1
|
Xu C, Liu Y, Li K, Zhang J, Wei B, Wang H. Absorption of food-derived peptides: Mechanisms, influencing factors, and enhancement strategies. Food Res Int 2024; 197:115190. [PMID: 39593400 DOI: 10.1016/j.foodres.2024.115190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Food-derived peptides (FPs) are bioactive molecules produced from dietary proteins through enzymatic hydrolysis or fermentation. These peptides exhibit various biological activities. However, their efficacy largely depends on bioavailability, the ability to cross absorption barriers, and reach target sites within the body. This review addresses key issues in FP absorption, including barriers, pathways, influencing factors, and strategies to enhance absorption. The biochemical and physical barriers to FP absorption include pH variations, enzymes, unstirred water layer, mucus layer, and intestinal epithelial cells. FPs enter the bloodstream via four main pathways: carrier-mediated transport, endocytosis, paracellular, and passive diffusion. The barrier-crossing efficiency depends on the structural properties and state of FPs and coexisting substances. Absorption efficiency can be significantly improved with permeability enhancers, nano-delivery systems, and chemical modifications. These insights provide a scientific basis and practical guidance for optimizing the bioactivity and health benefits of food-derived peptides.
Collapse
Affiliation(s)
- Chengzhi Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Yuting Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Ke Li
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Juntao Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Benmei Wei
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, Hubei, China.
| |
Collapse
|
2
|
Karasawa Y, Miyano K, Yamaguchi M, Nonaka M, Yamaguchi K, Iseki M, Kawagoe I, Uezono Y. Therapeutic Potential of Orally Administered Rubiscolin-6. Int J Mol Sci 2023; 24:9959. [PMID: 37373107 DOI: 10.3390/ijms24129959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Rubiscolins are naturally occurring opioid peptides derived from the enzymatic digestion of the ribulose bisphosphate carboxylase/oxygenase protein in spinach leaves. They are classified into two subtypes based on amino acid sequence, namely rubiscolin-5 and rubiscolin-6. In vitro studies have determined rubiscolins as G protein-biased delta-opioid receptor agonists, and in vivo studies have demonstrated that they exert several beneficial effects via the central nervous system. The most unique and attractive advantage of rubiscolin-6 over other oligopeptides is its oral availability. Therefore, it can be considered a promising candidate for the development of a novel and safe drug. In this review, we show the therapeutic potential of rubiscolin-6, mainly focusing on its effects when orally administered based on available evidence. Additionally, we present a hypothesis for the pharmacokinetics of rubiscolin-6, focusing on its absorption in the intestinal tract and ability to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Yusuke Karasawa
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Medical Affairs, Viatris Pharmaceuticals Japan Inc., Tokyo 105-0001, Japan
| | - Kanako Miyano
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Masahiro Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Medical Affairs, Pfizer Japan Inc., Tokyo 151-8589, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Keisuke Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Masako Iseki
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Izumi Kawagoe
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yasuhito Uezono
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Supportive and Palliative Care Research Support Office, National Cancer Center Hospital East, Chiba 277-8577, Japan
| |
Collapse
|
3
|
Jin R, Shang J, Teng X, Zhang L, Liao M, Kang J, Meng R, Wang D, Ren H, Liu N. Characterization of DPP-IV Inhibitory Peptides Using an In Vitro Cell Culture Model of the Intestine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2711-2718. [PMID: 33629836 DOI: 10.1021/acs.jafc.0c05880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, we characterize the activities of two depeptidyl peptidase-IV (DPP-IV) inhibitory peptides, VLATSGPG and LDKVFER, using the Caco-2 monolayer model for the intestine. VLATSGPG and LDKVFR inhibited the DPP-IV in the cells via a mixed-type inhibition mode, with in situ IC50 values of 207.3 and 148.5 μM, respectively. Furthermore, VLATSGPG and LDKVFR were transported intact across the cells, with Papp values of 2.41 ± 0.16 and 4.23 ± 0.29 × 10-7 cm/s, respectively. Fragmented peptides were identified in the basolateral side of the membrane. Two of these, GPG and VLA, exhibited high inhibitory activities of 83.6 ± 3.3 and 58.5 ± 2.5%, respectively, at 100 μM concentration. Although 3 mM VLATSGPG and LDKVFR were transported across the epithelium in a concentration-dependent manner, their transport did not damage the tight junction proteins, ZO-1 and occludin. This study demonstrates that the two peptides potentially regulate DPP-IV activity in the intestine.
Collapse
Affiliation(s)
- Ritian Jin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Harbin Tengning Technology Company Ltd., Harbin 150010, China
| | - Jiaqi Shang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Harbin Tengning Technology Company Ltd., Harbin 150010, China
| | - Xiangyu Teng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Harbin Tengning Technology Company Ltd., Harbin 150010, China
| | - Ligang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Minhe Liao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxin Kang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Harbin Tengning Technology Company Ltd., Harbin 150010, China
| | - Ran Meng
- Binhai Agricultural Research Institute of Hebei Academy of Agricultural and Forestry Science/Tangshan Key Laboratory of Plant Salt-Tolerance Research, Tangshan 063200, China
| | - Dangfeng Wang
- College of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haowei Ren
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Ning Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Harbin Tengning Technology Company Ltd., Harbin 150010, China
| |
Collapse
|
4
|
Ding L, Wang L, Yu Z, Ma S, Du Z, Zhang T, Liu J. Importance of Terminal Amino Acid Residues to the Transport of Oligopeptides across the Caco-2 Cell Monolayer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7705-7712. [PMID: 28812357 DOI: 10.1021/acs.jafc.7b03450] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The objective of this paper was to investigate the effects of terminal amino acids on the transport of oligopeptides across the Caco-2 cell monolayer. Ala-based tetra- and pentapeptides were designed, and the N- or C-terminal amino acid residues were replaced by different amino acids. The results showed that the oligopeptides had a wide range of transport permeability across the Caco-2 cell monolayer and could be divided into four categories: non-/poor permeability, low permeability, intermediate permeability, and good permeability. Tetrapeptides with N-terminal Leu, Pro, Ile, Cys, Met, and Val or C-terminal Val showed the highest permeability, with apparent permeability coefficient (Papp) values over 10 × 10-6 cm/s (p < 0.05), suggesting that nonpolar hydrophobic aliphatic amino acids or polar sulfur-containing amino acids were the best for the transport of tetrapeptides. Pentapeptides with N- or C-terminal Tyr also showed high permeability levels, with Papp values of about 10 × 10-6 cm/s. The amino acids Glu, Asn, and Thr at the N terminus or Lys, Asp, and Arg at the C terminus were also beneficial for the transport of tetra- and pentapeptides, with Papp values ranging from 1 × 10-6 to 10 × 10-6 cm/s. In addition, peptides with amino acids replaced at the N terminus generally showed higher permeability than those with amino acids replaced at the C terminus (p < 0.05), suggesting that N-terminal amino acids were more important for the transport of oligopeptides across the Caco-2 cell monolayer.
Collapse
Affiliation(s)
- Long Ding
- College of Food Science and Engineering, Jilin University , Changchun, Jilin 130062, People's Republic of China
| | - Liying Wang
- College of Food Science and Engineering, Jilin University , Changchun, Jilin 130062, People's Republic of China
| | - Zhipeng Yu
- College of Food Science and Engineering, Bohai University , Jinzhou, Liaoning 121013, People's Republic of China
| | - Sitong Ma
- College of Food Science and Engineering, Jilin University , Changchun, Jilin 130062, People's Republic of China
| | - Zhiyang Du
- College of Food Science and Engineering, Jilin University , Changchun, Jilin 130062, People's Republic of China
| | - Ting Zhang
- College of Food Science and Engineering, Jilin University , Changchun, Jilin 130062, People's Republic of China
| | - Jingbo Liu
- College of Food Science and Engineering, Jilin University , Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
5
|
Ochi A, Abe T, Nakao R, Yamamoto Y, Kitahata K, Takagi M, Hirasaka K, Ohno A, Teshima-Kondo S, Taesik G, Choi I, Kawamura T, Nemoto H, Mukai R, Terao J, Nikawa T. N-myristoylated ubiquitin ligase Cbl-b inhibitor prevents on glucocorticoid-induced atrophy in mouse skeletal muscle. Arch Biochem Biophys 2015; 570:23-31. [PMID: 25689493 DOI: 10.1016/j.abb.2015.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/16/2015] [Accepted: 02/06/2015] [Indexed: 12/12/2022]
Abstract
A DGpYMP peptide mimetic of tyrosine(608)-phosphorylated insulin receptor substrate-1 (IRS-1), named Cblin, was previously shown to significantly inhibit Cbl-b-mediated IRS-1 ubiquitination. In the present study, we developed N-myristoylated Cblin and investigated whether it was effective in preventing glucocorticoid-induced muscle atrophy. Using HEK293 cells overexpressing Cbl-b, IRS-1 and ubiquitin, we showed that the 50% inhibitory concentrations of Cbl-b-mediated IRS-1 ubiquitination by N-myristoylated Cblin and Cblin were 30 and 120 μM, respectively. Regarding the DEX-induced atrophy of C2C12 myotubes, N-myristoylated Cblin was more effective than Cblin for inhibiting the DEX-induced decreases in C2C12 myotube diameter and IRS-1 degradation. The inhibitory efficacy of N-myristoylated Cblin on IRS-1 ubiquitination in C2C12 myotubes was approximately fourfold larger than that of Cblin. Furthermore, N-myristoylation increased the incorporation of Cblin into HEK293 cells approximately 10-folds. Finally, we demonstrated that N-myristoylated Cblin prevented the wet weight loss, IRS-1 degradation, and MAFbx/atrogin-1 and MuRF-1 expression in gastrocnemius muscle of DEX-treated mice approximately fourfold more effectively than Cblin. Taken together, these results suggest that N-myristoylated Cblin prevents DEX-induced skeletal muscle atrophy in vitro and in vivo, and that N-myristoylated Cblin more effectively prevents muscle atrophy than unmodified Cblin.
Collapse
Affiliation(s)
- Arisa Ochi
- Department of Nutritional Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Tomoki Abe
- Department of Nutritional Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Reiko Nakao
- Department of Nutritional Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan; National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Yoriko Yamamoto
- Department of Nutritional Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Kanako Kitahata
- Department of Nutritional Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Marina Takagi
- Department of Nutritional Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Katsuya Hirasaka
- Department of Nutritional Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Ayako Ohno
- Department of Nutritional Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Shigetada Teshima-Kondo
- Department of Nutritional Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Gwag Taesik
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Yonsei, Republic of Korea
| | - Inho Choi
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Yonsei, Republic of Korea
| | - Tomoyuki Kawamura
- Department of Pharmaceutical Chemistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Hisao Nemoto
- Department of Pharmaceutical Chemistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Rie Mukai
- Department of Food Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Junji Terao
- Department of Food Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan.
| |
Collapse
|
6
|
Osborne S, Chen W, Addepalli R, Colgrave M, Singh T, Tran C, Day L. In vitrotransport and satiety of a beta-lactoglobulin dipeptide and beta-casomorphin-7 and its metabolites. Food Funct 2014; 5:2706-18. [DOI: 10.1039/c4fo00164h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In vitrotransport of β-CM7 occurs through rapid hydrolysis into three peptide metabolites that transport at variable rates.
Collapse
Affiliation(s)
- Simone Osborne
- CSIRO Animal, Food and Health Sciences
- St Lucia, Australia
| | - Wei Chen
- CSIRO Animal, Food and Health Sciences
- St Lucia, Australia
| | - Rama Addepalli
- CSIRO Animal, Food and Health Sciences
- St Lucia, Australia
| | | | - Tanoj Singh
- CSIRO Animal, Food and Health Sciences
- Werribee, Australia
| | - Cuong Tran
- CSIRO Animal, Food and Health Sciences
- Adelaide, Australia
| | - Li Day
- CSIRO Animal, Food and Health Sciences
- Werribee, Australia
| |
Collapse
|
7
|
Abstract
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
8
|
Sreekumar PG, Chothe P, Sharma KK, Baid R, Kompella U, Spee C, Kannan N, Manh C, Ryan SJ, Ganapathy V, Kannan R, Hinton DR. Antiapoptotic properties of α-crystallin-derived peptide chaperones and characterization of their uptake transporters in human RPE cells. Invest Ophthalmol Vis Sci 2013; 54:2787-98. [PMID: 23532520 PMCID: PMC3632268 DOI: 10.1167/iovs.12-11571] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/19/2013] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The chaperone proteins, α-crystallins, also possess antiapoptotic properties. The purpose of the present study was to investigate whether 19 to 20-mer α-crystallin-derived mini-chaperone peptides (α-crystallin mini-chaperone) are antiapoptotic, and to identify their putative transporters in human fetal RPE (hfRPE) cells. METHODS Cell death and caspase-3 activation induced by oxidative stress were quantified in early passage hfRPE cells in the presence of 19 to 20-mer αA- or αB-crystallin-derived or scrambled peptides. Cellular uptake of fluorescein-labeled, α-crystallin-derived mini-peptides and recombinant full-length αB-crystallin was determined in confluent hfRPE. The entry mechanism in hfRPE cells for α-crystallin mini-peptides was investigated. The protective role of polycaprolactone (PCL) nanoparticle encapsulated αB-crystallin mini-chaperone peptides from H2O2-induced cell death was studied. RESULTS Primary hfRPE cells exposed to oxidative stress and either αA- or αB-crystallin mini-chaperones remained viable and showed marked inhibition of both cell death and activation of caspase-3. Uptake of full-length αB-crystallin was minimal while a time-dependent uptake of αB-crystallin-derived peptide was observed. The mini-peptides entered the hfRPE cells via the sodium-coupled oligopeptide transporters 1 and 2 (SOPT1, SOPT2). PCL nanoparticles containing αB-crystallin mini-chaperone were also taken up and protected hfRPE from H2O2-induced cell death at significantly lower concentrations than free αB-crystallin mini-chaperone peptide. CONCLUSIONS αA- and αB-crystallin mini-chaperones offer protection to hfRPE cells and inhibit caspase-3 activation. The oligopeptide transporters SOPT1 and SOPT2 mediate the uptake of these peptides in RPE cells. Nanodelivery of αB-crystallin-derived mini-chaperone peptide offers an alternative approach for protection of hfRPE cells from oxidant injury.
Collapse
Affiliation(s)
| | - Paresh Chothe
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia
| | - Krishna K. Sharma
- Department of Ophthalmology, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Rinku Baid
- Departments of Pharmaceutical Sciences and Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Uday Kompella
- Departments of Pharmaceutical Sciences and Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christine Spee
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Nandini Kannan
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Christina Manh
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Stephen J. Ryan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia
| | - Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - David R. Hinton
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|