1
|
Morofuji Y, Nakagawa S. Drug Development for Central Nervous System Diseases Using In vitro Blood-brain Barrier Models and Drug Repositioning. Curr Pharm Des 2020; 26:1466-1485. [PMID: 32091330 PMCID: PMC7499354 DOI: 10.2174/1381612826666200224112534] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
An important goal of biomedical research is to translate basic research findings into practical clinical implementation. Despite the advances in the technology used in drug discovery, the development of drugs for central nervous system diseases remains challenging. The failure rate for new drugs targeting important central nervous system diseases is high compared to most other areas of drug discovery. The main reason for the failure is the poor penetration efficacy across the blood-brain barrier. The blood-brain barrier represents the bottleneck in central nervous system drug development and is the most important factor limiting the future growth of neurotherapeutics. Meanwhile, drug repositioning has been becoming increasingly popular and it seems a promising field in central nervous system drug development. In vitro blood-brain barrier models with high predictability are expected for drug development and drug repositioning. In this review, the recent progress of in vitro BBB models and the drug repositioning for central nervous system diseases will be discussed.
Collapse
Affiliation(s)
- Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
2
|
An In Vitro Barrier Model of the Human Submandibular Salivary Gland Epithelium Based on a Single Cell Clone of Cell Line HTB-41: Establishment and Application for Biomarker Transport Studies. Biomedicines 2020; 8:biomedicines8090302. [PMID: 32842479 PMCID: PMC7555419 DOI: 10.3390/biomedicines8090302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
The blood–saliva barrier (BSB) consists of the sum of the epithelial cell layers of the oral mucosa and salivary glands. In vitro models of the BSB are inevitable to investigate and understand the transport of salivary biomarkers from blood to saliva. Up to now, standardized, cell line-based models of the epithelium of the submandibular salivary gland are still missing for this purpose. Therefore, we established epithelial barrier models of the submandibular gland derived from human cell line HTB-41 (A-253). Single clone isolation resulted in five different clones (B2, B4, B9, D3, and F11). Clones were compared to the parental cell line HTB-41 using measurements of the transepithelial electrical resistance (TEER), paracellular marker permeability assays and analysis of marker expression for acinar, ductal, and myoepithelial cells. Two clones (B9, D3) were characterized to be of acinar origin, one clone (F11) to be of myoepithelial origin and one isolation (B4) derived from two cells, to be presumably a mixture of acinar and ductal origin. Clone B2, presumably of ductal origin, showed a significantly higher paracellular barrier compared to other clones and parental HTB-41. The distinct molecular identity of clone B2 was confirmed by immunofluorescent staining, qPCR, and flow cytometry. Experiments with ferritin, a biomarker for iron storage, demonstrated the applicability of the selected model based on clone B2 for transport studies. In conclusion, five different clones originating from the submandibular gland cell line HTB-41 were successfully characterized and established as epithelial barrier models. Studies with the model based on the tightest clone B2 confirmed its suitability for transport studies in biomarker research.
Collapse
|
3
|
Noe CR, Noe-Letschnig M, Handschuh P, Noe CA, Lanzenberger R. Dysfunction of the Blood-Brain Barrier-A Key Step in Neurodegeneration and Dementia. Front Aging Neurosci 2020; 12:185. [PMID: 32848697 PMCID: PMC7396716 DOI: 10.3389/fnagi.2020.00185] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium in the brain is an essential part of the blood-brain-barrier (BBB) because of its very tight structure to secure a functional and molecular separation of the brain from the rest of the body and to protect neurons from pathogens and toxins. Impaired transport of metabolites across the BBB due to its increasing dysfunction affects brain health and cognitive functioning, thus providing a starting point of neurodegenerative diseases. The term “cerebral metabolic syndrome” is proposed to highlight the importance of lifestyle factors in neurodegeneration and to describe the impact of increasing BBB dysfunction on neurodegeneration and dementia, especially in elderly patients. If untreated, the cerebral metabolic syndrome may evolve into dementia. Due to the high energy demand of the brain, impaired glucose transport across the BBB via glucose transporters as GLUT1 renders the brain increasingly susceptible to neurodegeneration. Apoptotic processes are further supported by the lack of essential metabolites of the phosphocholine synthesis. In Alzheimer’s disease (AD), inflammatory and infectious processes at the BBB increase the dysfunction and might be pace-making events. At this point, the potentially highly relevant role of the thrombocytic amyloid precursor protein (APP) in endothelial inflammation of the BBB is discussed. Chronic inflammatory processes of the BBB transmitted to an increasing number of brain areas might cause a lasting build-up of spreading, pore-forming β-amyloid fragments explaining the dramatic progression of the disease. In the view of the essential requirement of an early diagnosis to investigate and implement causal therapeutic strategies against dementia, brain imaging methods are of great importance. Therefore, status and opportunities in the field of diagnostic imaging of the living human brain will be portrayed, comprising diverse techniques such as positron emissions tomography (PET) and functional magnetic resonance imaging (fMRI) to uncover the patterns of atrophy, protein deposits, hypometabolism, and molecular as well as functional alterations in AD.
Collapse
Affiliation(s)
- Christian R Noe
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | | | - Patricia Handschuh
- Neuroimaging Lab (NIL), Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Chiara Anna Noe
- Department of Otorhinolaryngology, University Clinic St. Poelten, St. Poelten, Austria
| | - Rupert Lanzenberger
- Neuroimaging Lab (NIL), Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Lin GC, Leitgeb T, Vladetic A, Friedl HP, Rhodes N, Rossi A, Roblegg E, Neuhaus W. Optimization of an oral mucosa in vitro model based on cell line TR146. Tissue Barriers 2020; 8:1748459. [PMID: 32314665 PMCID: PMC7549749 DOI: 10.1080/21688370.2020.1748459] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
During the last years, the popularity of saliva has been increasing for its applicability as a diagnostic fluid. Blood biomarker molecules have to cross the blood-saliva barrier (BSB) in order to appear in saliva. The BSB consists of all oral and salivary gland epithelial barriers. Within this context, the optimization of in vitro models for mechanistic studies about the transport of molecules across the oral mucosa is an important task. Here, we describe the optimization and comprehensive characterization of a Transwell model of the oral mucosa based on the epithelial cell line TR146. Through systematic media optimization investigating 12 different set-ups, a significant increase of barrier integrity upon airlift cultivation is described here for TR146 cell layers. The distinct improvement of the paracellular barrier was described by measurements of transepithelial electrical resistance (TEER) and carboxyfluorescein permeability assays. Histological characterization supported TEER data and showed a stratified, non-keratinized multilayer of the optimized TR146 model. High-Throughput qPCR using 96 selected markers for keratinization, cornification, epithelial-mesenchymal transition, aquaporins, mucins, tight junctions, receptors, and transporter proteins was applied to comprehensively characterize the systematic optimization of the cellular model and validate against human biopsy samples. Data revealed the expression of several genes in the oral mucosa epithelium for the first time and elucidated novel regulations dependent on culture conditions. Moreover, functional activity of ABC-transporters ABCB1 and ABCC4 was shown indicating the applicability of the model for drug transport studies. In conclusion, a Transwell model of the oral mucosa epithelium was optimized suitably for transport studies.
Collapse
Affiliation(s)
- Grace C. Lin
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, Austrian Institute of Technology (AIT) GmbH, Vienna, Austria
| | - Tamara Leitgeb
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, Austrian Institute of Technology (AIT) GmbH, Vienna, Austria
| | - Alexandra Vladetic
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, Austrian Institute of Technology (AIT) GmbH, Vienna, Austria
| | - Heinz-Peter Friedl
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, Austrian Institute of Technology (AIT) GmbH, Vienna, Austria
| | - Nadine Rhodes
- Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Würzburg, Germany
| | - Angela Rossi
- Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Würzburg, Germany
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Graz, Austria
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, Austrian Institute of Technology (AIT) GmbH, Vienna, Austria
| |
Collapse
|
5
|
Gerhartl A, Pracser N, Vladetic A, Hendrikx S, Friedl HP, Neuhaus W. The pivotal role of micro-environmental cells in a human blood-brain barrier in vitro model of cerebral ischemia: functional and transcriptomic analysis. Fluids Barriers CNS 2020; 17:19. [PMID: 32138745 PMCID: PMC7059670 DOI: 10.1186/s12987-020-00179-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/21/2020] [Indexed: 02/08/2023] Open
Abstract
Background The blood–brain barrier (BBB) is altered in several diseases of the central nervous system. For example, the breakdown of the BBB during cerebral ischemia in stroke or traumatic brain injury is a hallmark of the diseases’ progression. This functional damage is one key event which is attempted to be mimicked in in vitro models. Recent studies showed the pivotal role of micro-environmental cells such as astrocytes for this barrier damage in mouse stroke in vitro models. The aim of this study was to evaluate the role of micro-environmental cells for the functional, paracellular breakdown in a human BBB cerebral ischemia in vitro model accompanied by a transcriptional analysis. Methods Transwell models with human brain endothelial cell line hCMEC/D3 in mono-culture or co-culture with human primary astrocytes and pericytes or rat glioma cell line C6 were subjected to oxygen/glucose deprivation (OGD). Changes of transendothelial electrical resistance (TEER) and FITC-dextran 4000 permeability were recorded as measures for paracellular tightness. In addition, qPCR and high-throughput qPCR Barrier chips were applied to investigate the changes of the mRNA expression of 38 relevant, expressed barrier targets (tight junctions, ABC-transporters) by different treatments. Results In contrast to the mono-culture, the co-cultivation with human primary astrocytes/pericytes or glioma C6 cells resulted in a significantly increased paracellular permeability after 5 h OGD. This indicated the pivotal role of micro-environmental cells for BBB breakdown in the human model. Hierarchical cluster analysis of qPCR data revealed differently, but also commonly regulated clustered targets dependent on medium exchange, serum reduction, hydrocortisone addition and co-cultivations. Conclusions The co-cultivation with micro-environmental cells is necessary to achieve a functional breakdown of the BBB in the cerebral ischemia model within an in vivo relevant time window. Comprehensive studies by qPCR revealed that distinct expression clusters of barrier markers exist and that these are regulated by different treatments (even by growth medium change) indicating that controls for single cell culture manipulation steps are crucial to understand the observed effects properly.
Collapse
Affiliation(s)
- Anna Gerhartl
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Nadja Pracser
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Alexandra Vladetic
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Sabrina Hendrikx
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Heinz-Peter Friedl
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria.
| |
Collapse
|
6
|
Gerhartl A, Hahn K, Neuhoff A, Friedl HP, Förster CY, Wunder C, Schick M, Burek M, Neuhaus W. Hydroxyethylstarch (130/0.4) tightens the blood-brain barrier in vitro. Brain Res 2019; 1727:146560. [PMID: 31756307 DOI: 10.1016/j.brainres.2019.146560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 02/08/2023]
Abstract
In order to prevent cerebral vasospasm after a subarachnoid hemorrhage (SAH), the so-called triple H-therapy (hypertension, hypervolemia, hemodilution) could be applied. In these cases, colloidal solutions containing Hydroxyethylstarch (HES) are used to induce hypervolemia. The administration of HES is very much under debate for the mentioned use, because in general the application of HES for the treatment of critical ill patients has been reduced tremendously in the last years due to its nephrotoxic effects. In this context, there are limited data investigating the influence of HES on the blood-brain barrier. These data might help to assess if a transient administration of HES is possibly justifiable to prevent cerebral ischemia during vasospasm despite the risk of an acute kidney injury. To address this question, a mouse blood-brain barrier in vitro model based on cell line cerebEND was exposed to different HES concentrations and compared to NaCl-containing control solutions. In order to assess the effects of HES on blood-brain barrier properties, cell viability, transendothelial electrical resistance, permeability of carboxyfluorescein, mRNA and protein expression and localization of tight junction proteins were determined. In summary, 1.5-4% HES attenuated cell viability in a mild, concentration dependent manner compared to the NaCl control solution (0% HES). At the mRNA level 1% and 4% HES significantly increased the expression of tight junction associated proteins (ZO-1 and occludin) and the glucose transporter Glut-1 (Slc2a1). In correspondence to this, 4% HES inhibited breakdown of the paracellular barrier in comparison to the control NaCl group (0% HES) shown by transendothelial electrical resistance values and the permeability of the paracellular marker carboxyfluorescein. These effects at the functional level were confirmed by immunofluorescence microscopic images of junctional proteins. The obtained in vitro data showed a potential for HES to counteract blood-brain barrier damage. Future studies are needed to reveal the applicability of HES as a blood-brain barrier stabilizing agent.
Collapse
Affiliation(s)
- Anna Gerhartl
- AIT - Austrian Institute of Technology GmbH, Center Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Kathrin Hahn
- AIT - Austrian Institute of Technology GmbH, Center Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Anja Neuhoff
- University of Wuerzburg, Department of Anesthesia and Critical Care, Oberduerrbacherstraße 6, 97080 Wuerzburg, Germany
| | - Heinz-Peter Friedl
- AIT - Austrian Institute of Technology GmbH, Center Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Carola Y Förster
- University of Wuerzburg, Department of Anesthesia and Critical Care, Oberduerrbacherstraße 6, 97080 Wuerzburg, Germany
| | - Christian Wunder
- Robert-Bosch-Hospital, Anesthesiology and Intensive Care Medicine, Auerbachstraße 110, 70376 Stuttgart, Germany
| | - Martin Schick
- University of Freiburg, Medical Center, Anesthesiology and Critical Care, Hugstetter Straße 55, 79106 Freiburg im Breisgau, Germany
| | - Malgorzata Burek
- University of Wuerzburg, Department of Anesthesia and Critical Care, Oberduerrbacherstraße 6, 97080 Wuerzburg, Germany
| | - Winfried Neuhaus
- AIT - Austrian Institute of Technology GmbH, Center Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria.
| |
Collapse
|
7
|
Bergman L, Torres-Vergara P, Penny J, Wikström J, Nelander M, Leon J, Tolcher M, Roberts JM, Wikström AK, Escudero C. Investigating Maternal Brain Alterations in Preeclampsia: the Need for a Multidisciplinary Effort. Curr Hypertens Rep 2019; 21:72. [PMID: 31375930 DOI: 10.1007/s11906-019-0977-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW To provide insight into the mechanisms underlying cerebral pathophysiology and to highlight possible methods for evaluation, screening, and surveillance of cerebral complications in preeclampsia. RECENT FINDINGS The pathophysiology of eclampsia remains enigmatic. Animal studies show that the cerebral circulation in pregnancy and preeclampsia might be affected with increased permeability over the blood-brain barrier and altered cerebral blood flow due to impaired cerebral autoregulation. The increased blood pressure cannot be the only underlying cause of eclampsia and cerebral edema, since some cases of eclampsia arise without simultaneous hypertension. Findings from animal studies need to be confirmed in human tissues. Evaluation of brain alterations in preeclampsia and eclampsia is challenging and demands a multidisciplinary collaboration, since no single method can accurately and fully describe how preeclampsia affects the brain. Cerebral complications of preeclampsia are significant factors in maternal morbidity and mortality worldwide. No single method can accurately describe the full picture of how preeclampsia affects the brain vasculature and parenchyma. We recommend an international and multidisciplinary effort not only to overcome the issue of limited sample availability but also to optimize the quality of research.
Collapse
Affiliation(s)
- Lina Bergman
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
- Center for Clinical Research Dalarna, Falun, Uppsala, Sweden.
| | - Pablo Torres-Vergara
- Pharmacy Department, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Johan Wikström
- Department of Radiology, Uppsala University, Uppsala, Sweden
| | - Maria Nelander
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Jose Leon
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis, (LFV-GIANT), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Mary Tolcher
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - James M Roberts
- Magee Womens Research Institute, Dept of Obstetrics Gynecology and Reproductive Sciences, Epidemiology and Clinical and Translational Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna-Karin Wikström
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis, (LFV-GIANT), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile.
| |
Collapse
|
8
|
Neuhaus W, Piontek A, Protze J, Eichner M, Mahringer A, Subileau EA, Lee IFM, Schulzke JD, Krause G, Piontek J. Reversible opening of the blood-brain barrier by claudin-5-binding variants of Clostridium perfringens enterotoxin's claudin-binding domain. Biomaterials 2018; 161:129-143. [DOI: 10.1016/j.biomaterials.2018.01.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 02/06/2023]
|
9
|
Yang S, Jin H, Zhao Z. An ECV304 monoculture model for permeability assessment of blood-brain barrier. Neurol Res 2017; 40:117-121. [PMID: 29100486 DOI: 10.1080/01616412.2017.1398882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE ECV304/C6 co-culture model is a widely used tool for BBB studies. However, cell source may influence the establishment of co-culture model and some C6 cells could damage the barrier integrity. Here, we established an ECV304 monoculture model and evaluated it in the respect of tightness, tight junction proteins and discriminative brain penetration. METHODS The tightness of ECV304 cell layers was evaluated by the measurement of permeability to hydrophilic marker Lucifer yellow. Immunofluorescence method was explored to detect the expression of tight junction proteins occludin, claudin-5 and ZO-1 in ECV304 cells. The discriminative brain penetration of the model was assessed by a permeability testing of compounds with different penetration rates, including digoxin, quinidine, and propranolol. RESULTS The ECV304 monolayers developed low permeability to Lucifer yellow (permeability coefficient: 0.31 ± 0.02 × 10-3 cm/min) and exhibited positive immunostaining of occludin, claudin-5 and ZO-1. The permeability coefficients of high permeable quinidine and propranolol across ECV304 cell layers were higher than that of low permeable digoxin by 3.6 and 2.8-fold, respectively. CONCLUSIONS The ECV304 monoculture model developed tight paracellular barrier and discriminated between compounds with different permeability, indicating it as a potential in vitro model for BBB permeability assessment.
Collapse
Affiliation(s)
- Shu Yang
- a Department of Pharmacy, Beijing Tiantan Hospital , Capital Medical University , Beijing , China
| | - Hong Jin
- b Institute of Disease Prevention and Control of PLA , Beijing , China
| | - Zhigang Zhao
- a Department of Pharmacy, Beijing Tiantan Hospital , Capital Medical University , Beijing , China
| |
Collapse
|
10
|
Yang S, Mei S, Jin H, Zhu B, Tian Y, Huo J, Cui X, Guo A, Zhao Z. Identification of two immortalized cell lines, ECV304 and bEnd3, for in vitro permeability studies of blood-brain barrier. PLoS One 2017; 12:e0187017. [PMID: 29059256 PMCID: PMC5653355 DOI: 10.1371/journal.pone.0187017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/11/2017] [Indexed: 11/18/2022] Open
Abstract
To identify suitable cell lines for a mimetic system of in vivo blood-brain barrier (BBB) for drug permeability assessment, we characterized two immortalized cell lines, ECV304 and bEnd3 in the respect of the tightness, tight junction proteins, P-glycoprotein (P-gp) function and discriminative brain penetration. The ECV304 monoculture achieved higher transendothelial electrical resistance (TEER) and lower permeability to Lucifer yellow than bEnd3. However, co-culture with rat glioma C6 cells impaired the integrity of ECV304 and bEnd3 cell layers perhaps due to the heterogeneity among C6 cells in inducing BBB characteristics. The immunostaining of ZO-1 delivered distinct bands along cell borders on both cell lines while those of occludin and claudin-5 were diffused and weak. P-gp functionality was only proved in bEnd3 by Rhodamine 123 (R123) uptake assay. A permeability test of reference compounds displayed a similar rank order (digoxin < R123 < quinidine, verapamil < propranolol) in ECV304 and bEnd3 cells. In comparison with bEnd3, ECV304 developed tighter barrier for the passage of reference compounds and higher discrimination between transcellular and paracellular transport. However, the monoculture models of ECV304 and bEnd3 fail to achieve the sufficient tightness of in vitro BBB permeability models with high TEER and evident immunostaining of tight junction proteins. Further strategies to enhance the paracellular tightness of both cell lines to mimic in vivo BBB tight barrier deserve to be conducted.
Collapse
Affiliation(s)
- Shu Yang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong Jin
- Institute of Disease Prevention and Control of PLA, Beijing, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Tian
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiping Huo
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xu Cui
- Neurology Research, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Anchen Guo
- Laboratory of Clinical Medicine Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- * E-mail: (ZZ); (AG)
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- * E-mail: (ZZ); (AG)
| |
Collapse
|
11
|
Neuhaus W, Krämer T, Neuhoff A, Gölz C, Thal SC, Förster CY. Multifaceted Mechanisms of WY-14643 to Stabilize the Blood-Brain Barrier in a Model of Traumatic Brain Injury. Front Mol Neurosci 2017; 10:149. [PMID: 28603485 PMCID: PMC5445138 DOI: 10.3389/fnmol.2017.00149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/03/2017] [Indexed: 12/27/2022] Open
Abstract
The blood-brain barrier (BBB) is damaged during ischemic insults such as traumatic brain injury or stroke. This contributes to vasogenic edema formation and deteriorate disease outcomes. Enormous efforts are pursued to understand underlying mechanisms of ischemic insults and develop novel therapeutic strategies. In the present study the effects of PPARα agonist WY-14643 were investigated to prevent BBB breakdown and reduce edema formation. WY-14643 inhibited barrier damage in a mouse BBB in vitro model of traumatic brain injury based on oxygen/glucose deprivation in a concentration dependent manner. This was linked to changes of the localization of tight junction proteins. Furthermore, WY-14643 altered phosphorylation of kinases ERK1/2, p38, and SAPK/JNK and was able to inhibit proteosomal activity. Moreover, addition of WY-14643 upregulated PAI-1 leading to decreased t-PA activity. Mouse in vivo experiments showed significantly decreased edema formation in a controlled cortical impact model of traumatic brain injury after WY-14643 application, which was not found in PAI-1 knockout mice. Generally, data suggested that WY-14643 induced cellular responses which were dependent as well as independent from PPARα mediated transcription. In conclusion, novel mechanisms of a PPARα agonist were elucidated to attenuate BBB breakdown during traumatic brain injury in vitro.
Collapse
Affiliation(s)
- Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Competence Center Health and Bioresources, AIT Austrian Institute of Technology (AIT) GmbHVienna, Austria
| | - Tobias Krämer
- Department of Anesthesiology, Medical Center of Johannes Gutenberg University of MainzMainz, Germany
| | - Anja Neuhoff
- Department of Anesthesia and Critical Care, Center of Operative Medicine, University Hospital WürzburgWürzburg, Germany
| | - Christina Gölz
- Department of Anesthesiology, Medical Center of Johannes Gutenberg University of MainzMainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, Medical Center of Johannes Gutenberg University of MainzMainz, Germany
| | - Carola Y Förster
- Department of Anesthesia and Critical Care, Center of Operative Medicine, University Hospital WürzburgWürzburg, Germany
| |
Collapse
|
12
|
Kaur M, Badhan RKS. Phytochemical mediated-modulation of the expression and transporter function of breast cancer resistance protein at the blood-brain barrier: An in-vitro study. Brain Res 2016; 1654:9-23. [PMID: 27771282 DOI: 10.1016/j.brainres.2016.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 01/29/2023]
Abstract
Clinical translation of BCRP inhibitors have failed due to neurotoxicity and novel approaches are required to identify suitable modulators of BCRP to enhance CNS drug delivery. In this study we examine 18 compounds, primarily phytochemicals, as potential novel modulators of AhR-mediated regulation of BCRP expression and function in immortalised and primary porcine brain microvascular endothelial cells as a mechanism to enhance CNS drug delivery. The majority of modulators possessed a cellular viability IC50 >100µm in both cell systems. BCRP activity, when exposed to modulators for 1h, was diminished for most modulators through significant increases in H33342 accumulation at <10µm with 2,6,4-trimethoflavone increasing H33342 intracellular accumulation by 3.7-6.6 fold over 1-100µm. Western blotting and qPCR identified two inducers of BCRP (quercetin and naringin) and two down-regulators (17-β-estradiol and curcumin) with associated changes in BCRP efflux transport function further confirmed in both cell lines. siRNA downregulation of AhR resulted in a 1.75±0.08 fold change in BCRP expression, confirming the role of AhR in the regulation of BCRP. These findings establish the regulatory role AhR of in controlling BCRP expression at the BBB and confirm quercetin, naringin, 17-β-estradiol, and curcumin as novel inducers and down-regulators of BCRP gene, protein expression and functional transporter activity and hence potential novel target sites and candidates for enhancing CNS drug delivery.
Collapse
Affiliation(s)
- Manjit Kaur
- Aston University, Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Birmingham B4 7ET, UK
| | - Raj K S Badhan
- Aston University, Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Birmingham B4 7ET, UK.
| |
Collapse
|
13
|
Odijk M, van der Meer AD, Levner D, Kim HJ, van der Helm MW, Segerink LI, Frimat JP, Hamilton GA, Ingber DE, van den Berg A. Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems. LAB ON A CHIP 2015; 15:745-52. [PMID: 25427650 DOI: 10.1039/c4lc01219d] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Trans-epithelial electrical resistance (TEER) measurements are widely used as real-time, non-destructive, and label-free measurements of epithelial and endothelial barrier function. TEER measurements are ideal for characterizing tissue barrier function in organs-on-chip studies for drug testing and investigation of human disease models; however, published reports using this technique have reported highly conflicting results even with identical cell lines and experimental setups. The differences are even more dramatic when comparing measurements in conventional Transwell systems with those obtained in microfluidic systems. Our goal in this work was therefore to enhance the fidelity of TEER measurements in microfluidic organs-on-chips, specifically using direct current (DC) measurements of TEER, as this is the most widely used method reported in the literature. Here we present a mathematical model that accounts for differences measured in TEER between microfluidic chips and Transwell systems, which arise from differences in device geometry. The model is validated by comparing TEER measurements obtained in a microfluidic gut-on-a-chip device versus in a Transwell culture system. Moreover, we show that even small gaps in cell coverage (e.g., 0.4%) are sufficient to cause a significant (~80%) drop in TEER. Importantly, these findings demonstrate that TEER measurements obtained in microfluidic systems, such as organs-on-chips, require special consideration, specifically when results are to be compared with measurements obtained from Transwell systems.
Collapse
Affiliation(s)
- Mathieu Odijk
- BIOS/Lab-on-Chip Group, MESA+ Institute for Nanotechnology & MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Neuhaus W, Gaiser F, Mahringer A, Franz J, Riethmüller C, Förster C. The pivotal role of astrocytes in an in vitro stroke model of the blood-brain barrier. Front Cell Neurosci 2014; 8:352. [PMID: 25389390 PMCID: PMC4211409 DOI: 10.3389/fncel.2014.00352] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/07/2014] [Indexed: 12/14/2022] Open
Abstract
Stabilization of the blood-brain barrier during and after stroke can lead to less adverse outcome. For elucidation of underlying mechanisms and development of novel therapeutic strategies validated in vitro disease models of the blood-brain barrier could be very helpful. To mimic in vitro stroke conditions we have established a blood-brain barrier in vitro model based on mouse cell line cerebEND and applied oxygen/glucose deprivation (OGD). The role of astrocytes in this disease model was investigated by using cell line C6. Transwell studies pointed out that addition of astrocytes during OGD increased the barrier damage significantly in comparison to the endothelial monoculture shown by changes of transendothelial electrical resistance as well as fluorescein permeability data. Analysis on mRNA and protein levels by qPCR, western blotting and immunofluorescence microscopy of tight junction molecules claudin-3,-5,-12, occludin and ZO-1 revealed that their regulation and localisation is associated with the functional barrier breakdown. Furthermore, soluble factors of astrocytes, OGD and their combination were able to induce changes of functionality and expression of ABC-transporters Abcb1a (P-gp), Abcg2 (bcrp), and Abcc4 (mrp4). Moreover, the expression of proteases (matrixmetalloproteinases MMP-2, MMP-3, MMP-9, and t-PA) as well as of their endogenous inhibitors (TIMP-1, TIMP-3, PAI-1) was altered by astrocyte factors and OGD which resulted in significant changes of total MMP and t-PA activity. Morphological rearrangements induced by OGD and treatment with astrocyte factors were confirmed at a nanometer scale using atomic force microscopy. In conclusion, astrocytes play a major role in blood-brain barrier breakdown during OGD in vitro.
Collapse
Affiliation(s)
- Winfried Neuhaus
- Department of Pharmaceutical Chemistry, University of Vienna Vienna, Austria ; Department of Anesthesia and Critical Care, University Hospital Würzburg Würzburg, Germany
| | - Fabian Gaiser
- Department of Anesthesia and Critical Care, University Hospital Würzburg Würzburg, Germany
| | - Anne Mahringer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg Heidelberg, Germany
| | - Jonas Franz
- Serend-ip GmbH, Centre for Nanotechnology Münster, Germany
| | | | - Carola Förster
- Department of Anesthesia and Critical Care, University Hospital Würzburg Würzburg, Germany
| |
Collapse
|
15
|
Booth R, Kim H. Permeability analysis of neuroactive drugs through a dynamic microfluidic in vitro blood-brain barrier model. Ann Biomed Eng 2014; 42:2379-91. [PMID: 25118670 DOI: 10.1007/s10439-014-1086-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/01/2014] [Indexed: 01/17/2023]
Abstract
This paper presents the permeability analysis of neuroactive drugs and correlation with in vivo brain/plasma ratios in a dynamic microfluidic blood-brain barrier (BBB) model. Permeability of seven neuroactive drugs (Ethosuximide, Gabapentin, Sertraline, Sunitinib, Traxoprodil, Varenicline, PF-304014) and trans-endothelial electrical resistance (TEER) were quantified in both dynamic (microfluidic) and static (transwell) BBB models, either with brain endothelial cells (bEnd.3) in monoculture, or in co-culture with glial cells (C6). Dynamic cultures were exposed to 15 dyn/cm(2) shear stress to mimic the in vivo environment. Dynamic models resulted in significantly higher average TEER (respective 5.9-fold and 8.9-fold increase for co-culture and monoculture models) and lower drug permeabilities (average respective decrease of 0.050 and 0.052 log(cm/s) for co-culture and monoculture) than static models; and co-culture models demonstrated higher average TEER (respective 90 and 25% increase for static and dynamic models) and lower drug permeability (average respective decrease of 0.063 and 0.061 log(cm/s) for static and dynamic models) than monoculture models. Correlation of the resultant logP e values [ranging from -4.06 to -3.63 log(cm/s)] with in vivo brain/plasma ratios (ranging from 0.42 to 26.8) showed highly linear correlation (R (2) > 0.85) for all model conditions, indicating the feasibility of the dynamic microfluidic BBB model for prediction of BBB clearance of pharmaceuticals.
Collapse
Affiliation(s)
- R Booth
- Department of Bioengineering, University of Utah, SMBB 3100, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA,
| | | |
Collapse
|
16
|
Bicker J, Alves G, Fortuna A, Falcão A. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Eur J Pharm Biopharm 2014; 87:409-32. [PMID: 24686194 DOI: 10.1016/j.ejpb.2014.03.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 03/13/2014] [Accepted: 03/20/2014] [Indexed: 02/05/2023]
Abstract
During the research and development of new drugs directed at the central nervous system, there is a considerable attrition rate caused by their hampered access to the brain by the blood-brain barrier. Throughout the years, several in vitro models have been developed in an attempt to mimic critical functionalities of the blood-brain barrier and reliably predict the permeability of drug candidates. However, the current challenge lies in developing a model that retains fundamental blood-brain barrier characteristics and simultaneously remains compatible with the high throughput demands of pharmaceutical industries. This review firstly describes the roles of all elements of the neurovascular unit and their influence on drug brain penetration. In vitro models, including non-cell based and cell-based models, and in vivo models are herein presented, with a particular emphasis on their methodological aspects. Lastly, their contribution to the improvement of brain drug delivery strategies and drug transport across the blood-brain barrier is also discussed.
Collapse
Affiliation(s)
- Joana Bicker
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Gilberto Alves
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Ana Fortuna
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Novakova I, Subileau EA, Toegel S, Gruber D, Lachmann B, Urban E, Chesne C, Noe CR, Neuhaus W. Transport rankings of non-steroidal antiinflammatory drugs across blood-brain barrier in vitro models. PLoS One 2014; 9:e86806. [PMID: 24466249 PMCID: PMC3900635 DOI: 10.1371/journal.pone.0086806] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/11/2013] [Indexed: 11/19/2022] Open
Abstract
The aim of this work was to conduct a comprehensive study about the transport properties of NSAIDs across the blood-brain barrier (BBB) in vitro. Transport studies with celecoxib, diclofenac, ibuprofen, meloxicam, piroxicam and tenoxicam were accomplished across Transwell models based on cell line PBMEC/C1-2, ECV304 or primary rat brain endothelial cells. Single as well as group substance studies were carried out. In group studies substance group compositions, transport medium and serum content were varied, transport inhibitors verapamil and probenecid were added. Resulted permeability coefficients were compared and normalized to internal standards diazepam and carboxyfluorescein. Transport rankings of NSAIDs across each model were obtained. Single substance studies showed similar rankings as corresponding group studies across PBMEC/C1-2 or ECV304 cell layers. Serum content, glioma conditioned medium and inhibitors probenecid and verapamil influenced resulted permeability significantly. Basic differences of transport properties of the investigated NSAIDs were similar comparing all three in vitro BBB models. Different substance combinations in the group studies and addition of probenecid and verapamil suggested that transporter proteins are involved in the transport of every tested NSAID. Results especially underlined the importance of same experimental conditions (transport medium, serum content, species origin, cell line) for proper data comparison.
Collapse
Affiliation(s)
- Iveta Novakova
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | | | - Stefan Toegel
- Department of Orthopedics, Medical University Vienna, Vienna, Austria
| | - Daniela Gruber
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Bodo Lachmann
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Ernst Urban
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | | | - Christian R. Noe
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Winfried Neuhaus
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
- Department of Anesthesia and Critical Care, University Hospital Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
18
|
Watson PMD, Paterson JC, Thom G, Ginman U, Lundquist S, Webster CI. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier. BMC Neurosci 2013; 14:59. [PMID: 23773766 PMCID: PMC3694476 DOI: 10.1186/1471-2202-14-59] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 06/05/2013] [Indexed: 12/16/2022] Open
Abstract
Background Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Methods Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Results Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS endothelial cell types can be obtained, and these can be passaged onto large numbers of cell culture inserts for in vitro permeability studies. The passaged brain and spinal cord endothelial cells are pure and express endothelial markers, tight junction proteins and intracellular transport machinery. Further, both models exhibit tight, functional barrier characteristics that are discriminating against large and small molecules in permeability assays and show functional expression of the pharmaceutically important P-gp efflux transporter. Conclusions Our techniques allow the provision of high yields of robust sister cultures of endothelial cells that accurately model the blood-CNS barriers in vitro. These models are ideally suited for use in studying the biology of the blood-brain barrier and blood-spinal cord barrier in vitro and for pre-clinical drug discovery.
Collapse
|
19
|
Neuhaus W, Samwer F, Kunzmann S, Muellenbach RM, Wirth M, Speer CP, Roewer N, Förster CY. Lung endothelial cells strengthen, but brain endothelial cells weaken barrier properties of a human alveolar epithelium cell culture model. Differentiation 2012; 84:294-304. [PMID: 23023065 DOI: 10.1016/j.diff.2012.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 08/21/2012] [Accepted: 08/24/2012] [Indexed: 01/11/2023]
Abstract
The blood-air barrier in the lung consists of the alveolar epithelium, the underlying capillary endothelium, their basement membranes and the interstitial space between the cell layers. Little is known about the interactions between the alveolar and the blood compartment. The aim of the present study was to gain first insights into the possible interplay between these two neighbored cell layers. We established an in vitro Transwell model of the alveolar epithelium based on human cell line H441 and investigated the influence of conditioned medium obtained from human lung endothelial cell line HPMEC-ST1.6R on the barrier properties of the H441 layers. As control for tissue specificity H441 layers were exposed to conditioned medium from human brain endothelial cell line hCMEC/D3. Addition of dexamethasone was necessary to obtain stable H441 cell layers. Moreover, dexamethasone increased expression of cell type I markers (caveolin-1, RAGE) and cell type II marker SP-B, whereas decreased the transepithelial electrical resistance (TEER) in a concentration dependent manner. Soluble factors obtained from the lung endothelial cell line increased the barrier significantly proven by TEER values and fluorescein permeability on the functional level and by the differential expression of tight junctional proteins on the molecular level. In contrast to this, soluble factors derived from brain endothelial cells weakened the barrier significantly. In conclusion, soluble factors from lung endothelial cells can strengthen the alveolar epithelium barrier in vitro, which suggests communication between endothelial and epithelial cells regulating the integrity of the blood-air barrier.
Collapse
Affiliation(s)
- Winfried Neuhaus
- Department of Anaesthesia and Critical Care, University Hospital Wuerzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Reimer J, Bien S, Ameling S, Hammer E, Völker U, Hempel G, Boos J, Kroemer HK, Ritter CA. Antineoplastic agent busulfan regulates a network of genes related to coagulation and fibrinolysis. Eur J Clin Pharmacol 2012; 68:923-35. [PMID: 22286157 DOI: 10.1007/s00228-011-1209-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/29/2011] [Indexed: 11/28/2022]
Abstract
Purpose Hepatic veno-occlusive disease (HVOD) is one of the major complications following hematopoietic stem cell transplantation (HSCT). Although high-dose busulfan is associated with the development of HVOD, the underlying molecular mechanisms are still unknown.Methods Transcriptional gene regulation by busulfan was profiled using Affymetrix GeneChip® Human Genome U133 Plus 2.0 arrays. Messenger RNA (mRNA) expression of regulated genes was assessed by TaqMan real-time polymerase chain reaction (PCR), and protein expression and secretion was determined by enzyme-linked immunosorbent assay (ELISA)in cell supernatants, lysates, and patient plasma.Results Plasma levels of plasminogen activator inhibitor(PAI)-1 significantly increased 48 h after starting busulfan treatment IV in children preconditioned for HSCT. In vitro,busulfan significantly induced plasminogen activator inhibitor-1 (PAI-1) expression in endothelium-like ECV304 cells in a concentration- and time-dependent manner. Comparative transcriptional profiling of busulfan-treated and control ECV304 cells identified differential expression of genes related to coagulation and fibrinolysis, including tissue factor, tissue factor pathway inhibitor-1, protein S, thrombospondin-1, urokinase receptor, and PAI-1, as well as activin A and transforming growth factor beta 1 (TGF-β1). Ingenuity pathway analysis (IPA) suggested TGF-β1 as a central modulator of gene regulation by busulfan. Consequently, expression of tissue factor, urokinase receptor, and PAI-1 mRNA and PAI-1 protein secretion induced by busulfan were significantly reduced by the activin A/TGF-β1 inhibitor SB 431542 in ECV304 and primary endothelial cells.Conclusions This is the first report that directly relates busulfan exposure to antifibrinolytic activity by PAI-1 and hypercoagulation possibly mediated by members of the TGF-β1 family. This suggests further research to evaluate activin A and TGF-β1 as potential targets for HVOD treatment.
Collapse
Affiliation(s)
- Janka Reimer
- Research Center of Pharmacology and Experimental Therapeutics,Department of Pharmacology, Ernst-Moritz-Arndt-Universityof Greifswald,Greifswald, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). LAB ON A CHIP 2012; 12:1784-92. [PMID: 22422217 DOI: 10.1039/c2lc40094d] [Citation(s) in RCA: 500] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The blood-brain barrier (BBB), a unique selective barrier for the central nervous system (CNS), hinders the passage of most compounds to the CNS, complicating drug development. Innovative in vitro models of the BBB can provide useful insights into its role in CNS disease progression and drug delivery. Static transwell models lack fluidic shear stress, while the conventional dynamic in vitro BBB lacks a thin dual cell layer interface. To address both limitations, we developed a microfluidic blood-brain barrier (μBBB) which closely mimics the in vivo BBB with a dynamic environment and a comparatively thin culture membrane (10 μm). To test validity of the fabricated BBB model, μBBBs were cultured with b.End3 endothelial cells, both with and without co-cultured C8-D1A astrocytes, and their key properties were tested with optical imaging, trans-endothelial electrical resistance (TEER), and permeability assays. The resultant imaging of ZO-1 revealed clearly expressed tight junctions in b.End3 cells, Live/Dead assays indicated high cell viability, and astrocytic morphology of C8-D1A cells were confirmed by ESEM and GFAP immunostains. By day 3 of endothelial culture, TEER levels typically exceeded 250 Ω cm(2) in μBBB co-cultures, and 25 Ω cm(2) for transwell co-cultures. Instantaneous transient drop in TEER in response to histamine exposure was observed in real-time, followed by recovery, implying stability of the fabricated μBBB model. Resultant permeability coefficients were comparable to previous BBB models, and were significantly increased at higher pH (>10). These results demonstrate that the developed μBBB system is a valid model for some studies of BBB function and drug delivery.
Collapse
Affiliation(s)
- Ross Booth
- Department of Bioengineering, University of Utah, MEB-1445, 50 S Central Campus Dr, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
22
|
Quantitative analysis of molecular absorption into PDMS microfluidic channels. Ann Biomed Eng 2012; 40:1862-73. [PMID: 22484830 DOI: 10.1007/s10439-012-0562-z] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/27/2012] [Indexed: 01/07/2023]
Abstract
Microfluidic devices fabricated using poly(dimethylsiloxane) (PDMS) polymer are routinely used for in vitro cell culture for a wide range of cellular assays. These assays typically involve the incubation of cultured cells with a drug molecule or a fluorescent marker while monitoring a cellular response. The accuracy of these assays depends on achieving a consistent and reproducible concentration of solute molecules in solution. However, hydrophobic therapeutic and fluorescent molecules tend to diffuse into the PDMS walls of the microfluidic devices, which reduce their concentration in solution and consequently affect the accuracy and reliability of these assays. In this paper, we quantitatively investigate the relationship between the partition coefficient (log P) of a series of markers routinely used in in vitro cellular assays including [3H]-dexamethasone, [3H]-diazepam, [14C]-mannitol, [3H]-phenytoin, and rhodamine 6G and their absorption into PDMS microfluidic channels. Our results show that the absorption of a given solute into PDMS depends on the hydrophilic/hydrophobic balance defined by its log P value. Specifically, results demonstrate that molecules with log P less than 2.47 exhibit minimal absorption (<10%) into PDMS channels whereas molecules with log P larger than 2.62 exhibit extensive absorption (>90%) into PDMS channels. Further investigations showed that TiO(2) and glass coatings of PDMS channels reduced the absorption of hydrophobic molecules (log P > 2.62) by 2- and 4.5-folds, respectively.
Collapse
|
23
|
Rodriguez-Gaztelumendi A, Alvehus M, Andersson T, Jacobsson SOP. Comparison of the effects of nicotine upon the transcellular electrical resistance and sucrose permeability of human ECV304/rat C6 co-cultures and human CaCo₂ cells. Toxicol Lett 2011; 207:1-6. [PMID: 21889975 DOI: 10.1016/j.toxlet.2011.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 01/31/2023]
Abstract
It is now well established that nicotine adversely affects the integrity of the blood-brain barrier (BBB). In contrast, nicotine has been reported to increase the transendothelial electrical resistance (TEER) of CaCo₂ colon cancer cells. In the present study, the effects of nicotine upon the TEER and sucrose permeability of ECV304/C6 co-cultures and, for comparative purposes, CaCo₂ cells has been investigated. Neither ECV304 nor C6 cells were found to express measurable membrane levels of nicotinic acetylcholine receptors, as assessed by [³H]-epibatidine binding. Nicotine treatment (0.01-1 μM) for up to 48 h had little or no effect upon the TEER or sucrose permeability of either ECV304/C6 co-cultures or CaCo₂ cells. It is concluded that in contrast to the situation for the BBB, ECV304 cells lack nicotinic acetylcholine receptors and the barrier properties of ECV304/C6 co-cultures are not affected to any important extent by nicotine. This study underlines the conclusions made by other authors that the ECV304/C6 co-culture system is of limited validity as a model of the BBB.
Collapse
|
24
|
Neuhaus W, Freidl M, Szkokan P, Berger M, Wirth M, Winkler J, Gabor F, Pifl C, Noe CR. Effects of NMDA receptor modulators on a blood-brain barrier in vitro model. Brain Res 2011; 1394:49-61. [PMID: 21549356 DOI: 10.1016/j.brainres.2011.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/21/2011] [Accepted: 04/01/2011] [Indexed: 01/29/2023]
Abstract
Changes of the functionality of the blood-brain barrier (BBB) have been reported in the context of several brain related diseases such as multiple sclerosis, epilepsy, Alzheimer's disease and stroke. Several publications indicated the presence and functionality of the NMDA receptor (NMDAR) at the brain endothelium and a possible involvement of the NMDAR in the above-mentioned diseases. Recently, it was shown that the application of the NMDAR antagonist MK801 can block several adverse effects at the BBB in vitro, but also that MK801 can significantly change the proteome of brain endothelial cells without simultaneous stimulation of NMDAR by glutamate. Based on these reports we investigated if NMDAR antagonists MK801 and D-APV can affect the intracellular calcium level (Ca²⁺i) of an in vitro BBB model based on human cell line ECV304 on their own and compared these results to effects mediated by NMDAR agonists glutamate and NMDA. Treatment of ECV304 cells for 30 min with glutamate resulted in no significant change of Ca²⁺i. On the contrary, application of NMDA and NMDAR antagonists D-APV and MK801 led to a significant and concentration dependent decrease of Ca²⁺i. Further studies revealed that glutamate was able to decrease the transendothelial electrical resistance (TEER) of the BBB in vitro model, whereas NMDA and D-APV were able to increase TEER. Analysis of the protein expression levels of tight junctional molecules ZO-1 and occludin showed a complex regulation after application of NMDAR modulators. In summary, it was shown that NMDAR antagonists can alter BBB key properties in vitro on their own. Moreover, although qPCR results confirmed the presence of NMDA receptor subunits NR1, NR2A, NR2B and NR2C, membrane binding studies failed to prove the typical plasma membrane localization and functionality in human BBB cell line ECV304.
Collapse
Affiliation(s)
- Winfried Neuhaus
- Department of Anaesthesia and Critical Care, University Hospital Würzburg, Oberdürrbacherstrasse 6, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yao Y, Tsirka SE. Truncation of monocyte chemoattractant protein 1 by plasmin promotes blood-brain barrier disruption. J Cell Sci 2011; 124:1486-95. [PMID: 21486949 DOI: 10.1242/jcs.082834] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Previous studies have shown that plasmin cleaves monocyte chemoattractant protein 1 (MCP1; officially known as C-C motif chemokine 2, CCL2) at K104, and this cleavage enhances its chemotactic potency significantly. Accumulating evidence reveals that MCP1 also disrupts the integrity of the blood-brain barrier (BBB). Here, we show that K104Stop-MCP1, truncated at the K104 where plasmin would normally cleave, is more efficient than the full-length protein (FL-MCP1) in compromising the integrity of the BBB in in vitro and in vivo models. K104Stop-MCP1 increases the permeability of BBB in both wild-type mice and mice deficient for tissue plasminogen activator (tPA), which converts plasminogen into active plasmin, suggesting that plasmin-mediated truncation of MCP1 plays an important role in BBB compromise. Furthermore, we show that the mechanisms underlying MCP1-induced BBB disruption involve redistribution of tight junction proteins (occludin and ZO-1) and reorganization of the actin cytoskeleton. Finally, we show that the redistribution of ZO-1 is mediated by phosphorylation of ezrin-radixin-moesin (ERM) proteins. These findings identify plasmin as a key signaling molecule in the regulation of BBB integrity and suggest that plasmin inhibitors might be used to modulate diseases accompanied by BBB compromise.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | | |
Collapse
|
26
|
Lopez-Quintero SV, Datta A, Amaya R, Elwassif M, Bikson M, Tarbell JM. DBS-relevant electric fields increase hydraulic conductivity of in vitro endothelial monolayers. J Neural Eng 2010; 7:16005. [PMID: 20075507 DOI: 10.1088/1741-2560/7/1/016005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Deep brain stimulation (DBS) achieves therapeutic outcome through generation of electric fields (EF) in the vicinity of energized electrodes. Targeted brain regions are highly vascularized, and it remains unknown if DBS electric fields modulate blood-brain barrier (BBB) function, either through electroporation of individual endothelial cells or electro-permeation of barrier tight junctions. In our study, we calculated the intensities of EF generated around energized Medtronic 3387 and 3389 DBS leads by using a finite element model. Then we designed a novel stimulation system to study the effects of such fields with DBS-relevant waveforms and intensities on bovine aortic endothelial cell (BAEC) monolayers, which were used as a basic analog for the blood-brain barrier endothelium. Following 5 min of stimulation, we observed a transient increase in endothelial hydraulic conductivity (Lp) that could be related to the disruption of the tight junctions (TJ) between cells, as suggested by zonula occludens-1 (ZO-1) protein staining. This 'electro-permeation' occurred in the absence of cell death or single cell electroporation, as indicated by propidium iodide staining and cytosolic calcein uptake. Our in vitro results, using uniform fields and BAEC monolayers, thus suggest that electro-permeation of the BBB may occur at electric field intensities below those inducing electroporation and within intensities generated near DBS electrodes. Further studies are necessary to address potential BBB disruption during clinical studies, with safety and efficacy implications.
Collapse
Affiliation(s)
- S V Lopez-Quintero
- Department of Biomedical Engineering, The City College of New York of CUNY, Room T-403b, Steinman Hall, 160 Convent Avenue, New York, NY 10031, USA
| | | | | | | | | | | |
Collapse
|
27
|
Plattner VE, Germann B, Neuhaus W, Noe CR, Gabor F, Wirth M. Characterization of two blood-brain barrier mimicking cell lines: distribution of lectin-binding sites and perspectives for drug delivery. Int J Pharm 2009; 387:34-41. [PMID: 19963051 DOI: 10.1016/j.ijpharm.2009.11.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 11/28/2009] [Indexed: 11/16/2022]
Abstract
In the present study plant lectins with distinct sugar specificities were applied to two blood-brain barrier (BBB) mimicking cell lines, namely human ECV304 and porcine brain microvascular endothelial cells PBMEC/C1-2 in order to elucidate their glycosylation pattern and to evaluate the lectin-cell interaction for lectin-mediated targeting. The bioadhesive properties of fluorescein-labeled lectins were investigated with monolayers as well as single cells using fluorimetry and flow cytometry, followed by confirmation of the specificity of binding. For PBMEC/C1-2 layers highest binding capacity was found for wheat germ agglutinin (WGA), followed by Dolichus biflorus agglutinin (DBA) whereas single cell experiments revealed a predominance of DBA only. Analyzing ECV304 monolayers and single cells, WGA yielded the strongest interaction without any changes during cultivation. The binding capacities of the other lectins increased significantly during differentiation. As similar results to primary cells and brain sections were observed, both cell lines seem to be suitable as models for lectin-interaction studies. Thus, an additional focus was set on the mechanisms involved in uptake and intracellular fate of selected lectins. Cytoinvasion studies were performed with WGA for human ECV304 cells and WGA as well as DBA for PBMEC/C1-2 cells. For both lectins, the association rate to the cells was dependent on temperature which indicated cellular uptake.
Collapse
Affiliation(s)
- V E Plattner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
28
|
Neuhaus W, Stessl M, Strizsik E, Bennani-Baiti B, Wirth M, Toegel S, Modha M, Winkler J, Gabor F, Viernstein H, Noe CR. Blood-brain barrier cell line PBMEC/C1-2 possesses functionally active P-glycoprotein. Neurosci Lett 2009; 469:224-8. [PMID: 19963040 DOI: 10.1016/j.neulet.2009.11.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
The blood-brain barrier (BBB) maintains the homeostasis between the central nervous system and the blood circulation. One of the main efflux transporter proteins at the BBB is P-glycoprotein (P-gP) also known as ABCB1 or MDR1. Due to the important role of P-gP for the transport barrier function of the BBB, the presence and functionality of P-gP was investigated in porcine cell line PBMEC/C1-2. Presence of P-gP was confirmed on the protein level by western blotting and immunofluorescence microscopy as well as on the mRNA level by qPCR. Functional assessment was accomplished by an established 96-well uptake assay using Rhodamine 123 and Doxorubicin as P-gP substrates and Verapamil as moderate P-gP inhibitor. In this regard, fluorescence microscopy confirmed a significant higher uptake of Rhodamine 123 into PBMEC/C1-2 cells when preincubated with Verapamil. Finally, knock-down of P-gP by antisense oligonucleotides revealed an increase of Rhodamine 123 uptake indicating decreased P-gP functionality. In summary, the presence and functionality of P-gP in the immortalised cell line PBMEC/C1-2 was proven with several techniques and assays. Thus, this cell line could be used for P-gP studies in the context of BBB relevant issues.
Collapse
|
29
|
Alteration of the glycocalyx of two blood-brain barrier mimicking cell lines is inducible by glioma conditioned media. Brain Res 2009; 1279:82-9. [DOI: 10.1016/j.brainres.2009.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 04/30/2009] [Accepted: 05/03/2009] [Indexed: 11/19/2022]
|