| | - Diana Salikhova
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Antonina Starodubova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
- Therapy Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Andrey Vasilyev
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
- E.V. Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Central Research Institute of Dental and Maxillofacial Surgery, 119021 Moscow, Russia
| | - Oleg Makhnach
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Timur Fatkhudinov
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| |
Collapse
|
3
|
Boitor O, Stoica F, Mihăilă R, Stoica LF, Stef L. Automated Machine Learning to Develop Predictive Models of Metabolic Syndrome in Patients with Periodontal Disease. Diagnostics (Basel) 2023; 13:3631. [PMID: 38132215 PMCID: PMC10743072 DOI: 10.3390/diagnostics13243631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic syndrome is experiencing a concerning and escalating rise in prevalence today. The link between metabolic syndrome and periodontal disease is a highly relevant area of research. Some studies have suggested a bidirectional relationship between metabolic syndrome and periodontal disease, where one condition may exacerbate the other. Furthermore, the existence of periodontal disease among these individuals significantly impacts overall health management. This research focuses on the relationship between periodontal disease and metabolic syndrome, while also incorporating data on general health status and overall well-being. We aimed to develop advanced machine learning models that efficiently identify key predictors of metabolic syndrome, a significant emphasis being placed on thoroughly explaining the predictions generated by the models. We studied a group of 296 patients, hospitalized in SCJU Sibiu, aged between 45-79 years, of which 57% had metabolic syndrome. The patients underwent dental consultations and subsequently responded to a dedicated questionnaire, along with a standard EuroQol 5-Dimensions 5-Levels (EQ-5D-5L) questionnaire. The following data were recorded: DMFT (Decayed, Missing due to caries, and Filled Teeth), CPI (Community Periodontal Index), periodontal pockets depth, loss of epithelial insertion, bleeding after probing, frequency of tooth brushing, regular dental control, cardiovascular risk, carotid atherosclerosis, and EQ-5D-5L score. We used Automated Machine Learning (AutoML) frameworks to build predictive models in order to determine which of these risk factors exhibits the most robust association with metabolic syndrome. To gain confidence in the results provided by the machine learning models provided by the AutoML pipelines, we used SHapley Additive exPlanations (SHAP) values for the interpretability of these models, from a global and local perspective. The obtained results confirm that the severity of periodontal disease, high cardiovascular risk, and low EQ-5D-5L score have the greatest impact in the occurrence of metabolic syndrome.
Collapse
Affiliation(s)
- Ovidiu Boitor
- Dental Medicine Research Center, Faculty of Medicine, “Lucian Blaga” University, 550024 Sibiu, Romania;
| | - Florin Stoica
- Department of Mathematics and Informatics, Research Center in Informatics and Information Technology, Faculty of Sciences, “Lucian Blaga” University, 550024 Sibiu, Romania;
| | - Romeo Mihăilă
- Department of Internal Medicine, Faculty of Medicine, “Lucian Blaga” University, 550024 Sibiu, Romania;
| | - Laura Florentina Stoica
- Department of Mathematics and Informatics, Research Center in Informatics and Information Technology, Faculty of Sciences, “Lucian Blaga” University, 550024 Sibiu, Romania;
| | - Laura Stef
- Department of Oral Health, Dental Medicine Research Center, Faculty of Medicine, “Lucian Blaga” University, 550024 Sibiu, Romania;
| |
Collapse
|
4
|
Michael C, Pancaldi F, Britton S, Kim OV, Peshkova AD, Vo K, Xu Z, Litvinov RI, Weisel JW, Alber M. Combined computational modeling and experimental study of the biomechanical mechanisms of platelet-driven contraction of fibrin clots. Commun Biol 2023; 6:869. [PMID: 37620422 PMCID: PMC10449797 DOI: 10.1038/s42003-023-05240-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
While blood clot formation has been relatively well studied, little is known about the mechanisms underlying the subsequent structural and mechanical clot remodeling called contraction or retraction. Impairment of the clot contraction process is associated with both life-threatening bleeding and thrombotic conditions, such as ischemic stroke, venous thromboembolism, and others. Recently, blood clot contraction was observed to be hindered in patients with COVID-19. A three-dimensional multiscale computational model is developed and used to quantify biomechanical mechanisms of the kinetics of clot contraction driven by platelet-fibrin pulling interactions. These results provide important biological insights into contraction of platelet filopodia, the mechanically active thin protrusions of the plasma membrane, described previously as performing mostly a sensory function. The biomechanical mechanisms and modeling approach described can potentially apply to studying other systems in which cells are embedded in a filamentous network and exert forces on the extracellular matrix modulated by the substrate stiffness.
Collapse
Affiliation(s)
- Christian Michael
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Francesco Pancaldi
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Samuel Britton
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Oleg V Kim
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
- Department of Biomedical Engineering and Mechanics, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Alina D Peshkova
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Khoi Vo
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.
| | - Mark Alber
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA.
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA.
- Department of Bioengineering, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
5
|
Nunes JM, Kell DB, Pretorius E. Cardiovascular and haematological pathology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A role for viruses. Blood Rev 2023; 60:101075. [PMID: 36963989 PMCID: PMC10027292 DOI: 10.1016/j.blre.2023.101075] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
ME/CFS is a debilitating chronic condition that often develops after viral or bacterial infection. Insight from the study of Long COVID/Post Acute Sequelae of COVID-19 (PASC), the post-viral syndrome associated with SARS-CoV-2 infection, might prove to be useful for understanding pathophysiological mechanisms of ME/CFS. Disease presentation is similar between the two conditions, and a subset of Long COVID patients meet the diagnostic criteria for ME/CFS. Since Long COVID is characterized by significant vascular pathology - including endothelial dysfunction, coagulopathy, and vascular dysregulation - the question of whether or not the same biological abnormalities are of significance in ME/CFS arises. Cardiac abnormalities have for a while now been documented in ME/CFS cohorts, with recent studies demonstrating major deficits in cerebral blood flow, and hence vascular dysregulation. A growing body of research is demonstrating that ME/CFS is accompanied by platelet hyperactivation, anomalous clotting, a procoagulant phenotype, and endothelial dysfunction. Endothelial damage and dysregulated clotting can impair substance exchange between blood and tissues, and result in hypoperfusion, which may contribute to the manifestation of certain ME/CFS symptoms. Here we review the ME/CFS literature to summarize cardiovascular and haematological findings documented in patients with the condition, and, in this context, briefly discuss the potential role of previously-implicated pathogens. Overall, cardiac and haematological abnormalities are present within ME/CFS cohorts. While atherosclerotic heart disease is not significantly associated with ME/CFS, suboptimal cardiovascular function defined by reduced cardiac output, impaired cerebral blood flow, and vascular dysregulation are, and these abnormalities do not appear to be influenced by deconditioning. Rather, these cardiac abnormalities may result from dysfunction in the (autonomic) nervous system. Plenty of recently published studies are demonstrating significant platelet hyperactivity and endothelial dysfunction in ME/CFS, as well as anomalous clotting processes. It is of particular importance to determine to what extent these cardiovascular and haematological abnormalities contribute to symptom severity, and if these two systems can be targeted for therapeutic purposes. Viral reservoirs of herpesviruses exist in ME/CFS, and most likely contribute to cardiovascular and haematological dysfunction directly or indirectly. This review highlights the potential of studying cardiac functioning, the vasculature, and coagulation system in ME/CFS.
Collapse
Affiliation(s)
- Jean M Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK; The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK.
| |
Collapse
|
6
|
Ruan Q, Guan P, Qi W, Li J, Xi M, Xiao L, Zhong S, Ma D, Ni J. Porphyromonas gingivalis regulates atherosclerosis through an immune pathway. Front Immunol 2023; 14:1103592. [PMID: 36999040 PMCID: PMC10043234 DOI: 10.3389/fimmu.2023.1103592] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, involving a pathological process of endothelial dysfunction, lipid deposition, plaque rupture, and arterial occlusion, and is one of the leading causes of death in the world population. The progression of AS is closely associated with several inflammatory diseases, among which periodontitis has been shown to increase the risk of AS. Porphyromonas gingivalis (P. gingivalis), presenting in large numbers in subgingival plaque biofilms, is the “dominant flora” in periodontitis, and its multiple virulence factors are important in stimulating host immunity. Therefore, it is significant to elucidate the potential mechanism and association between P. gingivalis and AS to prevent and treat AS. By summarizing the existing studies, we found that P. gingivalis promotes the progression of AS through multiple immune pathways. P. gingivalis can escape host immune clearance and, in various forms, circulate with blood and lymph and colonize arterial vessel walls, directly inducing local inflammation in blood vessels. It also induces the production of systemic inflammatory mediators and autoimmune antibodies, disrupts the serum lipid profile, and thus promotes the progression of AS. In this paper, we summarize the recent evidence (including clinical studies and animal studies) on the correlation between P. gingivalis and AS, and describe the specific immune mechanisms by which P. gingivalis promotes AS progression from three aspects (immune escape, blood circulation, and lymphatic circulation), providing new insights into the prevention and treatment of AS by suppressing periodontal pathogenic bacteria.
Collapse
Affiliation(s)
- Qijun Ruan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Peng Guan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weijuan Qi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mengying Xi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Limin Xiao
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sulan Zhong
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| |
Collapse
|
7
|
Huang H, Wu S, Liang C, Qin C, Ye Z, Tang J, Chen X, Xie X, Wang C, Fu J, Deng M, Liu J. CDC42 Might Be a Molecular Signature of DWI-FLAIR Mismatch in a Nonhuman Primate Stroke Model. Brain Sci 2023; 13:brainsci13020287. [PMID: 36831829 PMCID: PMC9954026 DOI: 10.3390/brainsci13020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
No definitive blood markers of DWI-FLAIR mismatch, a pivotal indicator of salvageable ischemic penumbra brain tissue, are known. We previously reported that CDC42 and RHOA are associated with the ischemic penumbra. Here, we investigated whether plasma CDC42 and RHOA are surrogate markers of DWI-FLAIR mismatch. Sixteen cynomolgus macaques (3 as controls and 13 for the stroke model) were included. Guided by digital subtraction angiography (DSA), a middle cerebral artery occlusion (MCAO) model was established by occluding the middle cerebral artery (MCA) with a balloon. MRI and neurological deficit scoring were performed to evaluate postinfarction changes. Plasma CDC42 and RHOA levels were measured by enzyme-linked immunosorbent assay (ELISA). The stroke model was successfully established in eight monkeys. Based on postinfarction MRI images, experimental animals were divided into a FLAIR (-) group (N = 4) and a FLAIR (+) group (N = 4). Plasma CDC42 in the FLAIR (-) group showed a significant decrease compared with that in the FLAIR (+) group (p < 0.05). No statistically significant difference was observed for plasma RHOA. The FLAIR (-) group showed a milder neurological function deficit and a smaller infarct volume than the FLAIR (+) group (p < 0.05). Therefore, plasma CDC42 might be a new surrogate marker for DWI-FLAIR mismatch.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jingli Liu
- Correspondence: ; Tel.: +86-0771-5305790
| |
Collapse
|
8
|
Paul M, Golla K, Kim H. Gelsolin Modulates Platelet Dense Granule Secretion and Hemostasis via the Actin Cytoskeleton. Thromb Haemost 2023; 123:219-230. [PMID: 36522181 DOI: 10.1055/s-0042-1758800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVE The mechanisms underlying platelet granule release are not fully understood. The actin cytoskeleton serves as the platelet's structural framework that is remodeled upon platelet activation. Gelsolin is a calcium-dependent protein that severs and caps existing actin filaments although its role in modulating platelet granule exocytosis is unknown. METHODS The hemostatic function of wild-type (WT) and gelsolin null (Gsn-/- ) mice was measured ex vivo by rotational thromboelastometry analysis of whole blood. Platelets were purified from WT and Gsn-/- mouse blood and activated with thrombin. Platelet aggregation was assessed by light-transmission aggregometry. Clot retraction was measured to assess outside-in integrin signaling. Adenosine triphosphate (ATP) release and surface P-selectin were measured as markers of dense- and α-granule secretion, respectively. RESULTS The kinetics of agonist-induced aggregation, clot retraction, and ATP release were accelerated in Gsn-/- platelets relative to WT. However, levels of surface P-selectin were diminished in Gsn-/- platelets. ATP release was also accelerated in WT platelets pretreated with the actin-depolymerizing drug cytochalasin D, thus mimicking the kinetics observed in Gsn-/- platelets. Conversely, ATP release kinetics were normalized in Gsn-/- platelets treated with the actin polymerization agonist jasplakinolide. Rab27b and Munc13-4 are vesicle-priming proteins known to promote dense granule secretion. Co-immunoprecipitation indicates that the association between Rab27b and Munc13-4 is enhanced in Gsn-/- platelets. CONCLUSIONS Gelsolin regulates the kinetics of hemostasis by modulating the platelet's actin cytoskeleton and the protein machinery of dense granule exocytosis.
Collapse
Affiliation(s)
- Manoj Paul
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kalyan Golla
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Grobler C, van Tongeren M, Gettemans J, Kell DB, Pretorius E. Alzheimer's Disease: A Systems View Provides a Unifying Explanation of Its Development. J Alzheimers Dis 2023; 91:43-70. [PMID: 36442193 DOI: 10.3233/jad-220720] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder affecting 50 million people globally. It is characterized by the presence of extracellular senile plaques and intracellular neurofibrillary tangles, consisting of amyloid-β and hyperphosphorylated tau proteins, respectively. Despite global research efforts, there is currently no cure available, due in part to an incomplete understanding of the disease pathogenesis. Numerous possible mechanisms, or hypotheses, explaining the origins of sporadic or late-onset AD have been proposed, including the amyloid-β, inflammatory, vascular, and infectious hypotheses. However, despite ample evidence, the failure of multiple trial drugs at the clinical stage illuminates the possible pitfalls of these hypotheses. Systems biology is a strategy which aims to elucidate the interactions between parts of a whole. Using this approach, the current paper shows how the four previously mentioned hypotheses of AD pathogenesis can be intricately connected. This approach allows for seemingly contradictory evidence to be unified in a system-focused explanation of sporadic AD development. Within this view, it is seen that infectious agents, such as P. gingivalis, may play a central role. The data presented here shows that when present, P. gingivalis or its virulence factors, such as gingipains, may induce or exacerbate pathologies underlying sporadic AD. This evidence supports the view that infectious agents, and specifically P. gingivalis, may be suitable treatment targets in AD.
Collapse
Affiliation(s)
- Corlia Grobler
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Marvi van Tongeren
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.,The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
10
|
Bai H, Yang J, Meng S, Liu C. Oral Microbiota-Driven Cell Migration in Carcinogenesis and Metastasis. Front Cell Infect Microbiol 2022; 12:864479. [PMID: 35573798 PMCID: PMC9103474 DOI: 10.3389/fcimb.2022.864479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The oral cavity harbors approximately 1,000 microbial species, and both pathogenic and commensal strains are involved in the development of carcinogenesis by stimulating chronic inflammation, affecting cell proliferation, and inhibiting cell apoptosis. Moreover, some substances produced by oral bacteria can also act in a carcinogenic manner. The link between oral microbiota and chronic inflammation as well as cell proliferation has been well established. Recently, increasing evidence has indicated the association of the oral microbiota with cell migration, which is crucial in regulating devastating diseases such as cancer. For instance, increased cell migration induced the spread of highly malignant cancer cells. Due to advanced technologies, the mechanistic understanding of cell migration in carcinogenesis and cancer metastasis is undergoing rapid progress. Thus, this review addressed the complexities of cell migration in carcinogenesis and cancer metastasis. We also integrate recent findings on the molecular mechanisms by which the oral microbiota regulates cell migration, with emphasis on the effect of the oral microbiota on adhesion, polarization, and guidance. Finally, we also highlight critical techniques, such as intravital microscopy and superresolution microscopy, for studies in this field.
Collapse
Affiliation(s)
- Huimin Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shu Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Shu Meng, ; Chengcheng Liu,
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Shu Meng, ; Chengcheng Liu,
| |
Collapse
|
11
|
Crosstalk between Venous Thromboembolism and Periodontal Diseases: A Bioinformatics Analysis. DISEASE MARKERS 2021; 2021:1776567. [PMID: 34925639 PMCID: PMC8683231 DOI: 10.1155/2021/1776567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Background This current study applied bioinformatics analysis to reveal the crosstalk between venous thromboembolism (VTE) and periodontitis, as well as the potential role of immune-related genes in this context. Methods Expression data were downloaded from the GEO database. Blood samples from venous thromboembolism (VTE) were used (GSE19151), while for periodontal disease, we used gingival tissue samples (GSE10334, GSE16134, and GSE23586). After batch correction, we used “limma” packages of R language for differential expression analysis (p value < 0.05, ∣logFC | ≥0.5). We used Venn diagrams to extract the differentially expressed genes common to VTE and periodontitis as potential crosstalk genes and applied functional enrichment analysis (GO biological process and KEGG pathway). The protein-protein interaction (PPI) network of crosstalk genes was constructed by Cytoscape software. The immune-related genes were downloaded from the literature. The Wilcoxon test was used to test the scores of immune infiltrating cells. The crosstalk genes were further screened by LASSO Logistic Regression. Results For periodontitis, 427 case and 136 control samples, and for VTE, 70 case and 63 control samples were included. The obtained PPI network had 1879 nodes and 2257 edges. Moreover, 782 immune genes and 28 cell types were included in the analysis. Over 90% of immune cells had different expressions in VTE and periodontitis. We obtained 12 significant pathways corresponding to crosstalk genes. CD3D, CSF3R, and CXCR4 acted as an immune gene and a crosstalk gene. We obtained a total of 12 shared biomarker crosstalk genes. Among those 12 biomarker crosstalk genes, 4 were immune genes (LGALS1, LSP1, SAMSN1, and WIPF1). Conclusion Four biomarker crosstalk genes between periodontitis and VTE were also immune genes, i.e., LGALS1, LSP1, SAMSN1, and WIPF1. The findings of the current study need further validation and are a basis for development of biomarkers.
Collapse
|
12
|
Porphyromonas gingivalis and left atrial appendage spontaneous echo contrast in atrial fibrillation ablation candidates. Heart Vessels 2021; 36:1721-1729. [PMID: 34021383 DOI: 10.1007/s00380-021-01851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
Atrial fibrillation (AF) is associated with a fivefold risk of stroke and thrombotic embolism, which are usually derived from the left atrial appendage (LAA). Spontaneous echo contrast (SEC) is known as a risk factor for thrombosis. Porphyromonas gingivalis (P. gingivalis) has some prothrombotic effects and plays a key role in periodontitis and oral-systemic disease connection. We aimed to clarify the relationship between P. gingivalis and LAA SEC among AF patients. A total of 569 AF ablation candidates were enrolled in the present study. LAA SEC was categorized into nondense SEC and dense SEC based on transesophageal echocardiography. Serum immunoglobulin G antibody titers of P. gingivalis fimA subtypes (types I-IV) were measured with an enzyme-linked immunosorbent assay. The levels of antibody titers were categorized into high (> mean + 3 standard deviation) and low values. A total of 513 (90%) patients were included in the nondense SEC group, and 56 (10%) were included in the dense SEC group. Multivariate regression analysis revealed that the high-value serum antibody titers of P. gingivalis types II and IV were independently associated with dense SEC [type II: adjusted odds ratio (OR) 2.220; 95% confidence interval (CI) 1.062-4.643; P = 0.02; and type IV: adjusted OR 3.169; 95% CI 1.058-6.657; P = 0.002]. The results revealed that P. gingivalis types II and IV are related to LAA SEC severity among AF patients who receive appropriate anticoagulation therapy.
Collapse
|
13
|
Isola G, Polizzi A, Ronsivalle V, Alibrandi A, Palazzo G, Lo Giudice A. Impact of Matrix Metalloproteinase-9 during Periodontitis and Cardiovascular Diseases. Molecules 2021; 26:molecules26061777. [PMID: 33810003 PMCID: PMC8004886 DOI: 10.3390/molecules26061777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) has been shown to play a key role in endothelial function and perhaps pivotal in the correlation between periodontal disease and cardiovascular disease (CVD). For the study, the impact of MMP-9 of periodontitis and CVD on serum and saliva concentrations was analyzed. For the study patients with periodontitis (n = 31), CVD (n = 31), periodontitis + CVD (n = 31), and healthy patients (n = 31) were enrolled. Clinical and demographic characteristics as well as serum and salivary MMP-9 were evaluated. MMP-9 concentrations in serum and saliva were statistically elevated in patients with CVD (p < 0.01) and in patients with periodontitis plus CVD (p < 0.001) compared to patients with periodontitis and healthy subjects. Multivariate regression analysis showed that c-reactive protein (hs-CRP) was the only significant predictor for MMP-9 serum (p < 0.001), whereas hs-CRP (p < 0.001) and total cholesterol (p = 0.029) were the statistically significant salivary MMP-9 predictors. This study evidenced that patients with CVD and periodontitis + CVD presented elevated MMP-9 concentrations in serum and saliva compared to patients with periodontitis and healthy subjects. Furthermore, hs-CRP was a negative predictor of serum and salivary MMP-9.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (A.P.); (V.R.); (G.P.); (A.L.G.)
- Correspondence: ; Tel.: +39-095-378-2453
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (A.P.); (V.R.); (G.P.); (A.L.G.)
| | - Vincenzo Ronsivalle
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (A.P.); (V.R.); (G.P.); (A.L.G.)
| | - Angela Alibrandi
- Department of Economical, Business and Environmental Sciences and Quantitative Methods, University of Messina, 98122 Messina, Italy;
| | - Giuseppe Palazzo
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (A.P.); (V.R.); (G.P.); (A.L.G.)
| | - Antonino Lo Giudice
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (A.P.); (V.R.); (G.P.); (A.L.G.)
| |
Collapse
|
14
|
Lippi G, Nocini R, Favaloro EJ. Periodontal Disease and Venous Thromboembolism. Semin Thromb Hemost 2020; 47:110-111. [PMID: 32968990 DOI: 10.1055/s-0040-1714399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Riccardo Nocini
- Section of Ears, Nose and Throat (ENT), Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Emmanuel J Favaloro
- Haematology, Sydney Centers for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
15
|
Nunes JM, Fillis T, Page MJ, Venter C, Lancry O, Kell DB, Windberger U, Pretorius E. Gingipain R1 and Lipopolysaccharide From Porphyromonas gingivalis Have Major Effects on Blood Clot Morphology and Mechanics. Front Immunol 2020; 11:1551. [PMID: 32793214 PMCID: PMC7393971 DOI: 10.3389/fimmu.2020.01551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Background:Porphyromonas gingivalis and its inflammagens are associated with a number of systemic diseases, such as cardiovascular disease and type 2 diabetes (T2DM). The proteases, gingipains, have also recently been identified in the brains of Alzheimer's disease patients and in the blood of Parkinson's disease patients. Bacterial inflammagens, including lipopolysaccharides (LPSs) and various proteases in circulation, may drive systemic inflammation. Methods: Here, we investigate the effects of the bacterial products LPS from Escherichia coli and Porphyromonas gingivalis, and also the P. gingivalis gingipain [recombinant P. gingivalis gingipain R1 (RgpA)], on clot architecture and clot formation in whole blood and plasma from healthy individuals, as well as in purified fibrinogen models. Structural analysis of clots was performed using confocal microscopy, scanning electron microscopy, and AFM-Raman imaging. We use thromboelastography® (TEG®) and rheometry to compare the static and dynamic mechanical properties of clots. Results: We found that these inflammagens may interact with fibrin(ogen) and this interaction causes anomalous blood clotting. Conclusions: These techniques, in combination, provide insight into the effects of these bacterial products on cardiovascular health, and particularly clot structure and mechanics.
Collapse
Affiliation(s)
- J Massimo Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Tristan Fillis
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Chantelle Venter
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Ophélie Lancry
- HORIBA Scientific, HORIBA FRANCE SAS, Villeneuve-d'Ascq, France
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry, Faculty of Health and Life Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ursula Windberger
- Decentralised Biomedical Facilities, Centre for Biomedical Research, Medical University Vienna, Vienna, Austria
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|