1
|
Moore K, Grégoire S, Eilstein J, Delgado-Charro MB, Guy RH. Reverse Iontophoresis: Noninvasive Assessment of Topical Drug Bioavailability. Mol Pharm 2024; 21:234-244. [PMID: 38060844 PMCID: PMC10762657 DOI: 10.1021/acs.molpharmaceut.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 01/02/2024]
Abstract
Assessing drug disposition in the skin after the application of a topical formulation is difficult. It is hypothesized that reverse iontophoresis (RI), which can extract charged/polar molecules for monitoring purposes, may provide a noninvasive approach for the assessment of local drug bioavailability. The passive and RI extraction of salicylic acid (SA) and nicotine (NIC) from porcine skin in vitro was assessed after a simple solution of the former and a transdermal patch of the latter had been applied for 24 and 8 h, respectively. Immediately after this "passive skin loading", the amount of drug in the stratum corneum (SC) and "viable" tissue (VT) was measured either (a) after tape-stripping and subsequent solvent extraction of both skin layers or (b) following RI extraction over 4 h. Parallel experiments were then performed in vivo in healthy volunteers; in this case, the VT was not sampled and the skin loading period for NIC was only 4 h. RI extraction of both drugs was significantly higher (in vitro and in vivo) than that achieved passively, and the cumulative RI extraction profiles as a function of time were mathematically analyzed using a straightforward compartmental model. Best-fit estimates of drug amounts in the SC and VT (ASC,0 and AVT,0, respectively) at the end of "loading" and two first-order rate constants describing transfer between the model compartments were then determined. The in vitro predictions of ASC,0 and AVT,0 were in excellent agreement with the experimental results, as was the value of the former in vivo. The rate constants derived from the in vitro and in vivo results were also similar. In summary, the results provide proof-of-concept that the RI method has the potential to noninvasively assess relevant metrics of drug bioavailability in the skin.
Collapse
Affiliation(s)
- Kieran Moore
- Department
of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Sébastien Grégoire
- L’Oréal
Research and Innovation, 1 Av. Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | - Joan Eilstein
- L’Oréal
Research and Innovation, 1 Av. Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | | | - Richard H. Guy
- Department
of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| |
Collapse
|
2
|
Zheng H, Pu Z, Wu H, Li C, Zhang X, Li D. Reverse iontophoresis with the development of flexible electronics: A review. Biosens Bioelectron 2023; 223:115036. [PMID: 36580817 DOI: 10.1016/j.bios.2022.115036] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Skin-centric diagnosis techniques, such as epidermal physiological parameter monitoring, have developed rapidly in recent years. The analysis of interstitial fluid (ISF), a body liquid with abundant physiological information, is a promising method to obtain health status because ISF is easily assessed by implanted or percutaneous measurements. Reverse iontophoresis extracts ISF by applying an electric field onto the skin, and it is a promising method to noninvasively obtain ISF, which, in turn, enables noninvasive epidermal physiological parameter monitoring. However, the development of reverse iontophoresis was relatively slow around the 2010s due to the rigidity and low biocompatibility of the applied devices. With the rapid development of flexible electronic technology in recent years, new progress has been made in the field of reverse iontophoresis, especially in the field of blood glucose monitoring and drug monitoring. This review summarizes the recent advances and discusses the challenges and opportunities of reverse iontophoresis.
Collapse
Affiliation(s)
- Hao Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zhihua Pu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China.
| | - Hao Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Chengcheng Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Xingguo Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
De la Paz E, Saha T, Del Caño R, Seker S, Kshirsagar N, Wang J. Non-invasive monitoring of interstitial fluid lactate through an epidermal iontophoretic device. Talanta 2023; 254:124122. [PMID: 36459870 DOI: 10.1016/j.talanta.2022.124122] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
The development of a non-invasive sensing technology that allows collection of interstitial fluid (ISF) lactate and its subsequent analysis without exertion requirement, could enable lactate monitoring from rested individuals. Here, we describe a wearable, soft epidermal adhesive patch that integrates a reverse iontophoretic (RI) system, and an amperometric lactate biosensor placed on the anodic electrode with a porous hydrogel reservoir, for simultaneous ISF lactate extraction and quantification via electrochemical sensing, respectively. The iontophoretic system includes agarose hydrogels for preventing skin electrocution, while a porous polyvinyl alcohol-based hydrogel facilitates the effective transport of lactate from skin to the biosensor. The flexible skin-worn device tested on healthy individuals at rest showed rapid lactate collection from the ISF after 10 min of reverse iontophoresis with no evidence of discomfort or irritation to the skin. Detailed characterization of the enzymatic biosensor before and during on-body trials along with relevant control experiments confirmed the efficient extraction and selective detection of ISF lactate. Such an epidermal technology represents the first demonstration of an all-in-one platform that integrates non-invasive collection and subsequent analysis of lactate from iontophoretically extracted ISF toward point-of-care operation.
Collapse
Affiliation(s)
- Ernesto De la Paz
- Department of Nanoengineering, University of California San Diego La Jolla, CA, 92093, USA
| | - Tamoghna Saha
- Department of Nanoengineering, University of California San Diego La Jolla, CA, 92093, USA
| | - Rafael Del Caño
- Department of Nanoengineering, University of California San Diego La Jolla, CA, 92093, USA; Department of Physical Chemistry and Applied Thermodynamics, University of Cordoba, E-14014, Spain
| | - Sumeyye Seker
- Department of Nanoengineering, University of California San Diego La Jolla, CA, 92093, USA
| | - Nikhil Kshirsagar
- Department of Nanoengineering, University of California San Diego La Jolla, CA, 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Giri TK, Chakrabarty S, Ghosh B. Non-Invasive Extraction of Gabapentin for Therapeutic Drug Monitoring by Reverse Iontophoresis: Effect of pH, Ionic Strength, and Polyethylene Glycol 400 in the Receiving Medium. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180910115059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Monitoring of plasma concentrations is a necessity for narrow therapeutic index
potent drugs. Development of non-invasive methods can save the patients from the trauma of needles
and hence is considered as a research priority.
Introduction:
Gabapentin, an anti-epileptic drug requires therapeutic monitoring because of its narrow
therapeutic index. The objective of the study was to develop a suitable method for the non-invasive
extraction of gabapentin for the same.
Methods:
Transdermal reverse iontophoresis was performed using pig ear skin as a barrier membrane.
Three compartment iontophoretic cells were used for the extraction study. Extractions were carried out
under low intensity electric field (current intensity- 0.5 mA/cm2, electrical field approximately 5 V).
The donor compartment was charged with aqueous gabapentin (10 µg/ml in phosphate buffer of pH
7.4). For studying the effect of receiving vehicle (pH, ionic strength, and enhancer) on the extraction
efficiency of gabapentin, the two receiver chambers were charged with media having varying concentration
of these factors. Drug content was determined by HPLC.
Results:
Compared to other pHs, cumulative extraction of gabapentin at pH 5 was significantly higher
at both anode and cathode (p<0.001). At low ionic strength, extraction of gabapentin increased linearly
with the increase in concentration of ions up to a certain value but at very high ionic strength the pattern
reversed. Similar results were obtained with enhancer (polyethylene glycol 400). Extraction increased
with increase in polyethylene glycol 400 up to 3% and then decreased.
Conclusion:
Extraction flux can be optimized by manipulation of the receiver media.
Collapse
Affiliation(s)
- Tapan Kumar Giri
- NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| | - Subhasis Chakrabarty
- NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| | - Bijaya Ghosh
- NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| |
Collapse
|
5
|
Giri TK, Ghosh B, Bose P, Saha S, Sarkar A. Extraction of levetiracetam for therapeutic drug monitoring by transdermal reverse iontophoresis. Eur J Pharm Sci 2019; 128:54-60. [PMID: 30468869 DOI: 10.1016/j.ejps.2018.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/26/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
Recently, transdermal reverse iontophoresis across the skin has been investigated as a novel technology for the purpose of diagnosis as well as therapeutic drug monitoring. Accordingly, the objective of this study was to investigate ex vivo and in vivo transdermal extraction of levetiracetam, an antiepileptic drug, across the pig ear skin by reverse iontophoresis. Reverse iontophoresis experiments were performed using three chambered diffusion cells. Extractions profiles were generated in phosphate buffers at different current intensities, pH and ionic strength as well donor drug concentrations. This was followed by ex vivo extraction in gels and in vivo extractions using New Zealand rabbits. Results indicate that levetiracetam was extracted at both anode and cathode. Flux values were unaffected by increase in current intensities (0.5 mA and 0.6 mA) but affected by pH and ionic strength. Neither in cathodal nor in anodal extraction, flux values did show a proportional relationship with the donor drug concentration. At low and medium concentration levels, flux values did not show any major change but the extraction flux at high donor concentration was much higher. In contrast, in vivo experiment with rabbits resulted in wide variation of fluxes with very high fluxes recorded at the cathodal end. Reasons attributed to this difference may include lower current intensity, and species variation. The most significant finding of this study is that measurable amounts of the levetiracetam were extracted at both the ends indicating its feasibility for non-invasive drug monitoring.
Collapse
Affiliation(s)
- Tapan Kumar Giri
- NSHM Knowledge Campus, Kolkata-Group of Institutions, 124 BL Saha Road, Kolkata 700053, West Bengal, India
| | - Bijaya Ghosh
- NSHM Knowledge Campus, Kolkata-Group of Institutions, 124 BL Saha Road, Kolkata 700053, West Bengal, India.
| | - Preeta Bose
- NSHM Knowledge Campus, Kolkata-Group of Institutions, 124 BL Saha Road, Kolkata 700053, West Bengal, India
| | - Sumana Saha
- NSHM Knowledge Campus, Kolkata-Group of Institutions, 124 BL Saha Road, Kolkata 700053, West Bengal, India
| | - Arijit Sarkar
- NSHM Knowledge Campus, Kolkata-Group of Institutions, 124 BL Saha Road, Kolkata 700053, West Bengal, India
| |
Collapse
|
6
|
Giri TK, Chakrabarty S, Ghosh B. Transdermal reverse iontophoresis: A novel technique for therapeutic drug monitoring. J Control Release 2016; 246:30-38. [PMID: 27956143 DOI: 10.1016/j.jconrel.2016.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/07/2016] [Indexed: 11/27/2022]
Abstract
Application of transdermal reverse iontophoresis for diagnostic purpose is a relatively new concept but its short span of research is full of ups and downs. In early nineties, when the idea was floated, it received a dubious welcome by the scientific community. Yet to the disbelief of many, 2001 saw the launching of GlucoWatch® G2 Biographer, the first device that could measure the blood sugar level noninvasively. Unfortunately, the device failed to match the expectation and was withdrawn in 2007. However, the concept stayed on. Research on reverse iontophoresis has diversified in many fields. Numerous in vitro and in vivo experiments confirmed the prospect of reverse iontophoresis as a noninvasive tool in therapeutic drug monitoring and clinical chemistry. This review provides an overview about the recent developments in reverse iontophoresis in the field of therapeutic drug monitoring.
Collapse
Affiliation(s)
- Tapan Kumar Giri
- NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| | - Subhasis Chakrabarty
- NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| | - Bijaya Ghosh
- NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India.
| |
Collapse
|
7
|
Extraction of Iron from the Rabbit Anterior Chamber with Reverse Iontophoresis. J Ophthalmol 2015; 2015:425438. [PMID: 26257921 PMCID: PMC4518192 DOI: 10.1155/2015/425438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/02/2015] [Indexed: 12/24/2022] Open
Abstract
Ocular siderosis is a common eye disease caused by retention of an iron-containing intraocular foreign body in the eye. Iron-containing intraocular foreign bodies may cause severe inflammatory reaction and affect visual function. Currently the optimal treatment method of ocular siderosis is a moot point. This study used the reverse iontophoresis technique to noninvasively extract iron from the rabbit anterior chamber. By slit lamp observation and histological examination, reverse iontophoresis treatment has a good effect on ocular siderosis. Reverse iontophoresis seems to be a noninvasive and promising approach to extract iron from the anterior chamber to treat ocular siderosis.
Collapse
|
8
|
Nair AB, Kumria R, Al-Dhubiab BE, Attimarad M, Harsha S. Noninvasive Sampling of Gabapentin by Reverse Iontophoresis. Pharm Res 2014; 32:1417-24. [DOI: 10.1007/s11095-014-1546-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/06/2014] [Indexed: 01/06/2023]
|
9
|
Bai JH, Su S, Huang L, Zhang YY, Wang YS, Guo MH, Yang HB, Cui H. In vitro extraction of intra-corneal iron using reverse iontophoresis and vitamin C. Graefes Arch Clin Exp Ophthalmol 2014; 252:1245-58. [DOI: 10.1007/s00417-014-2681-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 11/30/2022] Open
|
10
|
Delgado-Charro M. Richard Guy and His Collaborators:Crackling'the Skin Code. Skin Pharmacol Physiol 2013; 26:302-12. [DOI: 10.1159/000351937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/11/2013] [Indexed: 11/19/2022]
|
11
|
Marra F, Nicoli S, Padula C, Santi P. Amikacin reverse iontophoresis: optimization of in vitro extraction. Int J Pharm 2012; 440:216-20. [PMID: 22824514 DOI: 10.1016/j.ijpharm.2012.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/15/2012] [Accepted: 07/13/2012] [Indexed: 11/25/2022]
Abstract
The aim of this work was to optimize amikacin reverse iontophoretic extraction across the skin in vitro, for non-invasive drug monitoring. Reverse iontophoresis experiments were performed using vertical diffusion cells. The lower chamber, simulating body fluids, contained amikacin bisulphate and acetaminophen, as marker for electroosmosis, while the upper chamber was filled with the appropriate extraction solution. The effect of concentration of amikacin in the dermal bathing solution and the effect of extraction solution composition and pH were studied. The results show that the extraction of amikacin was independent of pH and always in the anode-to-cathode direction, in agreement with the positive charge of the drug. The presence of amikacin in the bathing solution did not modify acetaminophen extraction at pH 4.0, while the extraction was reduced at pH 8.0. In conclusion, amikacin can be extracted across the skin in vitro by reverse iontophoresis. Owing to the charge of the molecule, extraction takes place at the cathode. Using acetaminophen as neutral marker, it was shown that amikacin can interact with the skin and alter its permselectivity at pH 8.0.
Collapse
Affiliation(s)
- Fabio Marra
- Dipartimento Farmaceutico, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy
| | | | | | | |
Collapse
|
12
|
Sylvestre JP, Bouissou C, Guy R, Delgado-Charro M. Extraction and quantification of amino acids in human stratum corneum in vivo. Br J Dermatol 2010; 163:458-65. [DOI: 10.1111/j.1365-2133.2010.09805.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Paliwal S, Ogura M, Mitragotri S. Rapid sampling of molecules via skin for diagnostic and forensic applications. Pharm Res 2010; 27:1255-63. [PMID: 20238151 PMCID: PMC2883922 DOI: 10.1007/s11095-010-0081-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 02/09/2010] [Indexed: 12/01/2022]
Abstract
PURPOSE Skin provides an excellent portal for diagnostic monitoring of a variety of entities; however, there is a dearth of reliable methods for patient-friendly sampling of skin constituents. This study describes the use of low-frequency ultrasound as a one-step methodology for rapid sampling of molecules from the skin. METHODS Sampling was performed using a brief exposure of 20 kHz ultrasound to skin in the presence of a sampling fluid. In vitro sampling from porcine skin was performed to assess the effectiveness of the method and its ability to sample drugs and endogenous epidermal biomolecules from the skin. Dermal presence of an antifungal drug-fluconazole and an abused substance, cocaine-was assessed in rats. RESULTS Ultrasonic sampling captured the native profile of various naturally occurring moisturizing factors in skin. A high sampling efficiency (79 +/- 13%) of topically delivered drug was achieved. Ultrasound consistently sampled greater amounts of drug from the skin compared to tape stripping. Ultrasonic sampling also detected sustained presence of cocaine in rat skin for up to 7 days as compared to its rapid disappearance from the urine. CONCLUSIONS Ultrasonic sampling provides significant advantages including enhanced sampling from deeper layers of skin and high temporal sampling sensitivity.
Collapse
Affiliation(s)
- Sumit Paliwal
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
14
|
|
15
|
Dutet J, Delgado-Charro MB. In vivo transungual iontophoresis: effect of DC current application on ionic transport and on transonychial water loss. J Control Release 2009; 140:117-25. [PMID: 19709638 DOI: 10.1016/j.jconrel.2009.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/17/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
Abstract
The potential use of iontophoresis to improve drug penetration into the nail has been suggested. However, there is little information concerning transungual iontophoresis in vivo. This work describes the application of transungual iontophoresis to six healthy human volunteers in order to investigate key issues such as the effect of current application on ionic transport and on transonychial water loss (TOWL), and the magnitude of the voltages required for a practical use of the technique. Each volunteer participated in three experiments: passive control, 0.2 mA anodal transungual iontophoresis and 0.2 mA cathodal transungual iontophoresis. A commercial electrode on a skin site was used to complete the electrical circuit. The outward transungual extraction of sodium and chloride ions by passive diffusion and iontophoresis was quantified. Iontophoresis enhanced chloride and sodium transport approximately 8 and 27 fold respectively compared to passive diffusion. Sodium transport numbers were measured to be t(Na+)=0.51+/-0.11. TOWL was used as a potential marker of nail damage and hydration. Basal TOWL was measured before each experiment, and the return to baseline values was monitored for 1h after the treatment (passive or iontophoresis application) was finished. TOWL was increased after both iontophoretic and passive experiments and typically returned to baseline values in 1h post-treatment. The voltage of the nail-to-skin circuit was monitored during iontophoresis and compared to those observed in a skin-to-skin circuit. Nail-to-skin circuit voltages were generally approximately 50 V when the current was started and dropped fast to 20-30 V, a value comparable to that observed in the skin-to-skin circuit. On the whole, the clear enhancement of ionic transport observed, the feedback from volunteers, the small effects in TOWL, and the magnitude of voltages indicate that nail DC current iontophoresis is feasible and probably a safe technique.
Collapse
Affiliation(s)
- Julie Dutet
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA27AY, UK
| | | |
Collapse
|
16
|
|
17
|
Delgado-Charro M. Recent advances on transdermal iontophoretic drug delivery and non-invasive sampling. J Drug Deliv Sci Technol 2009. [DOI: 10.1016/s1773-2247(09)50015-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Kabata A, Okamura K, Suzuki H, Kishigami Y, Kikuchi M, Haga M. Prototype micropump for insulin administration based on electrochemical bubble formation. J Pharm Sci 2008; 97:5037-45. [DOI: 10.1002/jps.21360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Sieg A, Jeanneret F, Fathi M, Hochstrasser D, Rudaz S, Veuthey JL, Guy RH, Delgado-Charro MB. Extraction of amino acids by reverse iontophoresis: Simulation of therapeutic monitoring in vitro. Eur J Pharm Biopharm 2008; 70:908-13. [DOI: 10.1016/j.ejpb.2008.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/30/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
|