1
|
Novel insights in linking solvent relaxation dynamics and protein conformations utilizing red edge excitation shift approach. Emerg Top Life Sci 2021; 5:89-101. [PMID: 33416893 DOI: 10.1042/etls20200256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/01/2023]
Abstract
Protein hydration dynamics plays an important role in many physiological processes since protein fluctuations, slow solvation, and the dynamics of hydrating water are all intrinsically related. Red edge excitation shift (REES) is a unique and powerful wavelength-selective (i.e. excitation-energy dependent) fluorescence approach that can be used to directly monitor the environment-induced restriction and dynamics around a polar fluorophore in a complex biological system. This review is mainly focused on recent applications of REES and a novel analysis of REES data to monitor the structural dynamics, functionally relevant conformational transitions and to unmask the structural ensembles in proteins. In addition, the novel utility of REES in imaging protein aggregates in a cellular context is discussed. We believe that the enormous potential of REES approach showcased in this review will engage more researchers, particularly from life sciences.
Collapse
|
2
|
Kamerzell TJ, Middaugh CR. Prediction Machines: Applied Machine Learning for Therapeutic Protein Design and Development. J Pharm Sci 2020; 110:665-681. [PMID: 33278409 DOI: 10.1016/j.xphs.2020.11.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
The rapid growth in technological advances and quantity of scientific data over the past decade has led to several challenges including data storage and analysis. Accurate models of complex datasets were previously difficult to develop and interpret. However, improvements in machine learning algorithms have since enabled unparalleled classification and prediction capabilities. The application of machine learning can be seen throughout diverse industries due to their ease of use and interpretability. In this review, we describe popular machine learning algorithms and highlight their application in pharmaceutical protein development. Machine learning models have now been applied to better understand the nonlinear concentration dependent viscosity of protein solutions, predict protein oxidation and deamidation rates, classify sub-visible particles and compare the physical stability of proteins. We also applied several machine learning algorithms using previously published data and describe models with improved predictions and classification. The authors hope that this review can be used as a resource to others and encourage continued application of machine learning algorithms to problems in pharmaceutical protein development.
Collapse
Affiliation(s)
- Tim J Kamerzell
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA; Division of Internal Medicine, HCA MidWest Health, Overland Park, KS, USA.
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA
| |
Collapse
|
3
|
Somani S, Jo S, Thirumangalathu R, Rodrigues D, Tanenbaum LM, Amin K, MacKerell AD, Thakkar SV. Toward Biotherapeutics Formulation Composition Engineering using Site-Identification by Ligand Competitive Saturation (SILCS). J Pharm Sci 2020; 110:1103-1110. [PMID: 33137372 DOI: 10.1016/j.xphs.2020.10.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
Formulation of protein-based therapeutics employ advanced formulation and analytical technologies for screening various parameters such as buffer, pH, and excipients. At a molecular level, physico-chemical properties of a protein formulation depend on self-interaction between protein molecules, protein-solvent and protein-excipient interactions. This work describes a novel in silico approach, SILCS-Biologics, for structure-based modeling of protein formulations. SILCS Biologics is based on the Site-Identification by Ligand Competitive Saturation (SILCS) technology and enables modeling of interactions among different components of a formulation at an atomistic level while accounting for protein flexibility. It predicts potential hotspot regions on the protein surface for protein-protein and protein-excipient interactions. Here we apply SILCS-Biologics on a Fab domain of a monoclonal antibody (mAbN) to model Fab-Fab interactions and interactions with three amino acid excipients, namely, arginine HCl, proline and lysine HCl. Experiments on 100 mg/ml formulations of mAbN showed that arginine increased, lysine reduced, and proline did not impact viscosity. We use SILCS-Biologics modeling to explore a structure-based hypothesis for the viscosity modulating effect of these excipients. Current efforts are aimed at further validation of this novel computational framework and expanding the scope to model full mAb and other protein therapeutics.
Collapse
Affiliation(s)
- Sandeep Somani
- Discovery Sciences, Janssen Research and Development (Janssen R&D), Spring House, PA 19477, USA
| | | | - Renuka Thirumangalathu
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, PA 19355, USA
| | - Danika Rodrigues
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, PA 19355, USA
| | - Laura M Tanenbaum
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, PA 19355, USA
| | - Ketan Amin
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, PA 19355, USA
| | - Alexander D MacKerell
- SilcsBio LLC, Baltimore, MD 21202, USA; Computer-Aided Drug Design Center, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA.
| | - Santosh V Thakkar
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, PA 19355, USA; BioTherapeutics Cell and Developability Sciences (BioTD CDS), Janssen Research and Development (Janssen R&D), Spring House, PA 19477, USA.
| |
Collapse
|
4
|
Zhang Y, Zhang H, Ghosh D. The Stabilizing Excipients in Dry State Therapeutic Phage Formulations. AAPS PharmSciTech 2020; 21:133. [PMID: 32415395 DOI: 10.1208/s12249-020-01673-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/29/2020] [Indexed: 12/25/2022] Open
Abstract
Phage therapy has gained prominence due to the increasing pathogenicity of "super bugs" and the rise of their multidrug resistance to conventional antibiotics. Dry state formulation of therapeutic phage is attractive to improve their "druggability" by increasing their shelf life, improving their ease of handling, and ultimately retaining their long-term potency. The use and selection of excipients are critical to stabilize phage in solid formulations and protect their viability from stresses encountered during the solidification process and long-term storage prior to use. Here, this review focuses on the current classes of excipients used to manufacture dry state phage formulations and their ability to stabilize and protect phage throughout the process, as discussed in the literature. We provide perspective of outstanding challenges involved in the formulation of dry state phage. We suggest strategies to improve excipient identification and selection, optimize the potential excipient combinations to improve phage viability during formulation, and evaluate new methodologies that can provide greater insight into phage-excipient interactions to improve design criteria to improve formulation of dry state phage therapeutics. Addressing these challenges opens up new opportunities to re-design and re-imagine phage formulations for improved efficacy as a pharmaceutical product.
Collapse
Affiliation(s)
- Yajie Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Stop A1920, Austin, Texas, 78712, USA
- Formulation Development Department, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, New York, 10591, USA
| | - Hairui Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Stop A1920, Austin, Texas, 78712, USA
- Analytical Development Department, Ultragenyx Pharmaceutical Inc., 5000 Marina Blvd., Brisbane, California, 94005, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Stop A1920, Austin, Texas, 78712, USA.
| |
Collapse
|
5
|
Turner MR, Balu-Iyer SV. Challenges and Opportunities for the Subcutaneous Delivery of Therapeutic Proteins. J Pharm Sci 2018; 107:1247-1260. [PMID: 29336981 PMCID: PMC5915922 DOI: 10.1016/j.xphs.2018.01.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022]
Abstract
Biotherapeutics is a rapidly growing drug class, and over 200 biotherapeutics have already obtained approval, with about 50 of these being approved in 2015 and 2016 alone. Several hundred protein therapeutic products are still in the pipeline, including interesting new approaches to treatment. Owing to patients' convenience of at home administration and reduced number of hospital visits as well as the reduction in treatment costs, subcutaneous (SC) administration of biologics is of increasing interest. Although several avenues for treatment using biotherapeutics are being explored, there is still a sufficient gap in knowledge regarding the interplay of formulation conditions, immunogenicity, and pharmacokinetics (PK) of the absorption of these compounds when they are given SC. This review seeks to highlight the major concerns and important factors governing this route of administration and suggest a holistic approach for effective SC delivery.
Collapse
Affiliation(s)
- Michael R Turner
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214.
| |
Collapse
|
6
|
Da Vela S, Roosen-Runge F, Skoda MWA, Jacobs RMJ, Seydel T, Frielinghaus H, Sztucki M, Schweins R, Zhang F, Schreiber F. Effective Interactions and Colloidal Stability of Bovine γ-Globulin in Solution. J Phys Chem B 2017; 121:5759-5769. [DOI: 10.1021/acs.jpcb.7b03510] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Stefano Da Vela
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen D-72076, Germany
| | - Felix Roosen-Runge
- Institut Max von Laue − Paul Langevin (ILL), CS 20156, 71 Avenue des Martyrs, Grenoble Cedex 9, F-38042, France
| | - Maximilian W. A. Skoda
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen D-72076, Germany
| | - Robert M. J. Jacobs
- Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Tilo Seydel
- Institut Max von Laue − Paul Langevin (ILL), CS 20156, 71 Avenue des Martyrs, Grenoble Cedex 9, F-38042, France
| | - Henrich Frielinghaus
- Jülich
Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum (JCNS at
MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, Garching D-85747, Germany
| | - Michael Sztucki
- European Synchrotron Radiation Facility (ESRF), CS 40220, 71 Avenue des Martyrs, Grenoble Cedex 9, F-38043, France
| | - Ralf Schweins
- Institut Max von Laue − Paul Langevin (ILL), CS 20156, 71 Avenue des Martyrs, Grenoble Cedex 9, F-38042, France
| | - Fajun Zhang
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen D-72076, Germany
| | - Frank Schreiber
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen D-72076, Germany
| |
Collapse
|
7
|
Austerberry JI, Dajani R, Panova S, Roberts D, Golovanov AP, Pluen A, van der Walle CF, Uddin S, Warwicker J, Derrick JP, Curtis R. The effect of charge mutations on the stability and aggregation of a human single chain Fv fragment. Eur J Pharm Biopharm 2017; 115:18-30. [DOI: 10.1016/j.ejpb.2017.01.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/14/2017] [Accepted: 01/15/2017] [Indexed: 01/10/2023]
|
8
|
Guo J, Kumar S, Chipley M, Marcq O, Gupta D, Jin Z, Tomar DS, Swabowski C, Smith J, Starkey JA, Singh SK. Characterization and Higher-Order Structure Assessment of an Interchain Cysteine-Based ADC: Impact of Drug Loading and Distribution on the Mechanism of Aggregation. Bioconjug Chem 2016; 27:604-15. [DOI: 10.1021/acs.bioconjchem.5b00603] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | | | | | - Devansh Gupta
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | | | | | | | | | | | | |
Collapse
|
9
|
Yageta S, Lauer TM, Trout BL, Honda S. Conformational and Colloidal Stabilities of Isolated Constant Domains of Human Immunoglobulin G and Their Impact on Antibody Aggregation under Acidic Conditions. Mol Pharm 2015; 12:1443-55. [PMID: 25871775 DOI: 10.1021/mp500759p] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Antibody therapeutics are now in widespread use and provide a new approach for treating serious diseases such as rheumatic diseases and cancer. Monoclonal antibodies used as therapeutic agents must be of high quality, and their safety must be guaranteed. Aggregated antibody is a degradation product that may be generated during the manufacturing process. To maintain the high quality and safety of antibody therapeutics, it is necessary to understand the mechanism of aggregation and to develop technologies to strictly control aggregate formation. Here, we extensively investigated the conformational and colloidal characteristics of isolated antibody constant domains, and provided insights into the molecular mechanism of antibody aggregation. Isolated domains (CH2, CH3, CL, and CH1-CL dimer) of human immunoglobulin G were synthesized, solubilized using 49 sets of solution conditions (pH 2-8 and 0-300 mM NaCl), and characterized using circular dichroism, intrinsic tryptophan fluorescence, and dynamic light scattering. Salt-induced conformational changes and oligomer formation were kinetically analyzed by NaCl-jump measurements (from 0 to 300 mM at pH 3). Phase diagrams revealed that the domains have different conformational and colloidal stabilities. The unfolded fractions of CH3 and CH2 at pH 3 were larger than that of CL and CH1-CL dimer. The secondary and tertiary structures and particle sizes of CH3 and CH2 showed that, in non-native states, these domains were sensitive to salt concentration. Kinetic analyses suggest that oligomer formation by CH3 and CH2 proceeds through partially refolded conformations. The colloidal stability of CH3 in non-native states is the lowest of the four domains under the conditions tested. We propose that the impact of IgG constant domains on aggregation follows the order CH3 > CH2 > CH1-CL dimer > CL; furthermore, we suggest that CH3 plays the most critical role in driving intact antibody aggregation under acidic conditions.
Collapse
Affiliation(s)
- Seiki Yageta
- †Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Timothy M Lauer
- ‡Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02319, United States
| | - Bernhardt L Trout
- ‡Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02319, United States
| | - Shinya Honda
- †Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.,§Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
10
|
Majumdar R, Middaugh C, Weis DD, Volkin DB. Hydrogen-Deuterium Exchange Mass Spectrometry as an Emerging Analytical Tool for Stabilization and Formulation Development of Therapeutic Monoclonal Antibodies. J Pharm Sci 2015; 104:327-45. [DOI: 10.1002/jps.24224] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 12/11/2022]
|
11
|
Razinkov VI, Treuheit MJ, Becker GW. Accelerated formulation development of monoclonal antibodies (mAbs) and mAb-based modalities: review of methods and tools. ACTA ACUST UNITED AC 2015; 20:468-83. [PMID: 25576149 DOI: 10.1177/1087057114565593] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
More therapeutic monoclonal antibodies and antibody-based modalities are in development today than ever before, and a faster and more accurate drug discovery process will ensure that the number of candidates coming to the biopharmaceutical pipeline will increase in the future. The process of drug product development and, specifically, formulation development is a critical bottleneck on the way from candidate selection to fully commercialized medicines. This article reviews the latest advances in methods of formulation screening, which allow not only the high-throughput selection of the most suitable formulation but also the prediction of stability properties under manufacturing and long-term storage conditions. We describe how the combination of automation technologies and high-throughput assays creates the opportunity to streamline the formulation development process starting from early preformulation screening through to commercial formulation development. The application of quality by design (QbD) concepts and modern statistical tools are also shown here to be very effective in accelerated formulation development of both typical antibodies and complex modalities derived from them.
Collapse
|
12
|
Maddux NR, Iyer V, Cheng W, Youssef AM, Joshi SB, Volkin DB, Ralston JP, Winter G, Middaugh CR. High Throughput Prediction of the Long-Term Stability of Pharmaceutical Macromolecules from Short-Term Multi-Instrument Spectroscopic Data. J Pharm Sci 2014; 103:828-39. [DOI: 10.1002/jps.23849] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 01/16/2023]
|
13
|
Guo J, Kumar S, Prashad A, Starkey J, Singh SK. Assessment of physical stability of an antibody drug conjugate by higher order structure analysis: impact of thiol- maleimide chemistry. Pharm Res 2014; 31:1710-23. [PMID: 24464270 DOI: 10.1007/s11095-013-1274-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE To provide a systematic biophysical approach towards a better understanding of impact of conjugation chemistry on higher order structure and physical stability of an antibody drug conjugate (ADC). METHODS ADC was prepared using thiol-maleimide chemistry. Physical stabilities of ADC and its parent IgG1 mAb were compared using calorimetric, spectroscopic and molecular modeling techniques. RESULTS ADC and mAb respond differently to thermal stress. Both the melting temperatures and heat capacities are substantially lower for the ADC. Spectroscopic experiments show that ADC and mAb have similar secondary and tertiary structures, but these are more easily destabilized by thermal stress on the ADC indicating reduced conformational stability. Molecular modeling calculations suggest a substantial decrease in the conformational energy of the mAb upon conjugation. The local surface around the conjugation sites also becomes more hydrophobic in the ADC, explaining the lower colloidal stability and greater tendency of the ADC to aggregate. CONCLUSIONS Computational and biophysical analyses of an ADC and its parent mAb have provided insights into impact of conjugation on physical stability and pinpointed reasons behind lower structural stability and increased aggregation propensity of the ADC. This knowledge can be used to design appropriate formulations to stabilize the ADC.
Collapse
Affiliation(s)
- Jianxin Guo
- Biotherapeutics Pharmaceutical Sciences, Pharmaceutical R&D, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | | | | | | | | |
Collapse
|
14
|
Thakkar SV, Sahni N, Joshi SB, Kerwin BA, He F, Volkin DB, Middaugh CR. Understanding the relevance of local conformational stability and dynamics to the aggregation propensity of an IgG1 and IgG2 monoclonal antibodies. Protein Sci 2013; 22:1295-305. [PMID: 23893936 DOI: 10.1002/pro.2316] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022]
Abstract
Aggregation of monoclonal antibodies is often a multi-step process involving structural alterations in monomeric proteins and subsequent formation of soluble or insoluble oligomers. The role of local conformational stability and dynamics of native and/or partially altered structures in determining the aggregation propensity of monoclonal antibodies, however, is not well understood. Here, we investigate the role of conformational stability and dynamics of regions with distinct solvent exposure in determining the aggregation propensity of an IgG1 and IgG2 monoclonal antibody. The temperatures employed span the pre-unfolding range (10-40°C) and the onset temperatures (T onset ) for exposure of apolar residues (≈ 50°C), alterations in secondary structures (≈ 60°C) and initiation of visible aggregate formation (≈ 60°C). Solvent-exposed regions were found to precede solvent-shielded regions in an initiation of aggregation for both proteins. Such a process was observed upon alterations in overall tertiary structure while retaining the secondary structures in both the proteins. In addition, a greater dynamic nature of solvent-shielded regions in potential intermediates of IgG1 and the improved conformational stability increased its resistance to aggregation when compared to IgG2. These results suggest that local conformational stability and fluctuations of partially altered structures can influence the aggregation propensity of immunoglobulins.
Collapse
Affiliation(s)
- Santosh V Thakkar
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, 66047, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Manikwar P, Majumdar R, Hickey JM, Thakkar SV, Samra HS, Sathish HA, Bishop SM, Middaugh CR, Weis DD, Volkin DB. Correlating Excipient Effects on Conformational and Storage Stability of an IgG1 Monoclonal Antibody with Local Dynamics as Measured by Hydrogen/Deuterium-Exchange Mass Spectrometry. J Pharm Sci 2013; 102:2136-51. [DOI: 10.1002/jps.23543] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 03/18/2013] [Indexed: 12/23/2022]
|
16
|
Thakkar SV, Kim JH, Samra HS, Sathish HA, Bishop SM, Joshi SB, Volkin DB, Middaugh CR. Local Dynamics and Their Alteration by Excipients Modulate the Global Conformational Stability of an lgG1 Monoclonal Antibody. J Pharm Sci 2012; 101:4444-57. [DOI: 10.1002/jps.23332] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/18/2012] [Accepted: 09/11/2012] [Indexed: 12/11/2022]
|
17
|
Iyer V, Maddux N, Hu L, Cheng W, Youssef AK, Winter G, Joshi SB, Volkin DB, Middaugh CR. Comparative signature diagrams to evaluate biophysical data for differences in protein structure across various formulations. J Pharm Sci 2012; 102:43-51. [PMID: 23160989 DOI: 10.1002/jps.23367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 01/16/2023]
Abstract
A solution to the problem of being able to show statistically significant differences in the measurements of various levels of higher-order protein structure has been an elusive one. We propose the use of comparative signature diagrams (CSDs) to this end. CSDs compare datasets from different biophysical techniques that fingerprint the secondary, tertiary, and quaternary structures of a protein molecule and display statistically significant differences in these datasets. In this paper, we explore the differences in the structures of two proteins (Granulocyte Colony Stimulating Factor [GCSF] and a monoclonal antibody [mAb]) in various formulations. These proteins were chosen based on the extent of differences in structure observed in the formulations. As an initial test, we utilize data from circular dichroism, 8-anilino-1-naphthalene-sulfonate and intrinsic fluorescence spectroscopy, and static light scattering measurements to fingerprint protein structure in the different formulations. Several layers of statistics were explored to visualize the regions of significant differences in the protein spectra. This approach provides a rapid, high-resolution methodology to compare various structural levels of proteins using standard biophysical instrumentation.
Collapse
Affiliation(s)
- Vidyashankara Iyer
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kim JH, Iyer V, Joshi SB, Volkin DB, Middaugh CR. Improved data visualization techniques for analyzing macromolecule structural changes. Protein Sci 2012; 21:1540-53. [PMID: 22898970 DOI: 10.1002/pro.2144] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/02/2012] [Accepted: 08/09/2012] [Indexed: 11/08/2022]
Abstract
The empirical phase diagram (EPD) is a colored representation of overall structural integrity and conformational stability of macromolecules in response to various environmental perturbations. Numerous proteins and macromolecular complexes have been analyzed by EPDs to summarize results from large data sets from multiple biophysical techniques. The current EPD method suffers from a number of deficiencies including lack of a meaningful relationship between color and actual molecular features, difficulties in identifying contributions from individual techniques, and a limited ability to be interpreted by color-blind individuals. In this work, three improved data visualization approaches are proposed as techniques complementary to the EPD. The secondary, tertiary, and quaternary structural changes of multiple proteins as a function of environmental stress were first measured using circular dichroism, intrinsic fluorescence spectroscopy, and static light scattering, respectively. Data sets were then visualized as (1) RGB colors using three-index EPDs, (2) equiangular polygons using radar charts, and (3) human facial features using Chernoff face diagrams. Data as a function of temperature and pH for bovine serum albumin, aldolase, and chymotrypsin as well as candidate protein vaccine antigens including a serine threonine kinase protein (SP1732) and surface antigen A (SP1650) from S. pneumoniae and hemagglutinin from an H1N1 influenza virus are used to illustrate the advantages and disadvantages of each type of data visualization technique.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | |
Collapse
|
19
|
Rajapaksha M, Lovell S, Janowiak BE, Andra KK, Battaile KP, Bann JG. pH effects on binding between the anthrax protective antigen and the host cellular receptor CMG2. Protein Sci 2012; 21:1467-80. [PMID: 22855243 DOI: 10.1002/pro.2136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 11/11/2022]
Abstract
The anthrax protective antigen (PA) binds to the host cellular receptor capillary morphogenesis protein 2 (CMG2) with high affinity. To gain a better understanding of how pH may affect binding to the receptor, we have investigated the kinetics of binding as a function of pH to the full-length monomeric PA and to two variants: a 2-fluorohistidine-labeled PA (2-FHisPA), which is ∼1 pH unit more stable to variations in pH than WT, and an ∼1 pH unit less stable variant in which Trp346 in the domain 2β(3) -2β(4) loop is substituted with a Phe (W346F). We show using stopped-flow fluorescence that the binding rate increases as the pH is lowered for all proteins, with little influence on the rate of dissociation. In addition, we have crystallized PA and the two variants and examine the influence of pH on structure. In contrast to previous X-ray studies, the domain 2β(3) -2β(4) loop undergoes little change in structure from pH ∼8 to 5.5 for the WT protein, but for the 2-FHis labeled and W346F mutant there are changes in structure consistent with previous X-ray studies. In accord with pH stability studies, we find that the average B-factor values increase by ∼20-30% for all three proteins at low pH. Our results suggest that for the full-length PA, low pH increases the binding affinity, likely through a change in structure that favors a more "bound-like" conformation.
Collapse
|
20
|
Hu L, Joshi SB, Andra KK, Thakkar SV, Volkin DB, Bann JG, Middaugh CR. Comparison of the structural stability and dynamic properties of recombinant anthrax protective antigen and its 2-fluorohistidine-labeled analogue. J Pharm Sci 2012; 101:4118-28. [PMID: 22911632 DOI: 10.1002/jps.23294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/19/2012] [Accepted: 07/31/2012] [Indexed: 01/15/2023]
Abstract
Protective antigen (PA) is the primary protein antigenic component of both the currently used anthrax vaccine and related recombinant vaccines under development. An analogue of recombinant PA (2-FHis rPA) has been recently shown to block the key steps of pore formation in the process of inducing cytotoxicity in cells, and thus can potentially be used as an antitoxin or a vaccine. This rPA analogue was produced by fermentation to incorporate the unnatural amino acid 2-fluorohistidine (2-FHis). In this study, the effects of 2-FHis labeling on rPA antigen's conformational stability and dynamic properties were investigated by various biophysical techniques. Temperature/pH stability profiles of rPA and 2-FHis rPA were analyzed by the empirical phase diagram (EPD) approach, and physical stability differences between them were identified. Results showed that rPA and 2-FHis rPA had similar stability at pH 7-8. With decreasing solution pH, however, 2-FHis rPA was found to be more stable. Dynamic sensitive measurements of the two proteins at pH 5 found that 2-FHis rPA was more dynamic and/or differentially hydrated under acidic pH conditions. The biophysical characterization and stability data provide information useful for the potential development of 2-FHis rPA as a more stable rPA vaccine candidate.
Collapse
Affiliation(s)
- Lei Hu
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Thakkar SV, Joshi SB, Jones ME, Sathish HA, Bishop SM, Volkin DB, Middaugh CR. Excipients differentially influence the conformational stability and pretransition dynamics of two IgG1 monoclonal antibodies. J Pharm Sci 2012; 101:3062-77. [PMID: 22581714 DOI: 10.1002/jps.23187] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/11/2012] [Accepted: 04/20/2012] [Indexed: 01/16/2023]
Abstract
Since immunoglobulins are conformationally dynamic molecules in solution, we studied the effect of stabilizing and destabilizing excipients on the conformational stability and dynamics of two IgG1 monoclonal antibodies (mAbs; mAb-A and mAb-B) using a variety of biophysical approaches. Even though the two mAbs are of the same IgG1 subtype, the unfolding patterns, aggregation behavior, and pretransition dynamics of these two antibodies were strikingly different in response to external perturbations such as pH, temperature, and presence of excipients. Sucrose and arginine were identified as stabilizers and destabilizers, respectively, on the basis of their influence on conformational stability for both the IgG1 mAbs. The two excipients, however, had distinct effective concentrations and different effects on the conformational stability and pretransition dynamics of the two mAbs as measured by a combination of differential scanning calorimetry, high-resolution ultrasonic spectroscopy, and red-edge excitation shift fluorescence studies. Stabilizing concentrations of sucrose were found to decrease the internal motions of mAb-B, whereas arginine marginally increased its adiabatic compressibility in the pretransition region. Both sucrose and arginine did not influence the pretransition dynamics of mAb-A. The potential reasons for such differences in excipient effects between two IgG1 mAbs are discussed.
Collapse
Affiliation(s)
- Santosh V Thakkar
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Cheng W, Joshi SB, He F, Brems DN, He B, Kerwin BA, Volkin DB, Middaugh CR. Comparison of High-Throughput Biophysical Methods to Identify Stabilizing Excipients for a Model IgG2 Monoclonal Antibody: Conformational Stability and Kinetic Aggregation Measurements. J Pharm Sci 2012; 101:1701-20. [DOI: 10.1002/jps.23076] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/06/2012] [Accepted: 01/18/2012] [Indexed: 12/12/2022]
|
23
|
Bhambhani A, Kissmann JM, Joshi SB, Volkin DB, Kashi RS, Russell Middaugh C. Formulation Design and High-Throughput Excipient Selection Based on Structural Integrity and Conformational Stability of Dilute and Highly Concentrated IgG1 Monoclonal Antibody Solutions. J Pharm Sci 2012; 101:1120-35. [DOI: 10.1002/jps.23008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/07/2011] [Accepted: 11/15/2011] [Indexed: 01/14/2023]
|
24
|
Samra HS, He F. Advancements in high throughput biophysical technologies: applications for characterization and screening during early formulation development of monoclonal antibodies. Mol Pharm 2012; 9:696-707. [PMID: 22263524 DOI: 10.1021/mp200404c] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The formulation development of monoclonal antibodies is extremely challenging, due to the diversity and complexity contained within this class of molecules. The physical and chemical properties of a monoclonal antibody dictate the behavior of the protein drug during manufacturing, storage and clinical administration. In the past few years, the use of high throughput technologies has been widely adapted to delineate unique properties of individual immunoglobulin G's (IgG's) important for their development. Numerous screening techniques have been designed to reveal physical and chemical characteristics of a protein relevant to stability under production, formulation and delivery conditions. In addition, protein stability under accelerated stresses has been utilized to predict long-term storage behavior for monoclonal antibodies in the formulation. In this review, we summarize the recent advancements in the field of biophysical technology, with a specific focus on the techniques that can be directly applied to the formulation development of monoclonal antibodies. Several case studies are also presented here to provide examples of combining existing biophysical methods with high throughput screening technology in the formulation development of monoclonal antibody drugs.
Collapse
Affiliation(s)
- Hardeep S Samra
- Department of Formulation Sciences, MedImmune , One MedImmune Way, Gaithersburg, Maryland 20878, USA.
| | | |
Collapse
|
25
|
Zheng K, Bantog C, Bayer R. The impact of glycosylation on monoclonal antibody conformation and stability. MAbs 2011; 3:568-76. [PMID: 22123061 DOI: 10.4161/mabs.3.6.17922] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibody glycosylation is a common post-translational modification and has a critical role in antibody effector function. The use of glycoengineering to produce antibodies with specific glycoforms may be required to achieve the desired therapeutic efficacy. However, the modified molecule could have unusual behavior during development due to the alteration of its intrinsic properties and stability. In this study, we focused on the differences between glycosylated and deglycosylated antibodies, as aglycosyl antibodies are often chosen when effector function is not desired or unimportant. We selected three human IgG1 antibodies and used PNGase F to remove their oligosaccharide chains. Although there were no detected secondary or tertiary structural changes after deglycosylation, other intrinsic properties of the antibody were altered with the removal of oligosaccharide chains in the Fc region. The apparent molecular hydrodynamic radius increased after deglycosylation based on size-exclusion chromatography analysis. Deglycosylated antibodies exhibited less thermal stability for the CH2 domain and less resistance to GdnHCl induced unfolding. Susceptibility to proteolytic cleavage demonstrated that the deglycosylated version was more susceptible to papain. An accelerated stability study revealed that deglycosylated antibodies had higher aggregation rates. These changes may impact the development of aglycosyl antibody biotherapeutics.
Collapse
Affiliation(s)
- Kai Zheng
- Oceanside Pharma Technical Development, Genentech, Inc., Oceanside, CA, USA.
| | | | | |
Collapse
|
26
|
Maddux NR, Joshi SB, Volkin DB, Ralston JP, Middaugh CR. Multidimensional methods for the formulation of biopharmaceuticals and vaccines. J Pharm Sci 2011; 100:4171-97. [PMID: 21647886 PMCID: PMC3949199 DOI: 10.1002/jps.22618] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/13/2011] [Accepted: 04/21/2011] [Indexed: 01/14/2023]
Abstract
Determining and preserving the higher order structural integrity and conformational stability of proteins, plasmid DNA, and macromolecular complexes such as viruses, virus-like particles, and adjuvanted antigens are often a significant barrier to the successful stabilization and formulation of biopharmaceutical drugs and vaccines. These properties typically must be investigated with multiple lower resolution experimental methods because each technique monitors only a narrow aspect of the overall conformational state of a macromolecular system. This review describes the use of empirical phase diagrams (EPDs) to combine large amounts of data from multiple high-throughput instruments and construct a map of a target macromolecule's physical state as a function of temperature, solvent conditions, and other stress variables. We present a tutorial on the mathematical methodology, an overview of some of the experimental methods typically used, and examples of some of the previous major formulation applications. We also explore novel applications of EPDs including potential new mathematical approaches as well as possible new biopharmaceutical applications such as analytical comparability, chemical stability, and protein dynamics.
Collapse
Affiliation(s)
- Nathaniel R. Maddux
- Department of Physics and Astronomy, University of Kansas, 1082 Malott, 1251 Wescoe Hall Drive, Lawrence, KS 66045
| | - Sangeeta B. Joshi
- Department of Pharmaceutical Chemistry, University of Kansas, 2010 Becker Drive, Lawrence, KS 66047
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, University of Kansas, 2010 Becker Drive, Lawrence, KS 66047
| | - John P. Ralston
- Department of Physics and Astronomy, University of Kansas, 1082 Malott, 1251 Wescoe Hall Drive, Lawrence, KS 66045
| | - C. Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, 2010 Becker Drive, Lawrence, KS 66047
| |
Collapse
|
27
|
Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev 2011; 63:1118-59. [PMID: 21855584 DOI: 10.1016/j.addr.2011.07.006] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/19/2011] [Accepted: 07/26/2011] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to demonstrate the critical importance of understanding protein-excipient interactions as a key step in the rational design of formulations to stabilize and deliver protein-based therapeutic drugs and vaccines. Biophysical methods used to examine various molecular interactions between solutes and protein molecules are discussed with an emphasis on applications to pharmaceutical excipients in terms of their effects on protein stability. Key mechanisms of protein-excipient interactions such as electrostatic and cation-pi interactions, preferential hydration, dispersive forces, and hydrogen bonding are presented in the context of different physical states of the formulation such as frozen liquids, solutions, gels, freeze-dried solids and interfacial phenomenon. An overview of the different classes of pharmaceutical excipients used to formulate and stabilize protein therapeutic drugs is also presented along with the rationale for use in different dosage forms including practical pharmaceutical considerations. The utility of high throughput analytical methodologies to examine protein-excipient interactions is presented in terms of expanding formulation design space and accelerating experimental timelines.
Collapse
Affiliation(s)
- Tim J Kamerzell
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
28
|
Goldberg DS, Bishop SM, Shah AU, Sathish HA. Formulation Development of Therapeutic Monoclonal Antibodies Using High-Throughput Fluorescence and Static Light Scattering Techniques: Role of Conformational and Colloidal Stability. J Pharm Sci 2011; 100:1306-15. [DOI: 10.1002/jps.22371] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/13/2010] [Accepted: 09/16/2010] [Indexed: 11/11/2022]
|
29
|
Skinner AL, Laurence JS. Probing residue-specific interactions in the stabilization of proteins using high-resolution NMR: a study of disulfide bond compensation. J Pharm Sci 2010; 99:2643-54. [PMID: 20187138 DOI: 10.1002/jps.22055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It is well established that the oxidation state of cysteine residues in proteins is critical to overall physical stability. Disulfide bonds most often impart thermodynamic stability, but in some cases, diminish it. Predicting the circumstances that lead to each outcome is difficult because mechanistic information is lacking. Because the techniques typically used to study protein stability do not provide sufficient detail, high-resolution NMR was used in combination with low-resolution analysis to obtain mechanistic information regarding disulfide bond formation in a model protein. T(m) (CD) and T(onset) (SLS) for the reduced and oxidized wild type and C104S and C49S mutants were measured. The mutant proteins have altered T(m)s and T(onset)s compared to the reduced wild type, indicating that differences in local interactions of the Cys side chains are important for stability. The NMR spectra clearly show distinct differences in the chemical environment surrounding these Cys residues and the overall tertiary structure. The C49S protein, which is less stable and more aggregation prone than reduced wild type, lacks a hydrogen bond between Y53 and H103. Increased flexibility of the Y53-containing loop is correlated with increased dynamics and unraveling of alpha2, which likely leads to edge strand initiated aggregation of the central beta-sheet.
Collapse
Affiliation(s)
- Andria L Skinner
- Department of Pharmaceutical Chemistry, Multidisciplinary Research Building, The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | | |
Collapse
|
30
|
He F, Phan DH, Hogan S, Bailey R, Becker GW, Narhi LO, Razinkov VI. Detection of IgG Aggregation by a High Throughput Method Based on Extrinsic Fluorescence. J Pharm Sci 2010; 99:2598-608. [DOI: 10.1002/jps.22036] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Reichert JM, Jacob N, Amanullah A. Second International Conference on Accelerating Biopharmaceutical Development: March 9-12, 2009, Coronado, CA USA. MAbs 2009; 1:190-209. [PMID: 20065637 DOI: 10.4161/mabs.1.3.8491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Second International Conference on Accelerating Biopharmaceutical Development was held in Coronado, California. The meeting was organized by the Society for Biological Engineering (SBE) and the American Institute of Chemical Engineers (AIChE); SBE is a technological community of the AIChE. Bob Adamson (Wyeth) and Chuck Goochee (Centocor) were co-chairs of the event, which had the theme "Delivering cost-effective, robust processes and methods quickly and efficiently." The first day focused on emerging disruptive technologies and cutting-edge analytical techniques. Day two featured presentations on accelerated cell culture process development, critical quality attributes, specifications and comparability, and high throughput protein formulation development. The final day was dedicated to discussion of technology options and new analysis methods provided by emerging disruptive technologies; functional interaction, integration and synergy in platform development; and rapid and economic purification process development.
Collapse
Affiliation(s)
- Janice M Reichert
- Tufts Center for the Study of Drug Development; Boston, MA 02111, USA.
| | | | | |
Collapse
|