1
|
Kim SY, Pena IDL, Weon KY, Park JB. Preparation of tofacitinib sustained-release tablets using hot melt extrusion technology. Pharm Dev Technol 2024; 29:248-257. [PMID: 38416122 DOI: 10.1080/10837450.2024.2323621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
This study aimed to develop a tablet that shows a drug release profile similar to the tofacitinib sustained-release tablet (Xeljanz XR®; OROS™) using hot melt extrusion technology. Tofacitinib citrate was selected as the drug. HPMCAS, HPMCP, and Kollidon VA64 were used as thermoplastic polymers to prepare a hot-melt extrudate. The extrudate was obtained from a twin screw extruder and pelletizer. The granules were compressed using a single punch press machine and then coated. TGA, DSC, XRD, FT-IR, and SEM were performed on the hot melt extrudate to understand its physicochemical properties. Dissolution tests were performed using the paddle method (USP Apparatus II). The results showed that the crystallinity state of tofacitinib changed to amorphous after the hot melt extrusion process; however, no chemical change was observed. The drug release profile was similar to that of Xeljanz XR®, which has an initial lag time owing to its OROS™ formulation; a coating process was performed to obtain a similar drug release profile. The lag time was controlled by adjusting the thickness of the coating layer. Moreover, the extrudate size and compression force during tableting did not significantly affect drug release. In conclusion, the new tofacitinib sustained-release tablet prepared using hot melt extrusion showed a drug release behavior similar to that of Xeljanz XR®.
Collapse
Affiliation(s)
- Sung-Yeop Kim
- College of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Ike de la Pena
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University School of Pharmacy, Loma Linda, CA, USA
| | - Kwon Yeon Weon
- College of Pharmacy, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Nguyen HT, Van Duong T, Jaw-Tsai S, Bruning-Barry R, Pande P, Taneja R, Taylor LS. Fed- and Fasted-State Performance of Pretomanid Amorphous Solid Dispersions Formulated with an Enteric Polymer. Mol Pharm 2023. [PMID: 37220082 DOI: 10.1021/acs.molpharmaceut.3c00174] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Weakly acid polymers with pH-responsive solubility are being used with increasing frequency in amorphous solid dispersion (ASD) formulations of drugs with low aqueous solubility. However, drug release and crystallization in a pH environment where the polymer is insoluble are not well understood. The aim of the current study was to develop ASD formulations optimized for release and supersaturation longevity of a rapidly crystallizing drug, pretomanid (PTM), and to evaluate a subset of these formulations in vivo. Following screening of several polymers for their ability to inhibit crystallization, hypromellose acetate succinate HF grade (HPMCAS-HF; HF) was selected to prepare PTM ASDs. In vitro release studies were conducted in simulated fasted- and fed-state media. Drug crystallization in ASDs following exposure to dissolution media was evaluated by powder X-ray diffraction, scanning electron microscopy, and polarized light microscopy. In vivo oral pharmacokinetic evaluation was conducted in male cynomolgus monkeys (n = 4) given 30 mg PTM under both fasted and fed conditions in a crossover design. Three HPMCAS-based ASDs of PTM were selected for fasted-state animal studies based on their in vitro release performance. Enhanced bioavailability was observed for each of these formulations relative to the reference product that contained crystalline drug. The 20% drug loading PTM-HF ASD gave the best performance in the fasted state, with subsequent dosing in the fed state. Interestingly, while food improved drug absorption of the crystalline reference product, the exposure of the ASD formulation was negatively impacted. The failure of the HPMCAS-HF ASD to enhance absorption in the fed state was hypothesized to result from poor release in the reduced pH intestinal environment resulting from the fed state. In vitro experiments confirmed a reduced release rate under lower pH conditions, which was attributed to reduced polymer solubility and an enhanced crystallization tendency of the drug. These findings emphasize the limitations of in vitro assessment of ASD performance using standardized media conditions. Future studies are needed for improved understanding of food effects on ASD release and how this variability can be captured by in vitro testing methodologies for better prediction of in vivo outcomes, in particular for ASDs formulated with enteric polymers.
Collapse
Affiliation(s)
- Hanh Thuy Nguyen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tu Van Duong
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sarah Jaw-Tsai
- Sarah Jaw-Tsai Consulting Services, 12279 Skyracer Drive, Las Vegas, Nevada 89138, United States
| | - Rebecca Bruning-Barry
- Global Health Technologies Program, RTI International, Research Triangle Park, North Carolina 27704, United States
| | - Poonam Pande
- Global Alliance for TB Drug Development (TB Alliance), 80 Pine Street, 20th Floor, New York, New York 10005, United States
| | - Rajneesh Taneja
- Global Alliance for TB Drug Development (TB Alliance), 80 Pine Street, 20th Floor, New York, New York 10005, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Sturm DR, Moser JD, Sundararajan P, Danner RP. Spray Drying of Hypromellose Acetate Succinate. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Derek R. Sturm
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Justin D. Moser
- Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Pavithra Sundararajan
- Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Ronald P. Danner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Vass P, Démuth B, Hirsch E, Nagy B, Andersen SK, Vigh T, Verreck G, Csontos I, Nagy ZK, Marosi G. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J Control Release 2019; 296:162-178. [PMID: 30677436 DOI: 10.1016/j.jconrel.2019.01.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
In chronic intestinal diseases like inflammatory bowel disease, parenteral administration of biopharmaceuticals is associated with numerous disadvantages including immune reactions, infections, low patient compliance, and toxicity caused by high systemic bioavailability. One alternative that can potentially overcome these limitations is oral administration of biopharmaceuticals, where the local delivery will reduce the systemic exposure and furthermore the manufacturing costs will be lower. However, the development of oral dosage forms that deliver the biologically active form to the intestines is one of the greatest challenges for pharmaceutical technologists due to the sensitive nature of biopharmaceuticals. The present article discusses the various drug delivery technologies used to produce orally administered solid dosage forms of biopharmaceuticals with an emphasis on colon-targeted delivery. Solid oral dosage compositions containing different types of colon-targeting biopharmaceuticals are compiled followed by a review of currently applied and emerging drying technologies for biopharmaceuticals. The different drying technologies are compared in terms of their advantages, limitations, costs and their effect on product stability.
Collapse
Affiliation(s)
- Panna Vass
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Balázs Démuth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Sune K Andersen
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium.
| | - Tamás Vigh
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - Geert Verreck
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - István Csontos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Zsombor K Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary.
| | - György Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| |
Collapse
|
5
|
Sturm DR, Danner RP, Moser JD, Chiu SW. Application of the Vrentas-Duda free-volume theory of diffusion below the glass-transition temperature: Application to hypromellose acetate succinate-solvent systems. J Appl Polym Sci 2018. [DOI: 10.1002/app.47351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Derek R. Sturm
- Department of Chemical Engineering; Pennsylvania State University, University Park; Pennsylvania 16802
| | - Ronald P. Danner
- Department of Chemical Engineering; Pennsylvania State University, University Park; Pennsylvania 16802
| | - Justin D. Moser
- Pharmaceutical Sciences; Merck & Co., Inc.; West Point Pennsylvania 19486
| | - Sheng-Wei Chiu
- Department of Chemical Engineering; Pennsylvania State University, University Park; Pennsylvania 16802
| |
Collapse
|
6
|
Abstract
The phenomenal advances in pharmaceutical sciences over the last few decades have led to the development of new therapeutics like peptides, proteins, RNAs, DNAs and highly potent small molecules. Fruitful applications of these therapeutics have been challenged by several anatomical and physiological barriers that limit adequate drug disposition at the site-of-action and by off-target drug distribution to undesired tissues, which together result in the reduced effectiveness and increased side effects of therapeutic agents. As such, the development of drug delivery and targeting systems has been recognised as a cornerstone for future drug development. Research in pharmaceutical sciences is now devoted to tackling delivery challenges through engineering delivery systems that move beyond conventional dosage forms and regimens into state-of-the-art targeted drug delivery tailored toward specific therapeutic needs. Modern drug delivery systems comprise passive and active targeting approaches. While passive targeting relies on the natural course of distribution of drugs or drug carriers in the body, as governed by their physicochemical properties, active targeting often exploits targeting moieties that home preferentially into target tissues. Here, we provide an overview of theories of and approaches to passive and active drug delivery. As the design of drug delivery is dependent on the unique structure of target tissues and organs, we present our discussion in an organ-specific manner with the aim to inspire the development of new strategies for curing disease with high accuracy and efficiency.
Collapse
Affiliation(s)
- Mohammad Alsaggar
- a Department of Pharmaceutical Technology, College of Pharmacy , Jordon University of Science and Technology , Irbid , Jordan
| | - Dexi Liu
- b Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy , University of Georgia , Athens , GA , USA
| |
Collapse
|
7
|
Németh C, Gyarmati B, Abdullin T, László K, Szilágyi A. Poly(aspartic acid) with adjustable pH-dependent solubility. Acta Biomater 2017; 49:486-494. [PMID: 27915021 DOI: 10.1016/j.actbio.2016.11.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/21/2016] [Accepted: 11/29/2016] [Indexed: 01/13/2023]
Abstract
Poly(aspartic acid) (PASP) derivatives with adjustable pH-dependent solubility were synthesized and characterized to establish the relationship between their structure and solubility in order to predict their applicability as a basic material for enteric coatings. Polysuccinimide, the precursor of PASP, was modified with short chain alkylamines, and the residual succinimide rings were subsequently opened to prepare the corresponding PASP derivatives. Study of the effect of the type and concentration of the side groups on the pH-dependent solubility of PASP showed that solubility can be adjusted by proper selection of the chemical structure. The Henderson-Hasselbalch (HH) and the extended HH equations were used to describe the pH-dependent solubility of the polymers quantitatively. The estimate provided by the HH equation is poor, but an accurate description of the pH-dependent solubility can be found with the extended HH equation. The dissolution rate of a polymer film prepared from a selected PASP derivative was determined by fluorescence marking. The film dissolved rapidly when the pH was increased above its pKa. Cellular viability tests show that PASP derivatives are non-toxic to a human cell line. These polymers are thus of great interest as starting materials for enteric coatings. STATEMENT OF SIGNIFICANCE Poly(amino acid) type biocompatible polymers were synthesized for future use as pharmaceutical film coatings. To this end, we tailored the pH-dependent solubility of poly(aspartic acid) (PASP). It was found that both the solubility and the pKa values of the modified PASP depended strongly on composition. Fluorescent marking was used to characterize the dissolution of a chosen PASP derivative. In acidic media only a negligible amount of the polymer dissolved, but dissolution was very fast and complete at the pH values that prevail in the small intestine. As a consequence, enteric coatings based on such PASP derivatives may be used for drug delivery in the gastrointestinal tract.
Collapse
Affiliation(s)
- Csaba Németh
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Benjámin Gyarmati
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Timur Abdullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Krisztina László
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - András Szilágyi
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| |
Collapse
|
8
|
Li J, Chai H, Li Y, Chai X, Zhao Y, Zhao Y, Tao T, Xiang X. A Three-Pulse Release Tablet for Amoxicillin: Preparation, Pharmacokinetic Study and Physiologically Based Pharmacokinetic Modeling. PLoS One 2016; 11:e0160260. [PMID: 27479702 PMCID: PMC4968835 DOI: 10.1371/journal.pone.0160260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/16/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Amoxicillin is a commonly used antibiotic which has a short half-life in human. The frequent administration of amoxicillin is often required to keep the plasma drug level in an effective range. The short dosing interval of amoxicillin could also cause some side effects and drug resistance, and impair its therapeutic efficacy and patients' compliance. Therefore, a three-pulse release tablet of amoxicillin is desired to generate sustained release in vivo, and thus to avoid the above mentioned disadvantages. METHODS The pulsatile release tablet consists of three pulsatile components: one immediate-release granule and two delayed release pellets, all containing amoxicillin. The preparation of a pulsatile release tablet of amoxicillin mainly includes wet granulation craft, extrusion/spheronization craft, pellet coating craft, mixing craft, tablet compression craft and film coating craft. Box-Behnken design, Scanning Electron Microscope and in vitro drug release test were used to help the optimization of formulations. A crossover pharmacokinetic study was performed to compare the pharmacokinetic profile of our in-house pulsatile tablet with that of commercial immediate release tablet. The pharmacokinetic profile of this pulse formulation was simulated by physiologically based pharmacokinetic (PBPK) model with the help of Simcyp®. RESULTS AND DISCUSSION Single factor experiments identify four important factors of the formulation, namely, coating weight of Eudragit L30 D-55 (X1), coating weight of AQOAT AS-HF (X2), the extrusion screen aperture (X3) and compression forces (X4). The interrelations of the four factors were uncovered by a Box-Behnken design to help to determine the optimal formulation. The immediate-release granule, two delayed release pellets, together with other excipients, namely, Avicel PH 102, colloidal silicon dioxide, polyplasdone and magnesium stearate were mixed, and compressed into tablets, which was subsequently coated with Opadry® film to produce pulsatile tablet of amoxicillin. In vitro release study firstly indicated a three-pulse release profile of the tablet. Later the pulse tablet was found to generate the sustained release of amoxicillin in beagle dogs. Furthermore, the Simcyp® software was used to simulate the in vivo concentration time curve model of the three-pulse release tablet for amoxicillin in both human and beagle dog. The prediction by PBPK model nicely fitted the observation in human and beagle dog. CONCLUSIONS This study has demonstrated the interrelation of factors affecting the pulsatile formulation of amoxicillin using a Box-Behnken design. The three-pulse release tablets of amoxicillin were proven to generate pulsatile release in vitro and sustained release in vivo. This formulation was also found to extend the effective plasma concentration in human compared to the tablet of immediate release based on the simulation data by PBPK modeling. This study provides an example of using PBPK to guide the development of pulsatile dosage forms.
Collapse
Affiliation(s)
- Jin Li
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Hongyu Chai
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Yang Li
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Xuyu Chai
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Yan Zhao
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Yunfan Zhao
- Camelot Academy, Durham, the United States of America
| | - Tao Tao
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
9
|
Wang Y, Heinze T, Zhang K. Stimuli-responsive nanoparticles from ionic cellulose derivatives. NANOSCALE 2016; 8:648-657. [PMID: 26645347 DOI: 10.1039/c5nr05862g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stimuli-responsive nanoparticles (NPs) based on sustainable polymeric feedstock still need more exploration in comparison with NPs based on synthetic polymers. In this report, stimuli-responsive NPs from novel ionic cellulose derivatives were prepared via a facile nanoprecipitation. Cellulose 10-undecenoyl ester (CUE) with a degree of substitution (DS) of 3 was synthesized by esterification of cellulose with 10-undecenoyl chloride. Then, CUE was modified by photo-induced thiol-ene reactions, in order to obtain organo-soluble ionic cellulose derivatives with DSs of ∼3, namely cellulose 11-((3-carboxyl)ethylthio)undecanoate (CUE-MPA), cellulose 11-((2-aminoethyl)thio)undecanoate (CUE-CA), cellulose 11-(2-(2-(diethylamino)ethyl)thio)undecanoate (CUE-DEAET) and cellulose 11-(2-(2-(dimethylamino)ethyl)thio)undecanoate (CUE-DMAET). CUE-MPA could be transformed into NPs with average diameters in the range of 80-330 nm, but these NPs did not show particular stimuli-responsive properties. Moreover, the dropping technique resulted in smaller NPs than a dialysis technique. Stable NPs with average diameters in the range of 90-180 nm showing pH-responsive and switchable sizes were obtained from CUE-DEAET and CUE-DMAET possessing tertiary amines using nanoprecipitation. Thus, altering the terminal functional groups will be a new approach to prepare stimuli-responsive cellulose-derived polymeric NPs.
Collapse
Affiliation(s)
- Yonggui Wang
- Wood Technology and Wood Chemistry, Georg-August-Universität Göttingen, Büsgenweg 4, D-37077 Göttingen, Germany.
| | - Thomas Heinze
- Center of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstr. 10, D-07743 Jena, Germany
| | - Kai Zhang
- Wood Technology and Wood Chemistry, Georg-August-Universität Göttingen, Büsgenweg 4, D-37077 Göttingen, Germany.
| |
Collapse
|
10
|
Xiang TX, Anderson BD. Molecular dynamics simulation of amorphous hydroxypropyl-methylcellulose acetate succinate (HPMCAS): polymer model development, water distribution, and plasticization. Mol Pharm 2014; 11:2400-11. [PMID: 24871211 DOI: 10.1021/mp500135f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular models for HPMCAS polymer have been developed for molecular dynamics (MD) simulation that attempt to mimic the complex substitution patterns in HPMCAS observed experimentally. These molecular models were utilized to create amorphous HPMCAS solids by cooling of the polymeric melts at different water contents to explore the influence of water on molecular mobility, which plays a critical role in stability and drug release from HPMCAS-based solid matrices. The densities found for the simulated amorphous HPMCAS were 1.295, 1.287, and 1.276 g/cm(3) at 0.7, 5.7, and 13.2% w/w water, indicating swelling of the polymer with increasing water content. These densities compare favorably with the experimental density of 1.285 g/cm(3) for commercial HPMCAS-(AQOAT AS-MF) supporting the present HPMCAS models as a realistic representation of amorphous HPMCAS solids. Water molecules were observed to be mostly isolated from each other at a low water content (0.7% w/w), while clusters or strands of water were pervasive and broadly distributed in size at 13.2% w/w water. The average number of first-shell water molecules (n(w)) increased from 0.17 to 3.5, though the latter is still far below that (8.9) expected for the onset of a separate water phase. Increasing water content from 0.7 to 13.2% w/w was found to reduce the T(g) by ~81 K, similar to experimental observations. Plasticization with increasing water content resulted in increasing polymer mobility and water diffusivity. From 0.7 to 13.2% w/w water, the apparent water diffusivity increased from 1.1 × 10(-9) to 7.0 × 10(-8) cm(2)/s, though non-Einsteinian behavior persisted at all water contents explored. This and the water trajectories in the polymers suggest that water diffusion at 0.7% w/w water follows a "hopping" mechanism. At a higher water content (13.2% w/w) water diffusion follows dual diffusive processes: (1) fast water motions within water clusters; and (2) slower diffusion through the more rigid polymer matrix.
Collapse
Affiliation(s)
- Tian-Xiang Xiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536, United States
| | | |
Collapse
|
11
|
Fang Y, Wang G, Zhang R, Liu Z, Liu Z, Wu X, Cao D. Eudragit L/HPMCAS blend enteric-coated lansoprazole pellets: enhanced drug stability and oral bioavailability. AAPS PharmSciTech 2014; 15:513-21. [PMID: 24590548 DOI: 10.1208/s12249-013-0035-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/20/2013] [Indexed: 11/30/2022] Open
Abstract
The objectives of the present work were to use blends of Eudragit L and hydroxypropyl methylcellulose acetate succinate (HPMCAS) as enteric film coatings for lansoprazole (LSP) pellets. The enteric-coated pellets were prepared with a fluid-bed coater. The influence of the blend ratio, type of plasticizer, plasticizer level, coating level, and curing conditions on gastric stability in vitro drug release and drug stability was evaluated. Furthermore, the bioavailability of the blend-coated pellets in beagle dogs was also performed. The blend-coated pellets exhibited significant improvement of gastric stability and drug stability compared to the pure polymer-coated pellets. Moreover, the AUC values of blend-coated pellets were greater than that of the pure polymer-coated pellets. It was concluded that the using blends of Eudragit L and HPMCAS as enteric film coatings for LSP pellets improved the drug stability and oral bioavailability.
Collapse
|
12
|
Mastropietro DJ, Omidian H. Prevalence and trends of cellulosics in pharmaceutical dosage forms. Drug Dev Ind Pharm 2012; 39:382-92. [DOI: 10.3109/03639045.2012.683874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Lee KN, Ye Y, Carr JH, Karem K, D’Souza MJ. Formulation, pharmacokinetics and biodistribution of Ofloxacin-loaded albumin microparticles and nanoparticles. J Microencapsul 2011; 28:363-9. [DOI: 10.3109/02652048.2011.569766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Enteric-coated tablets improve oral bioavailability of DX-9065, a novel anticoagulant. Eur J Pharm Sci 2011; 42:392-9. [DOI: 10.1016/j.ejps.2011.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/09/2010] [Accepted: 01/10/2011] [Indexed: 11/23/2022]
|
15
|
Sakuma S, Ogura R, Masaoka Y, Kataoka M, Tanno FK, Kokubo H, Yamashita S. Correlation between in vitro dissolution profiles from enteric-coated dosage forms and in vivo absorption in rats for high-solubility and high-permeability model drugs. J Pharm Sci 2009; 98:4141-52. [DOI: 10.1002/jps.21716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|