1
|
Umar S, Welch X, Obichere C, Carter-Cooper B, Samokhvalov A. Interaction of 6-Thioguanine with Aluminum Metal-Organic Framework Assisted by Mechano-Chemistry, In Vitro Delayed Drug Release, and Time-Dependent Toxicity to Leukemia Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1571. [PMID: 39404299 PMCID: PMC11477990 DOI: 10.3390/nano14191571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
6-thioguanine (6-TG) is an antimetabolite drug of purine structure, approved by the FDA for the treatment of acute myeloid lesukemia, and it is of interest in treating other diseases. The interaction of drugs with matrices is of interest to achieving a delayed, sustained, and local release. The interaction of 6-TG with an aluminum metal-organic framework (Al-MOF) DUT-4 is studied using a novel experimental approach, namely, mechano-chemistry by liquid-assisted grinding (LAG). The bonding of 6-TG to the DUT-4 matrix in the composite (6-TG)(DUT-4) was studied using ATR-FTIR spectroscopy and XRD. This interaction involves amino groups and C and N atoms of the heterocyclic ring of 6-TG, as well as the carboxylate COO- and (Al)O-H groups of the matrix, indicating the formation of the complex. Next, an in vitro delayed release of 6-TG was studied from composite powder versus pure 6-TG in phosphate buffered saline (PBS) at 37 °C. Herein, an automated drug dissolution apparatus with an autosampler was utilized, and the molar concentration of the released 6-TG was determined using an HPLC-UV analysis. Pure 6-TG shows a quick (<300 min) dissolution, while the composite gives the dissolution of non-bonded 6-TG, followed by a significantly (factor 6) slower release of the bonded drug. Each step of the release follows the kinetic pseudo-first-order rate law with distinct rate constants. Then, a pharmaceutical shaped body was prepared from the composite, and it yields a significantly delayed release of 6-TG for up to 10 days; a sustained release is observed with the 6-TG concentration being within the therapeutically relevant window. Finally, the composite shows a time-dependent (up to 9 days) stronger inhibition of leukemia MV-4-11 cell colonies than 6-TG.
Collapse
Affiliation(s)
- Sheriff Umar
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| | - Xavier Welch
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| | - Chihurumanya Obichere
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| | - Brandon Carter-Cooper
- Translational Laboratory Shared Services (TLSS), The University of Maryland School of Medicine’s & Greenebaum Comprehensive Cancer Center, 22 S. Greene Street, Baltimore, MD 21201, USA
| | - Alexander Samokhvalov
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| |
Collapse
|
2
|
Umar S, Samokhvalov A. Encapsulation of Gemcitabine on Porphyrin Aluminum Metal-Organic Framework by Mechano-Chemistry, Delayed Drug Release and Cytotoxicity to Pancreatic Cancer PANC-1 Cells. Molecules 2024; 29:3189. [PMID: 38999141 PMCID: PMC11243361 DOI: 10.3390/molecules29133189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Gemcitabine is a widely used antimetabolite drug of pyrimidine structure, which can exist as a free-base molecular form (Gem). The encapsulated forms of medicinal drugs are of interest for delayed and local drug release. We utilized, for the first time, a novel approach of mechano-chemistry by liquid-assisted grinding (LAG) to encapsulate Gem on a "matrix" of porphyrin aluminum metal-organic framework Al-MOF-TCPPH2 (compound 2). The chemical bonding of Gem to compound 2 was studied by ATR-FTIR spectroscopy and powder XRD. The interaction involves the C=O group of Gem molecules, which indicates the formation of the encapsulation complex in the obtained composite. Further, the delayed release of Gem from the composite was studied to phosphate buffered saline (PBS) at 37 °C using an automated drug dissolution apparatus equipped with an autosampler. The concentration of the released drug was determined by HPLC-UV analysis. The composite shows delayed release of Gem due to the bonded form and constant concentration thereafter, while pure Gem shows quick dissolution in less than 45 min. Delayed release of Gem drug from the composite follows the kinetic pseudo-first-order rate law. Further, for the first time, the mechanism of delayed release of Gem was assessed by the variable stirring speed of drug release media, and kinetic rate constant k was found to decrease when stirring speed is decreased (diffusion control). Finally, the prolonged time scale of toxicity of Gem to pancreatic cancer PANC-1 cells was studied by continuous measurements of proliferation (growth) for 6 days, using the xCELLigence real-time cell analyzer (RTCA), for the composite vs. pure drug, and their differences indicate delayed drug release. Aluminum metal-organic frameworks are new and promising materials for the encapsulation of gemcitabine and related small-molecule antimetabolites for controlled delayed drug release and potential use in drug-eluting implants.
Collapse
Affiliation(s)
| | - Alexander Samokhvalov
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| |
Collapse
|
3
|
Modhave D, Barrios B, Iyer J, Paudel A. Influence of Crystal Disorder on the Forced Oxidative Degradation of Vortioxetine HBr. AAPS PharmSciTech 2023; 25:10. [PMID: 38158448 DOI: 10.1208/s12249-023-02721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The present study investigates the impact of the solid-state disorder of vortioxetine hydrobromide (HBr) on oxidative degradation under accelerated conditions. A range of solid-state disorders was generated via cryogenic ball milling. The solid-state properties were evaluated by calorimetry, infrared-, and Raman spectroscopies. While salt disproportionation occurred upon milling, no chemical degradation occurred by milling. The amorphous fraction remained physically intact under ambient storage conditions. Subsequently, samples with representative disordered fractions were mixed with a solid oxidative stressor (PVP-H2O2 complex) and were compressed to compacts. The compacts were exposed to 40°C/75% RH for up to 6 h. The sample was periodically withdrawn and analyzed for the physical transformations and degradation. Two oxidative degradation products (DPs) were found to be formed, for which dissimilar relations to the degree of disorder and kinetics of formation were observed. The degradation rate of the major DP formation obtained by fitting the exponential model to the experimental data was found to increase up to a certain degree of disorder and decrease with a further increase in the disordered fraction. In contrast, the minor DP formation kinetics was found to increase monotonically with the increase in the disorder content. For the similar crystallinity level, the degradation trend (rate and extent) differed between the single-phase disorder generated by milling and physically mixed two-phase systems. Overall, the study demonstrates the importance of evaluating the physical and chemical (in)stabilities of the disordered solid state of a salt form of a drug substance, generated through mechano-activation.
Collapse
Affiliation(s)
- Dattatray Modhave
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Brenda Barrios
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Jayant Iyer
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria.
- Institute of Process and Particle Engineering, Graz University of Technology, Graz, Austria.
| |
Collapse
|
4
|
Henry B, Samokhvalov A. Characterization of tautomeric forms of anti-cancer drug gemcitabine and their interconversion upon mechano-chemical treatment, using ATR-FTIR spectroscopy and complementary methods. J Pharm Biomed Anal 2023; 226:115243. [PMID: 36657351 PMCID: PMC9977068 DOI: 10.1016/j.jpba.2023.115243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Gemcitabine is a widely used anti-cancer drug of pyrimidine structure, which can exist as a free base molecular form in crystals. Tautomers are structural isomers of molecules, which interconvert via proton transfer. Mechano-chemistry studies reactions of solids under mechanical impact. We investigated gemcitabine free base for the presence of specific molecular tautomers, using ATR-FTIR spectroscopic analysis, powder XRD, optical microscopy and HPLC. The amino-keto tautomer has the characteristic infrared (IR) peak of the amino group at 3390 cm-1. For the first time, the imino-keto tautomer of gemcitabine free base was detected. The imino-keto tautomer has the characteristic IR peak of the =N-H group, and its peak due to the CO group in pyrimidine ring is shifted vs. that of the amino-keto tautomer. This serves as the unique spectroscopic "fingerprints" of these tautomers. The ATR-FTIR spectroscopic analysis shows that gemcitabine free base can be enriched with the amino-keto or the imino-keto tautomer. Further, we studied the transformation of gemcitabine free base in crystals between its tautomers under conditions of liquid-assisted grinding (LAG). The imino-keto tautomer undergoes tautomerization to the amino-keto tautomer, while the amino-keto tautomer remains stable. No destruction of molecules of gemcitabine free base, when present as either tautomer, occurs during LAG as was verified by the HPLC-UV analysis. LAG is a new, straightforward, facile and fast method to interconvert tautomers in crystals, and ATR-FTIR spectroscopy is a method of choice to study tautomerization reactions of pharmaceuticals. The presented approach is promising for analysis of crystals of drugs containing one or more than one tautomer, and the knowledge-driven design of composite materials, which contain specific tautomeric molecular forms of pyrimidines, purines and other biologically active heterocyclic compounds.
Collapse
Affiliation(s)
- Barrington Henry
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| | - Alexander Samokhvalov
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA.
| |
Collapse
|
5
|
Iyer J, Brunsteiner M, Modhave D, Paudel A. Role of Crystal Disorder and Mechanoactivation in Solid-State Stability of Pharmaceuticals. J Pharm Sci 2023; 112:1539-1565. [PMID: 36842482 DOI: 10.1016/j.xphs.2023.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
Common energy-intensive processes applied in oral solid dosage development, such as milling, sieving, blending, compaction, etc. generate particles with surface and bulk crystal disorder. An intriguing aspect of the generated crystal disorder is its evolution and repercussion on the physical- and chemical stabilities of drugs. In this review, we firstly examine the existing literature on crystal disorder and its implications on solid-state stability of pharmaceuticals. Secondly, we discuss the key aspects related to the generation and evolution of crystal disorder, dynamics of the disordered/amorphous phase, analytical techniques to measure/quantify them, and approaches to model the disordering propensity from first principles. The main objective of this compilation is to provide special impetus to predict or model the chemical degradation(s) resulting from processing-induced manifestation in bulk solid manufacturing. Finally, a generic workflow is proposed that can be useful to investigate the relevance of crystal disorder on the degradation of pharmaceuticals during stability studies. The present review will cater to the requirements for developing physically- and chemically stable drugs, thereby enabling early and rational decision-making during candidate screening and in assessing degradation risks associated with formulations and processing.
Collapse
Affiliation(s)
- Jayant Iyer
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
| | | | - Dattatray Modhave
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria; Graz University of Technology, Institute of Process and Particle Engineering, Graz Austria.
| |
Collapse
|
6
|
Mao HF, Xing HM, Jin MM, Liu JB, Yao YL, Zhao Y. An in-depth mechanistic study of the p-hydroxyphenylglycine synthetic process using in situ ATR-IR spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2833-2840. [PMID: 35786717 DOI: 10.1039/d2ay00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, an in situ ATR-IR technique was used as a powerful tool to gain insight into the synthetic process of p-hydroxyphenylglycine (p-HPG) by the sulfamic acid-glyoxylic acid-phenol method. Combined with other chemical and instrumental analysis technologies, the reaction sequence and key intermediates of this one-pot reaction were determined, and two concomitant reaction paths have been put forward for the first time. The possible reaction mechanism has been suggested, and the reaction efficiency of each path is discussed in detail. Through the optimization of the experimental parameters, an approximately 40% increase in the final product yield was achieved compared with previous reports. We believe that this study will without a doubt trigger research interest in understanding the industrial production process of important chemicals and pharmaceuticals and as a result will promote the sustainable development and application of novel, efficient chemical reaction routes.
Collapse
Affiliation(s)
- Hai-Fang Mao
- Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, China.
| | - Hui-Min Xing
- Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, China.
| | - Miao-Miao Jin
- Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, China.
| | - Ji-Bo Liu
- Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, China.
| | - Yue-Liang Yao
- Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, China.
| | - Yun Zhao
- Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, China.
| |
Collapse
|
7
|
Teoh XY, Zhang B, Belton P, Chan SY, Qi S. The Effects of Solid Particle Containing Inks on the Printing Quality of Porous Pharmaceutical Structures Fabricated by 3D Semi-Solid Extrusion Printing. Pharm Res 2022; 39:1267-1279. [PMID: 35661083 PMCID: PMC9197916 DOI: 10.1007/s11095-022-03299-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
Abstract
Purpose Semi-solid extrusion (SSE) 3D printing has potential pharmaceutical applications for producing personalised medicine. However, the effects of ink properties and drug incorporation on the quality of printed medication have not been thoroughly studied, particularly for porous geometries. This study aimed to investigate the effects of the presence of solid drug particles in SSE inks on the printing quality of porous structures. Method The rheological behaviour of model inks of paracetamol (PCM)-hypromellose (HPMC) with different drug loadings were investigated and correlated to their printing qualities. Results For the inks with PCM loading above the drug solubility in which suspended solid drug particulates were present, the results confirmed that PCM loading and particle size significantly affected the ink viscosities at a low shear rate. At a low shear rate, the highest viscosity was identified when the highest drug loading and the smallest PCM particles were incorporated into the inks. However, the results indicated that the SSE printing parameters and printing quality of porous structures (with less porous structural deformation) have no clear correlation with the shear viscosity data, but a strong correlation with the dynamic oscillatory rheology of the inks. Conclusion The key rheological parameters including storage modulus, loss modulus and complex viscosity of the ink increased with increasing drug loading for the inks containing solid drug particles. However, decreasing the particle size did not have a clear effect on the oscillatory rheology of the inks which can be potentially used for optimising the SSE 3D printing quality of porous geometries. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03299-7.
Collapse
Affiliation(s)
- Xin-Yi Teoh
- School of Pharmacy, University of East Anglia, Norwich, UK.,School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Bin Zhang
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Peter Belton
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Siok-Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich, UK.
| |
Collapse
|
8
|
Scherließ R, Bock S, Bungert N, Neustock A, Valentin L. Particle engineering in dry powders for inhalation. Eur J Pharm Sci 2022; 172:106158. [DOI: 10.1016/j.ejps.2022.106158] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
|
9
|
Beretta M, Pinto JT, Laggner P, Paudel A. Insights into the Impact of Nanostructural Properties on Powder Tribocharging: The Case of Milled Salbutamol Sulfate. Mol Pharm 2022; 19:547-557. [PMID: 35044180 DOI: 10.1021/acs.molpharmaceut.1c00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The impact of the crystallinity of organic solid materials on their tribocharging propensity is well reported. However, no unequivocal explanation about the potential underlying mechanism(s) could be found so far in the literature. This study reports the effect that different degrees of crystalline disorder has on the tribocharging propensity of a small molecular organic material, salbutamol sulfate (SS). Ball-milling was used to induce structural transformations in the crystalline structure of SS. Particles with different nanostructures were produced and analyzed for their solid-state, particle properties, and tribocharging. It was found that differences in the amorphous content among the processed particles and related moisture levels had an impact on powder tribocharging. A correlation between the latter and the nanostructural properties of the particles was also established. The presence of interfaces between nanodomains of different densities and shorter average lengths within the phases seems to lead to a mitigation of charge. This suggests that undetected, subtle nanostructural differences of materials can affect powder handling and processability by altering their tribocharging. The present findings demonstrate the nanostructural implications of powder triboelectrification, which can help toward the rational design of a wide variety of organic solids.
Collapse
Affiliation(s)
- Michela Beretta
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, Graz 8010, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Graz 8010, Austria
| | - Joana T Pinto
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, Graz 8010, Austria
| | - Peter Laggner
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, Graz 8010, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, Graz 8010, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Graz 8010, Austria
| |
Collapse
|
10
|
Abdul-jabbar S, Wong DW, Martin GP, Woodhead B, Royall PG. Repurposing Melt Degradation for the Evaluation of Mixed Amorphous-Crystalline Blends. AAPS PharmSciTech 2021; 22:105. [PMID: 33718988 PMCID: PMC7956934 DOI: 10.1208/s12249-021-01971-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/18/2021] [Indexed: 11/30/2022] Open
Abstract
Medicine regulators require the melting points for crystalline drugs, as they are a test for chemical and physical quality. Many drugs, especially salt-forms, suffer concomitant degradation during melting; thus, it would be useful to know if the endotherm associated with melt degradation may be used for characterising the crystallinity of a powder blend. Therefore, the aim of this study was to investigate whether melt-degradation transitions can detect amorphous content in a blend of crystalline and amorphous salbutamol sulphate. Salbutamol sulphate was rendered amorphous by freeze and spray-drying and blended with crystalline drug, forming standards with a range of amorphous content. Crystalline salbutamol sulphate was observed to have a melt-degradation onset of 198.2±0.2°C, while anhydrous amorphous salbutamol sulphate prepared by either method showed similar glass transition temperatures of 119.4±0.7°C combined. Without the energy barrier provided by the ordered crystal lattice, the degradation endotherm for amorphous salbutamol sulphate occurred 50°C below the melting point, with an onset of 143.6±0.2°C. The enthalpies for this degradation transition showed no significant difference between freeze- and spray-dried samples (p>0.05). Distinct from convention, partial integration of the crystalline melt-degradation endotherm was applied to the region 193–221°C which had no contribution from the degradation of amorphous salbutamol sulphate. The linear correlation of these partial areas with amorphous content, R2=0.994, yielded limits of detection and quantification of 0.13% and 0.44% respectively, independent of drying technique. Melt-degradation transitions may be re-purposed for the measurement of amorphous content in powder blends, and they have potential for evaluating disorder more generally.
Collapse
|
11
|
Pinto JT, Stranzinger S, Kruschitz A, Faulhammer E, Stegemann S, Roblegg E, Paudel A. Insights into the processability and performance of adhesive blends of inhalable jet-milled and spray dried salbutamol sulphate at different drug loads. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Kunz C, Gieseler H. Merits and Limitations of Dynamic Vapor Sorption Studies on the Morphology and Physicochemical State of Freeze-Dried Products. J Pharm Sci 2018; 107:2179-2191. [PMID: 29698727 DOI: 10.1016/j.xphs.2018.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/16/2018] [Accepted: 04/17/2018] [Indexed: 11/16/2022]
Abstract
The goal of the present study was to assess the applicability of dynamic vapor sorption analysis of freeze-dried products. Water vapor sorption profiles of intact and ground cakes were recorded to determine the relevance of powder handling. Grinding prior to measurements appeared to be related with a more rapid uptake of water vapor and crystallization. Crystallization may be prevented when analyzing intact cakes. More hygroscopic materials appeared to require a longer time to achieve a constant mass. The specific surface area of different freeze-dried products was calculated from the sorption isotherms using water, organic solvents, and krypton. The specific surface areas calculated for mannitol with water and ethanol was in good agreement with krypton data. False high values were obtained from water vapor sorption of the investigated amorphous materials. The results were slightly improved by the application of vacuum. For trehalose and sucrose, no sorption and thus faulty results were detected with the studied organic solvents. The degree of crystallinity of mannitol within a binary formulation could not be determined by dynamic vapor sorption. Differences in sorption and crystallization tendencies of mannitol and sucrose that were freeze-dried separately and in a binary mixture were considered as the root cause.
Collapse
Affiliation(s)
- Claudia Kunz
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Division of Pharmaceutics, Freeze Drying Focus Group, 91058 Erlangen, Germany
| | - Henning Gieseler
- GILYOS GmbH, Friedrich-Bergius-Ring 15, 97076 Wuerzburg, Germany.
| |
Collapse
|
13
|
|
14
|
Egusa K, Okazaki F, Schiewe J, Werthmann U, Wolkenhauer M. Identification of Polymorphic Forms of Active Pharmaceutical Ingredient in Low-Concentration Dry Powder Formulations by Synchrotron X-Ray Powder Diffraction. Drugs R D 2017; 17:413-418. [PMID: 28905245 PMCID: PMC5629136 DOI: 10.1007/s40268-017-0196-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background The identification of different (pseudo) polymorphs of an active pharmaceutical ingredient in dry powder formulations is of importance during development and entire product lifecycle, e.g., quality control. Whereas determination of polymorphic differences of pure substances is rather easy, in dry powder formulations, it is generally difficult and the difficulties increase particularly, if the substance of interest is present only in low concentrations in the formulation. Such a formulation is Spiriva® inhalation powder (Boehringer Ingelheim), which contains only 0.4 w/w% of the active pharmaceutical ingredient tiotropium bromide monohydrate in a matrix of α-lactose monohydrate as excipient. Methods In this study, identification of 0.4 w/w% tiotropium bromide in the dry powder formulation was examined by X-ray powder diffraction (XRPD) using a synchrotron radiation source and the results were compared with the conventional laboratory XRPD measurements. Results The detection limit of tiotropium bromide by the laboratory XRPD was around 2–5 w/w%, and hence, detection of 0.4 w/w% tiotropium bromide was impossible. The synchrotron XRPD was capable to detect significantly lower level of tiotropium bromide by at least an order of magnitude. Conclusion Four different polymorphic forms of tiotropium bromide present at 0.4 w/w% concentration in lactose powder blends were unambiguously identified by the synchrotron XRPD method.
Collapse
Affiliation(s)
- Kenji Egusa
- CMC Department, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Ltd, Kobe, Japan
| | - Fumiaki Okazaki
- CMC Department, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Ltd, Kobe, Japan
| | - Joerg Schiewe
- Respiratory Drug Delivery, Development Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Ulrike Werthmann
- Drug Discovery Sciences, Development Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Markus Wolkenhauer
- Respiratory Drug Delivery, Development Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany.
| |
Collapse
|
15
|
Investigation of L-leucine in reducing the moisture-induced deterioration of spray-dried salbutamol sulfate power for inhalation. Int J Pharm 2017; 530:30-39. [DOI: 10.1016/j.ijpharm.2017.07.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 11/21/2022]
|
16
|
Alhijjaj M, Belton P, Qi S. A multi-technique characterization of the stability of surfactant containing solid dispersion based buccal patches prepared by hot melt injection moulding. Int J Pharm 2017. [DOI: 10.1016/j.ijpharm.2017.06.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Pinto JT, Radivojev S, Zellnitz S, Roblegg E, Paudel A. How does secondary processing affect the physicochemical properties of inhalable salbutamol sulphate particles? A temporal investigation. Int J Pharm 2017; 528:416-428. [DOI: 10.1016/j.ijpharm.2017.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 02/06/2023]
|
18
|
Yu J, Chan HK, Gengenbach T, Denman JA. Protection of hydrophobic amino acids against moisture-induced deterioration in the aerosolization performance of highly hygroscopic spray-dried powders. Eur J Pharm Biopharm 2017; 119:224-234. [PMID: 28655664 DOI: 10.1016/j.ejpb.2017.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Inhalable particles containing amorphous form of drugs or excipients may absorb atmospheric moisture, causing powder aggregation and recrystallization, adversely affecting powder dispersion and lung deposition. The present study aims to explore hydrophobic amino acids for protection against moisture in spray-dried amorphous powders, using disodium cromoglycate (DSCG) as a model drug. MATERIALS AND METHODS DSCG powders were produced by co-spray drying with isoleucine (Ile), valine (Val) and methionine (Met) in various concentrations (10, 20 and 40%w/w). Particle size distribution and morphology were measured by laser diffraction and scanning electron microscopy (SEM). Physiochemical properties of the powders were characterized by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic vapor sorption (DVS). Particle surface chemistry was analyzed by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). In vitro aerosolization performance was evaluated by a next generation impactor (NGI) after the powders were stored at 60% or 75% relative humidity (RH) for one month and three months. RESULTS AND DISCUSSION Ile, Val and Met significantly reduced the deleterious effect of moisture on aerosol performance, depending on the amount of amino acids in the formulation. Formulations containing 10% or 20% of Ile, Val and Met showed notable deterioration in aerosol performance, with fine particle fraction (FPF) reduced by 6-15% after one-month storage at both 60% and 75% RH. However, 40% Ile was able to maintain the aerosol performance of DSCG stored at 75% RH for one month, while the FPF dropped by 7.5% after three months of storage. In contrast, 40% Val or Met were able to maintain the aerosol performance at 60% RH storage but not at 75% RH. At 40%w/w ratio, these formulations had particle surface coverage of 94.5% (molar percent) of Ile, 87.1% of Val and 84.6% of Met, respectively, which may explain their moisture protection effects. CONCLUSION Ile, Val and Met showed promising moisture protection effect on aerosol performance. The results broaden the understanding on the use of hydrophobic amino acids as an excipient for long-term storage of inhalation powders formulations that are hygroscopic.
Collapse
Affiliation(s)
- Jiaqi Yu
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, New South Wales 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, New South Wales 2006, Australia.
| | - Thomas Gengenbach
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3168, Australia
| | - John A Denman
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
19
|
Schammé B, Monnier X, Couvrat N, Delbreilh L, Dupray V, Dargent É, Coquerel G. Insights on the Physical State Reached by an Active Pharmaceutical Ingredient upon High-Energy Milling. J Phys Chem B 2017; 121:5142-5150. [DOI: 10.1021/acs.jpcb.7b02247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin Schammé
- Normandie
Univ,
UNIROUEN, Sciences et Méthodes Séparatives, 76000, Rouen, France
- Normandie Univ,
UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000 Rouen, France
| | - Xavier Monnier
- Normandie Univ,
UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000 Rouen, France
| | - Nicolas Couvrat
- Normandie
Univ,
UNIROUEN, Sciences et Méthodes Séparatives, 76000, Rouen, France
| | - Laurent Delbreilh
- Normandie Univ,
UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000 Rouen, France
| | - Valérie Dupray
- Normandie
Univ,
UNIROUEN, Sciences et Méthodes Séparatives, 76000, Rouen, France
| | - Éric Dargent
- Normandie Univ,
UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000 Rouen, France
| | - Gérard Coquerel
- Normandie
Univ,
UNIROUEN, Sciences et Méthodes Séparatives, 76000, Rouen, France
| |
Collapse
|
20
|
Zhou QT, Leung SSY, Tang P, Parumasivam T, Loh ZH, Chan HK. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev 2015; 85:83-99. [PMID: 25451137 DOI: 10.1016/j.addr.2014.10.022] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 11/16/2022]
Abstract
Respiratory infections represent a major global health problem. They are often treated by parenteral administrations of antimicrobials. Unfortunately, systemic therapies of high-dose antimicrobials can lead to severe adverse effects and this calls for a need to develop inhaled formulations that enable targeted drug delivery to the airways with minimal systemic drug exposure. Recent technological advances facilitate the development of inhaled anti-microbial therapies. The newer mesh nebulisers have achieved minimal drug residue, higher aerosolisation efficiencies and rapid administration compared to traditional jet nebulisers. Novel particle engineering and intelligent device design also make dry powder inhalers appealing for the delivery of high-dose antibiotics. In view of the fact that no new antibiotic entities against multi-drug resistant bacteria have come close to commercialisation, advanced formulation strategies are in high demand for combating respiratory 'super bugs'.
Collapse
Affiliation(s)
- Qi Tony Zhou
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sharon Shui Yee Leung
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Patricia Tang
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Thaigarajan Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zhi Hui Loh
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
21
|
Wang YB, Watts A, Williams R. Effect of processing parameters on the physicochemical and aerodynamic properties of respirable brittle matrix powders. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50079-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Curtin V, Amharar Y, Gallagher KH, Corcoran S, Tajber L, Corrigan OI, Healy AM. Reducing mechanical activation-induced amorphisation of salbutamol sulphate by co-processing with selected carboxylic acids. Int J Pharm 2013; 456:508-16. [DOI: 10.1016/j.ijpharm.2013.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 11/30/2022]
|
23
|
Petzoldt C, Bley O, Byard SJ, Andert D, Baumgartner B, Nagel N, Tappertzhofen C, Feth MP. An example of how to handle amorphous fractions in API during early pharmaceutical development: SAR114137--a successful approach. Eur J Pharm Biopharm 2013; 86:337-50. [PMID: 24075979 DOI: 10.1016/j.ejpb.2013.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 11/27/2022]
Abstract
The so-called pharmaceutical solid chain, which encompasses drug substance micronisation to the final tablet production, at pilot plant scale is presented as a case study for a novel, highly potent, pharmaceutical compound: SAR114137. Various solid-state analytical methods, such as solid-state Nuclear Magnetic Resonance (ssNMR), Differential Scanning Calorimetry (DSC), Dynamic Water Vapour Sorption Gravimetry (DWVSG), hot-stage Raman spectroscopy and X-ray Powder Diffraction (XRPD) were applied and evaluated to characterise and quantify amorphous content during the course of the physical treatment of crystalline active pharmaceutical ingredient (API). DSC was successfully used to monitor the changes in amorphous content during micronisation of the API, as well as during stability studies. (19)F solid-state NMR was found to be the method of choice for the detection and quantification of low levels of amorphous API, even in the final drug product (DP), since compaction during tablet manufacture was identified as a further source for the formation of amorphous API. The application of different jet milling techniques was a critical factor with respect to amorphous content formation. In the present case, the change from spiral jet milling to loop jet milling led to a decrease in amorphous API content from 20-30 w/w% to nearly 0 w/w% respectively. The use of loop jet milling also improved the processability of the API. Stability investigations on both the milled API and the DP showed a marked tendency for recrystallisation of the amorphous API content on exposure to elevated levels of relative humidity. No significant impact of amorphous API on either the chemical stability or the dissolution rate of the API in drug formulation was observed. Therefore, the presence of amorphous content in the oral formulation was of no consequence for the clinical trial phases I and II.
Collapse
Affiliation(s)
- Christine Petzoldt
- Sanofi-Aventis Deutschland GmbH, Chemical and Biotechnological Development (C&BD) Frankfurt Chemistry, Frankfurt, Germany.
| | - Oliver Bley
- Sanofi-Aventis Deutschland GmbH, R&D, LGCR, Pharmaceutical Operations, Frankfurt, Germany
| | - Stephen J Byard
- Covance Laboratories, Alnwick, Northumberland, United Kingdom.
| | - Doris Andert
- Sanofi-Aventis Deutschland GmbH, R&D, LGCR, Analytical Development, Frankfurt, Germany
| | - Bruno Baumgartner
- Sanofi-Aventis Deutschland GmbH, R&D, LGCR, Analytical Development, Frankfurt, Germany
| | - Norbert Nagel
- Sanofi-Aventis Deutschland GmbH, R&D, LGCR, Analytical Development, Frankfurt, Germany
| | - Christoph Tappertzhofen
- Sanofi-Aventis Deutschland GmbH, Chemical and Biotechnological Development (C&BD) Frankfurt Chemistry, Frankfurt, Germany
| | - Martin Philipp Feth
- Sanofi-Aventis Deutschland GmbH, Chemical and Biotechnological Development (C&BD) Frankfurt Chemistry, Frankfurt, Germany.
| |
Collapse
|
24
|
Grisedale LC, Moffat JG, Jamieson MJ, Belton PS, Barker SA, Craig DQM. Development of Photothermal FTIR Microspectroscopy as a Novel Means of Spatially Identifying Amorphous and Crystalline Salbutamol Sulfate on Composite Surfaces. Mol Pharm 2013; 10:1815-23. [DOI: 10.1021/mp300605s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Louise C. Grisedale
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, United
Kingdom
| | - Jonathan G. Moffat
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, United
Kingdom
| | - Matthew J. Jamieson
- Particle Generation,
Control
and Engineering, GlaxoSmithKline, Medicines
Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY,
United Kingdom
| | - Peter S. Belton
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, United
Kingdom
| | - Susan A. Barker
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, United
Kingdom
| | - Duncan Q. M. Craig
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, United
Kingdom
| |
Collapse
|
25
|
Abstract
Melt extrusion (ME) over recent years has found widespread application as a viable drug delivery option in the drug development process. ME applications include taste masking, solid-state stability enhancement, sustained drug release and solubility enhancement. While ME can result in amorphous or crystalline solid dispersions depending upon several factors, solubility enhancement applications are centered around generating amorphous dispersions, primarily because of the free energy benefits they offer. In line with the purview of the current issue, this review assesses the utility of ME as a means of enhancing solubility of poorly soluble drugs/chemicals. The review describes major processing aspects of ME technology, definition and understanding of the amorphous state, manufacturability, analytical characterization and biopharmaceutical performance testing to better understand the strength and weakness of this formulation strategy for poorly soluble drugs. In addition, this paper highlights the potential advantages of employing a fusion of techniques, including pharmaceutical co-crystals and spray drying/solvent evaporation, facilitating the design of formulations of API exhibiting specific physico-chemical characteristics. Finally, the review presents some successful case studies of commercialized ME based products.
Collapse
Affiliation(s)
- Sejal Shah
- Department of Pharmaceutics, Pii Center for Pharmaceutical Technology, School of Pharmacy, The University of Mississippi, University, MS 38677-1848, United States
| | | | | | | |
Collapse
|
26
|
Priemel P, Grohganz H, Gordon K, Rades T, Strachan C. The impact of surface- and nano-crystallisation on the detected amorphous content and the dissolution behaviour of amorphous indomethacin. Eur J Pharm Biopharm 2012; 82:187-93. [DOI: 10.1016/j.ejpb.2012.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/16/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
|
27
|
Grisedale LC, Belton PS, Jamieson MJ, Barker SA, Craig DQ. An investigation into water interactions with amorphous and milled salbutamol sulphate: The development of predictive models for uptake and recrystallization. Int J Pharm 2012; 422:220-8. [DOI: 10.1016/j.ijpharm.2011.10.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/26/2011] [Accepted: 10/29/2011] [Indexed: 10/15/2022]
|
28
|
Origin of Two Modes of Non-isothermal Crystallization of Glasses Produced by Milling. Pharm Res 2011; 29:1020-32. [DOI: 10.1007/s11095-011-0644-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 12/05/2011] [Indexed: 11/25/2022]
|
29
|
Blum MM, John H. Historical perspective and modern applications of Attenuated Total Reflectance - Fourier Transform Infrared Spectroscopy (ATR-FTIR). Drug Test Anal 2011; 4:298-302. [DOI: 10.1002/dta.374] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 02/06/2023]
Affiliation(s)
- Marc-Michael Blum
- Los Alamos National Laboratory; Bioscience Division; Los Alamos; NM; USA (LA-UR 11-05609)
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology; 80937; Munich; Germany
| |
Collapse
|
30
|
Caron V, Willart JF, Lefort R, Derollez P, Danède F, Descamps M. Solid state amorphization kinetic of alpha lactose upon mechanical milling. Carbohydr Res 2011; 346:2622-8. [PMID: 21983262 DOI: 10.1016/j.carres.2011.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 11/26/2022]
Abstract
It has been previously reported that α-lactose could be totally amorphized by ball milling. In this paper we report a detailed investigation of the structural and microstructural changes by which this solid state amorphization takes place. The investigations have been performed by Powder X-ray Diffraction, Solid State Nuclear Magnetic Resonance ((13)C CP-MAS) and Differential Scanning Calorimetry. The results reveal the structural complexity of the material in the course of its amorphization so that it cannot be considered as a simple mixture made of a decreasing crystalline fraction and an increasing amorphous fraction. Heating this complexity can give rise to a fully nano-crystalline material. The results also show that chemical degradations upon heating are strongly connected to the melting process.
Collapse
Affiliation(s)
- Vincent Caron
- UMET, UMR CNRS 8207, Université Lille Nord de France, F-59650 Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|