1
|
Khalikova M, Jireš J, Horáček O, Douša M, Kučera R, Nováková L. What is the role of current mass spectrometry in pharmaceutical analysis? MASS SPECTROMETRY REVIEWS 2024; 43:560-609. [PMID: 37503656 DOI: 10.1002/mas.21858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The role of mass spectrometry (MS) has become more important in most application domains in recent years. Pharmaceutical analysis is specific due to its stringent regulation procedures, the need for good laboratory/manufacturing practices, and a large number of routine quality control analyses to be carried out. The role of MS is, therefore, very different throughout the whole drug development cycle. While it dominates within the drug discovery and development phase, in routine quality control, the role of MS is minor and indispensable only for selected applications. Moreover, its role is very different in the case of analysis of small molecule pharmaceuticals and biopharmaceuticals. Our review explains the role of current MS in the analysis of both small-molecule chemical drugs and biopharmaceuticals. Important features of MS-based technologies being implemented, method requirements, and related challenges are discussed. The differences in analytical procedures for small molecule pharmaceuticals and biopharmaceuticals are pointed out. While a single method or a small set of methods is usually sufficient for quality control in the case of small molecule pharmaceuticals and MS is often not indispensable, a large panel of methods including extensive use of MS must be used for quality control of biopharmaceuticals. Finally, expected development and future trends are outlined.
Collapse
Affiliation(s)
- Maria Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Jakub Jireš
- Department of Analytical Chemistry, Faculty of Chemical Engineering, UCT Prague, Prague, Czech Republic
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Ondřej Horáček
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Michal Douša
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Radim Kučera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Pang KT, Yang YS, Zhang W, Ho YS, Sormanni P, Michaels TCT, Walsh I, Chia S. Understanding and controlling the molecular mechanisms of protein aggregation in mAb therapeutics. Biotechnol Adv 2023; 67:108192. [PMID: 37290583 DOI: 10.1016/j.biotechadv.2023.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
In antibody development and manufacturing, protein aggregation is a common challenge that can lead to serious efficacy and safety issues. To mitigate this problem, it is important to investigate its molecular origins. This review discusses (1) our current molecular understanding and theoretical models of antibody aggregation, (2) how various stress conditions related to antibody upstream and downstream bioprocesses can trigger aggregation, and (3) current mitigation strategies employed towards inhibiting aggregation. We discuss the relevance of the aggregation phenomenon in the context of novel antibody modalities and highlight how in silico approaches can be exploited to mitigate it.
Collapse
Affiliation(s)
- Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore; School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technology University, Singapore
| | - Yuan Sheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Wei Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Pietro Sormanni
- Chemistry of Health, Yusuf Hamied Department of Chemistry, University of Cambridge, United Kingdom
| | - Thomas C T Michaels
- Department of Biology, Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland; Bringing Materials to Life Initiative, ETH Zurich, Switzerland
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Sean Chia
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
3
|
Das TK, Chou DK, Jiskoot W, Arosio P. Nucleation in protein aggregation in biotherapeutic development: a look into the heart of the event. J Pharm Sci 2022; 111:951-959. [DOI: 10.1016/j.xphs.2022.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/26/2022]
|
4
|
Xu J, Namanja A, Chan SL, Son C, Petros AM, Sun C, Radziejewski C, Ihnat PM. Insights into the Conformation and Self-Association of a Concentrated Monoclonal Antibody using Isothermal Chemical Denaturation and Nuclear Magnetic Resonance. J Pharm Sci 2021; 110:3819-3828. [PMID: 34506864 DOI: 10.1016/j.xphs.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/07/2023]
Abstract
The purpose of this investigation was to highlight the utility of nuclear magnetic resonance (NMR) as a multi-attribute method for the characterization of therapeutic antibodies. In this case study, we compared results from isothermal chemical denaturation (ICD) and NMR with standard methods to relate conformational states of a model monoclonal antibody (mAb1) with protein-protein interactions (PPI) that lead to self - association in concentrated solutions. The increase in aggregation rate and relative viscosity for mAb1 was found to be both concentration and pH dependent. The free energy of unfolding (∆G⁰) from ICD and thermal analysis in dilute solutions indicated that although the native state predominated between pH 4 - pH 7, it was disrupted at the CH2 and unfolded noncooperatively under acidic conditions. One-dimensional (1D) 1H NMR and two-dimensional (2D) 13C-1H NMR performed, in concentrated solutions, confirmed that PPI between pH 4-7 occurred while mAb1 was in the native state. NMR corroborated that mAb1 maintained a dominant native state at formulation-relevant conditions at the tested pH range, had increased global molecular tumbling dynamics at lower pH and confirmed increased PPI at higher pH conditions. This report aligns and compares typical characterization of an IgG1 with assessment of structure by NMR and provided a more precise assessment and deeper insight into the conformation of an IgG1 in concentrated solutions.
Collapse
Affiliation(s)
- Jianwen Xu
- Drug Product Development Biologic Preformulation, Abbvie Bioresearch Center, Worcester, MA 01605, United States
| | - Andrew Namanja
- Protein & Assay Sciences, Drug Discovery Science & Technology, Abbvie Inc, Waukegan, IL 60031, United States
| | - Siew Leong Chan
- Analytical Sciences, Takeda Pharmaceuticals, Westborough, MA 01581, United States; Protein Analytics, Abbvie Bioresearch Center, Worcester, MA 01605, United States
| | - Chelsea Son
- Drug Product Development Biologic Preformulation, Abbvie Bioresearch Center, Worcester, MA 01605, United States; Process Analytics, Amgen Inc., Cambridge, MA 02141, United States
| | - Andrew M Petros
- Protein & Assay Sciences, Drug Discovery Science & Technology, Abbvie Inc, Waukegan, IL 60031, United States
| | - Chaohong Sun
- Protein & Assay Sciences, Drug Discovery Science & Technology, Abbvie Inc, Waukegan, IL 60031, United States
| | - Czeslaw Radziejewski
- Protein Analytics, Abbvie Bioresearch Center, Worcester, MA 01605, United States
| | - Peter M Ihnat
- Drug Product Development Biologic Preformulation, Abbvie Bioresearch Center, Worcester, MA 01605, United States; Protein Biochemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, United States.
| |
Collapse
|
5
|
Kingsbury JS, Lantz MM, Saini A, Wang MZ, Gokarn YR. Characterization of Opalescence in low Volume Monoclonal Antibody Solutions Enabled by Microscale Nephelometry. J Pharm Sci 2021; 110:3176-3182. [PMID: 34004217 DOI: 10.1016/j.xphs.2021.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 11/16/2022]
Abstract
Monoclonal antibody (mAb)-based drugs are often prone to unfavorable solution behaviors including high viscosity, opalescence, phase separation, and aggregation at the high concentrations needed to enable patient-centric subcutaneous dosage forms. Given that these can have a detrimental impact on manufacturability, stability, and delivery, approaches to identifying, monitoring, and controlling these behaviors during drug development are critical. Opalescence presents a significant challenge due to its relationship to liquid-liquid phase separation. Quantitative characterization of opalescence via turbidimetry is often restrictive due to large volume requirements (>2 mL) and alternative microscale approaches based on light transmittance (Eckhardt et al., J Pharm Sci Technol. 1994, 48: 64-70) may pose challenging with respect to accuracy. To address the need for accurate and quantitative microscale opalescence measurements, we have evaluated the use of a 'de-tuned' static light scattering detector which requires <10 μL sample per measurement. We show that tuning of the laser power to a range far below that of traditional light scattering measurements results in a stable detector response that can be accurately calibrated to the nephelometric turbidity unit (NTU) scale using appropriate standards. The calibrated detector signal yields NTU values for mAbs and other protein solutions that are comparable to a commercial turbidimeter. We used this microscale approach to characterize the opalescence of 48 commercial mAb drug products and found that the majority have opalescence below 15 NTU. However, in products with mAb concentrations greater than 75 mg/mL, a broad range of opalescence was observed, in a few cases greater than 20 NTU. These measurements as well as nephelometric characterization of several IgG1 and IgG4 mAbs across a broad pH range highlight subclass-specific tendencies toward opalescence in high concentration solutions.
Collapse
Affiliation(s)
| | | | - Amandeep Saini
- Global CMC Development, Sanofi, Framingham, MA, 01701 USA
| | - Michael Z Wang
- Global CMC Development, Sanofi, Framingham, MA, 01701 USA.
| | - Yatin R Gokarn
- Global CMC Development, Sanofi, Framingham, MA, 01701 USA
| |
Collapse
|
6
|
Berner C, Menzen T, Winter G, Svilenov HL. Combining Unfolding Reversibility Studies and Molecular Dynamics Simulations to Select Aggregation-Resistant Antibodies. Mol Pharm 2021; 18:2242-2253. [PMID: 33928776 DOI: 10.1021/acs.molpharmaceut.1c00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The efficient development of new therapeutic antibodies relies on developability assessment with biophysical and computational methods to find molecules with drug-like properties such as resistance to aggregation. Despite the many novel approaches to select well-behaved proteins, antibody aggregation during storage is still challenging to predict. For this reason, there is a high demand for methods that can identify aggregation-resistant antibodies. Here, we show that three straightforward techniques can select the aggregation-resistant antibodies from a dataset with 13 molecules. The ReFOLD assay provided information about the ability of the antibodies to refold to monomers after unfolding with chemical denaturants. Modulated scanning fluorimetry (MSF) yielded the temperatures that start causing irreversible unfolding of the proteins. Aggregation was the main reason for poor unfolding reversibility in both ReFOLD and MSF experiments. We therefore performed temperature ramps in molecular dynamics (MD) simulations to obtain partially unfolded antibody domains in silico and used CamSol to assess their aggregation potential. We compared the information from ReFOLD, MSF, and MD to size-exclusion chromatography (SEC) data that shows whether the antibodies aggregated during storage at 4, 25, and 40 °C. Contrary to the aggregation-prone molecules, the antibodies that were resistant to aggregation during storage at 40 °C shared three common features: (i) higher tendency to refold to monomers after unfolding with chemical denaturants, (ii) higher onset temperature of nonreversible unfolding, and (iii) unfolding of regions containing aggregation-prone sequences at higher temperatures in MD simulations.
Collapse
Affiliation(s)
- Carolin Berner
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Tim Menzen
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Gerhard Winter
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Hristo L Svilenov
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| |
Collapse
|
7
|
Calero-Rubio C, Saluja A, Sahin E, Roberts CJ. Predicting High-Concentration Interactions of Monoclonal Antibody Solutions: Comparison of Theoretical Approaches for Strongly Attractive Versus Repulsive Conditions. J Phys Chem B 2019; 123:5709-5720. [PMID: 31241333 DOI: 10.1021/acs.jpcb.9b03779] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonspecific protein-protein interactions of a monoclonal antibody were quantified experimentally using light scattering from low to high protein concentrations (c2) and compared with prior work for a different antibody that yielded qualitatively different behavior. The c2 dependence of the excess Rayleigh ratio (Rex) provided the osmotic second virial coefficient (B22) at low c2 and the static structure factor (Sq=0) at high c2, as a function of solution pH, total ionic strength (TIS), and sucrose concentration. Net repulsive interactions were observed at pH 5, with weaker repulsions at higher TIS. Conversely, attractive electrostatic interactions were observed at pH 6.5, with weaker attractions at higher TIS. Refined coarse-grained models were used to fit model parameters using experimental B22 versus TIS data. The parameters were used to predict high-c2 Rex values via Monte Carlo simulations and separately with Mayer-sampling calculations of higher-order virial coefficients. For both methods, predictions for repulsive to mildly attractive conditions were quantitatively accurate. However, only qualitatively accurate predictions were practical for strongly attractive conditions. An alternative, higher resolution model was used to show semiquantitatively and quantitatively accurate predictions of strong electrostatic attractions at low c2 and low ionic strength.
Collapse
Affiliation(s)
- Cesar Calero-Rubio
- Department of Chemical and Biomolecular Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Atul Saluja
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | - Erinc Sahin
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering , University of Delaware , Newark , Delaware 19716 , United States
| |
Collapse
|
8
|
Wang W, Roberts CJ. Protein aggregation – Mechanisms, detection, and control. Int J Pharm 2018; 550:251-268. [DOI: 10.1016/j.ijpharm.2018.08.043] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
|
9
|
Probing Conformational Diversity of Fc Domains in Aggregation-Prone Monoclonal Antibodies. Pharm Res 2018; 35:220. [PMID: 30255351 DOI: 10.1007/s11095-018-2500-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Fc domains are an integral component of monoclonal antibodies (mAbs) and Fc-based fusion proteins. Engineering mutations in the Fc domain is a common approach to achieve desired effector function and clinical efficacy of therapeutic mAbs. It remains debatable, however, whether molecular engineering either by changing glycosylation patterns or by amino acid mutation in Fc domain could impact the higher order structure of Fc domain potentially leading to increased aggregation propensities in mAbs. METHODS Here, we use NMR fingerprinting analysis of Fc domains, generated from selected Pfizer mAbs with similar glycosylation patterns, to address this question. Specifically, we use high resolution 2D [13C-1H] NMR spectra of Fc fragments, which fingerprints methyl sidechain bearing residues, to probe the correlation of higher order structure with the storage stability of mAbs. Thermal calorimetric studies were also performed to assess the stability of mAb fragments. RESULTS Unlike NMR fingerprinting, thermal melting temperature as obtained from calorimetric studies for the intact mAbs and fragments (Fc and Fab), did not reveal any correlation with the aggregation propensities of mAbs. Despite >97% sequence homology, NMR data suggests that higher order structure of Fc domains could be dynamic and may result in unique conformation(s) in solution. CONCLUSION The overall glycosylation pattern of these mAbs being similar, these conformation(s) could be linked to the inherent plasticity of the Fc domain, and may act as early transients to the overall aggregation of mAbs.
Collapse
|
10
|
Adiutori R, Aarum J, Zubiri I, Bremang M, Jung S, Sheer D, Pike I, Malaspina A. The proteome of neurofilament-containing protein aggregates in blood. Biochem Biophys Rep 2018; 14:168-177. [PMID: 29872749 PMCID: PMC5986704 DOI: 10.1016/j.bbrep.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/15/2018] [Accepted: 04/26/2018] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation in biofluids is a poorly understood phenomenon. Under normal physiological conditions, fluid-borne aggregates may contain plasma or cell proteins prone to aggregation. Recent observations suggest that neurofilaments (Nf), the building blocks of neurons and a biomarker of neurodegeneration, are included in high molecular weight complexes in circulation. The composition of these Nf-containing hetero-aggregates (NCH) may change in systemic or organ-specific pathologies, providing the basis to develop novel disease biomarkers. We have tested ultracentrifugation (UC) and a commercially available protein aggregate binder, Seprion PAD-Beads (SEP), for the enrichment of NCH from plasma of healthy individuals, and then characterised the Nf content of the aggregate fractions using gel electrophoresis and their proteome by mass spectrometry (MS). Western blot analysis of fractions obtained by UC showed that among Nf isoforms, neurofilament heavy chain (NfH) was found within SDS-stable high molecular weight aggregates. Shotgun proteomics of aggregates obtained with both extraction techniques identified mostly cell structural and to a lesser extent extra-cellular matrix proteins, while functional analysis revealed pathways involved in inflammatory response, phagosome and prion-like protein behaviour. UC aggregates were specifically enriched with proteins involved in endocrine, metabolic and cell-signalling regulation. We describe the proteome of neurofilament-containing aggregates isolated from healthy individuals biofluids using different extraction methods.
Collapse
Affiliation(s)
- Rocco Adiutori
- Centre for Neuroscience and Trauma, Queen Mary University of London, Blizard Institute, Barts and The School of Medicine and Dentistry, London, United Kingdom
| | - Johan Aarum
- Centre for Genomics and Child Health, Queen Mary University of London, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Irene Zubiri
- Centre for Neuroscience and Trauma, Queen Mary University of London, Blizard Institute, Barts and The School of Medicine and Dentistry, London, United Kingdom
| | - Michael Bremang
- Proteome Sciences Plc, Hamilton House, Mabledon Place, London, United Kingdom
| | - Stephan Jung
- ProteomeSciencesR&DGmbH&Co.KG, Frankfurt, Germany
| | - Denise Sheer
- Centre for Genomics and Child Health, Queen Mary University of London, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Ian Pike
- Proteome Sciences Plc, Hamilton House, Mabledon Place, London, United Kingdom
| | - Andrea Malaspina
- Centre for Neuroscience and Trauma, Queen Mary University of London, Blizard Institute, Barts and The School of Medicine and Dentistry, London, United Kingdom
| |
Collapse
|
11
|
Barnett GV, Balakrishnan G, Chennamsetty N, Meengs B, Meyer J, Bongers J, Ludwig R, Tao L, Das TK, Leone A, Kar SR. Enhanced Precision of Circular Dichroism Spectral Measurements Permits Detection of Subtle Higher Order Structural Changes in Therapeutic Proteins. J Pharm Sci 2018; 107:2559-2569. [PMID: 29913140 DOI: 10.1016/j.xphs.2018.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/23/2018] [Accepted: 06/06/2018] [Indexed: 11/24/2022]
Abstract
Protein higher order structure (HOS) is an essential quality attribute to ensure protein stability and proper biological function. Protein HOS characterization is performed during comparability assessments for product consistency as well as during forced degradation studies for structural alteration upon stress. Circular dichroism (CD) spectroscopy is a widely used technique for measuring protein HOS, but it remains difficult to assess HOS with a high degree of accuracy and precision. Moreover, once spectral changes are detected, interpreting the differences in terms of specific structural attributes is challenging. Spectral normalization by the protein concentration remains one of the largest sources of error and reduces the ability to confidently detect differences in CD spectra. This work develops a simple method to enhance the precision of the CD spectral measurements through normalization of the CD spectra by the protein concentration determined directly from the CD measurement. This method is implemented to successfully detect small CD spectral changes in multiple forced degradation studies as well as comparability assessments during biologics drug development. Furthermore, the interpretation of CD spectral changes in terms of HOS differences are provided based on orthogonal data in conjunction with structural insights gained through in silico homology modeling of the protein structure.
Collapse
Affiliation(s)
- Gregory V Barnett
- Biologics Molecular and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534.
| | - Gurusamy Balakrishnan
- Biologics Molecular and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534
| | - Naresh Chennamsetty
- Biologics Molecular and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534
| | - Brent Meengs
- Analytical Development, ZymoGenetics (A Bristol-Myers Squibb Company), Seattle, Washington 98102
| | - Jeffery Meyer
- Analytical Development, ZymoGenetics (A Bristol-Myers Squibb Company), Seattle, Washington 98102
| | - Jacob Bongers
- Biologics Molecular and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534
| | - Richard Ludwig
- Biologics Molecular and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534
| | - Li Tao
- Biologics Molecular and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534
| | - Tapan K Das
- Biologics Molecular and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534
| | - Anthony Leone
- Biologics Molecular and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534
| | - Sambit R Kar
- Biologics Molecular and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534
| |
Collapse
|
12
|
Hofmann M, Gieseler H. Predictive Screening Tools Used in High-Concentration Protein Formulation Development. J Pharm Sci 2018; 107:772-777. [DOI: 10.1016/j.xphs.2017.10.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/01/2017] [Accepted: 10/24/2017] [Indexed: 01/08/2023]
|
13
|
Wang S, Zhang X, Wu G, Tian Z, Qian F. Optimization of high-concentration endostatin formulation: Harmonization of excipients' contributions on colloidal and conformational stabilities. Int J Pharm 2017; 530:173-186. [PMID: 28755991 DOI: 10.1016/j.ijpharm.2017.07.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/05/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022]
Abstract
Recently, increasing research efforts have been devoted into developing high-concentration protein drugs for subcutaneous injection, especially for those with short half-lives and high-dose requirement. Proteins at high concentrations normally present increased colloidal and structural instability, such as aggregation, fibrillation and gelation, which significantly challenges the high-concentration formulation development of protein drugs. Here we used endostatin, a 20kD recombinant protein, as a model drug for high-concentration formulation optimization. The colloidal and conformational stability of endostatin at high concentration of 30mg/mL were investigated in formulations containing various excipients, including saccharides (mannitol, sorbitol and sucrose), salts (ArgHCl and NaCl), and surfactants (tween 20 and 80). Protein fibrillation was characterized and semi-quantified by optical polarized light microscopy and transmission electron microscopy, and the amount of fiber formation at elevated temperature of 40°C was determined. The soluble protein aggregates were characterized by dynamic and static light scattering before and after dilution. The conformational stability were characterized by polyacrylamide gel electrophoresis, fluorescence, circular dichroism, and differential scanning calorimetry. We observed that the soluble aggregation, fibrillation and gelation, induced by conformational and colloidal instabilities of the protein solution, could be substantially optimized by using suitable stabilizers such as combinations of saccharides and surfactants; while formation of gel and soluble aggregates at high protein concentration (e.g., 30mg/mL) and elevated temperature (40°C) could be prevented by avoiding the usage of salts. It's worth emphasizing that some stabilizers, such as salts and surfactants, could show opposite contributions in conformational and colloidal stabilities of endostatin. Therefore, cautions are needed when one attempts to correlate the colloidal stability of high-concentration proteins with their conformational stability, and the colloidal and conformational protein stabilities must be harmonized by a balanced selection of various types of excipients.
Collapse
Affiliation(s)
- Shujing Wang
- School of Pharmaceutical Sciences & Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Xinyi Zhang
- School of Pharmaceutical Sciences & Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Guoliang Wu
- School of Pharmaceutical Sciences & Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Zhou Tian
- School of Pharmaceutical Sciences & Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Feng Qian
- School of Pharmaceutical Sciences & Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Sarangapani PS, Weaver J, Parupudi A, Besong TM, Adams GG, Harding SE, Manikwar P, Castellanos MM, Bishop SM, Pathak JA. Both Reversible Self-Association and Structural Changes Underpin Molecular Viscoelasticity of mAb Solutions. J Pharm Sci 2016; 105:3496-3506. [DOI: 10.1016/j.xphs.2016.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/27/2016] [Accepted: 08/23/2016] [Indexed: 10/20/2022]
|
15
|
Kim NA, An IB, Lim HS, Yang SI, Jeong SH. Biophysical evaluation of hybrid Fc fusion protein of hGH to achieve basal buffer system. Int J Pharm 2016; 513:421-430. [DOI: 10.1016/j.ijpharm.2016.09.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/05/2016] [Accepted: 09/18/2016] [Indexed: 12/22/2022]
|
16
|
Barnett GV, Drenski M, Razinkov V, Reed WF, Roberts CJ. Identifying protein aggregation mechanisms and quantifying aggregation rates from combined monomer depletion and continuous scattering. Anal Biochem 2016; 511:80-91. [PMID: 27510552 PMCID: PMC5004974 DOI: 10.1016/j.ab.2016.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/13/2022]
Abstract
Parallel temperature initial rates (PTIR) from chromatographic separation of aggregating protein solutions are combined with continuous simultaneous multiple sample light scattering (SMSLS) to make quantitative deductions about protein aggregation kinetics and mechanisms. PTIR determines the rates at which initially monomeric proteins are converted to aggregates over a range of temperatures, under initial-rate conditions. Using SMSLS for the same set of conditions provides time courses of the absolute Rayleigh scattering ratio, IR(t), from which a potentially different measure of aggregation rates can be quantified. The present report compares these measures of aggregation rates across a range of solution conditions that result in different aggregation mechanisms for anti-streptavidin (AS) immunoglobulin gamma-1 (IgG1). The results illustrate how the two methods provide complementary information when deducing aggregation mechanisms, as well as cases where they provide new mechanistic details that were not possible to deduce in previous work. Criteria are presented for when the two techniques are expected to give equivalent results for quantitative rates, the potential limitations when solution non-idealities are large, as well as a comparison of the temperature dependence of AS-IgG1 aggregation rates with published data for other antibodies.
Collapse
Affiliation(s)
- Gregory V Barnett
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Michael Drenski
- Department of Physics, Tulane University, New Orleans, LA 70118, USA
| | | | - Wayne F Reed
- Department of Physics, Tulane University, New Orleans, LA 70118, USA.
| | - Christopher J Roberts
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
17
|
Geng SB, Wu J, Alam ME, Schultz JS, Dickinson CD, Seminer CR, Tessier PM. Facile Preparation of Stable Antibody–Gold Conjugates and Application to Affinity-Capture Self-Interaction Nanoparticle Spectroscopy. Bioconjug Chem 2016; 27:2287-2300. [DOI: 10.1021/acs.bioconjchem.6b00207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steven B. Geng
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jiemin Wu
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Magfur E. Alam
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jason S. Schultz
- Eli Lilly Biotechnology Center, San
Diego, California 92121, United States
| | - Craig D. Dickinson
- Eli Lilly Biotechnology Center, San
Diego, California 92121, United States
| | - Carly R. Seminer
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Peter M. Tessier
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
18
|
O'Brien C, Blanco M, Costanzo J, Enterline M, Fernandez E, Robinson A, Roberts C. Modulating non-native aggregation and electrostatic protein-protein interactions with computationally designed single-point mutations. Protein Eng Des Sel 2016; 29:231-243. [PMID: 27160179 PMCID: PMC4867096 DOI: 10.1093/protein/gzw010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/29/2016] [Accepted: 03/28/2016] [Indexed: 11/14/2022] Open
Abstract
Non-native protein aggregation is a ubiquitous challenge in the production, storage and administration of protein-based biotherapeutics. This study focuses on altering electrostatic protein-protein interactions as a strategy to modulate aggregation propensity in terms of temperature-dependent aggregation rates, using single-charge variants of human γ-D crystallin. Molecular models were combined to predict amino acid substitutions that would modulate protein-protein interactions with minimal effects on conformational stability. Experimental protein-protein interactions were quantified by the Kirkwood-Buff integrals (G22) from laser scattering, and G22 showed semi-quantitative agreement with model predictions. Experimental initial-rates for aggregation showed that increased (decreased) repulsive interactions led to significantly increased (decreased) aggregation resistance, even based solely on single-point mutations. However, in the case of a particular amino acid (E17), the aggregation mechanism was altered by substitution with R or K, and this greatly mitigated improvements in aggregation resistance. The results illustrate that predictions based on native protein-protein interactions can provide a useful design target for engineering aggregation resistance; however, this approach needs to be balanced with consideration of how mutations can impact aggregation mechanisms.
Collapse
Affiliation(s)
- C.J. O'Brien
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - M.A. Blanco
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - J.A. Costanzo
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - M. Enterline
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - E.J. Fernandez
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - A.S. Robinson
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | - C.J. Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
19
|
Raut AS, Kalonia DS. Pharmaceutical Perspective on Opalescence and Liquid–Liquid Phase Separation in Protein Solutions. Mol Pharm 2016; 13:1431-44. [DOI: 10.1021/acs.molpharmaceut.5b00937] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ashlesha S. Raut
- Department of Pharmaceutical
Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Devendra S. Kalonia
- Department of Pharmaceutical
Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
20
|
Barnett GV, Razinkov VI, Kerwin BA, Hillsley A, Roberts CJ. Acetate- and Citrate-Specific Ion Effects on Unfolding and Temperature-Dependent Aggregation Rates of Anti-Streptavidin IgG1. J Pharm Sci 2016; 105:1066-73. [DOI: 10.1016/j.xphs.2015.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 01/20/2023]
|
21
|
Chakroun N, Hilton D, Ahmad SS, Platt GW, Dalby PA. Mapping the Aggregation Kinetics of a Therapeutic Antibody Fragment. Mol Pharm 2016; 13:307-19. [PMID: 26692229 DOI: 10.1021/acs.molpharmaceut.5b00387] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The analytical characterization of biopharmaceuticals is a fundamental step in the early stages of development and prediction of their behavior in bioprocesses. Protein aggregation in particular is a common issue as it affects all stages of product development. In the present work, we investigate the stability and the aggregation kinetics of A33Fab, a therapeutically relevant humanized antibody fragment at a wide range of pH, ionic strength, and temperature. We show that the propensity of A33Fab to aggregate under thermally accelerated conditions is pH and ionic-strength dependent with a stronger destabilizing effect of ionic strength at low pH. In the absence of added salts, A33Fab molecules appear to be protected from aggregation due to electrostatic colloidal repulsion at low pH. Analysis by transmission electron microscopy identified significantly different aggregate species formed at low and high pH. The correlations between apparent midpoints of thermal transitions (Tm,app values), or unfolded mole fractions, and aggregation rates are reported here to be significant only at the elevated incubation temperature of 65 °C, where aggregation from the unfolded state predominates. At all other conditions, particularly at 4-45 °C, aggregation of A33 Fab was predominantly from a native-like state, and the kinetics obeyed Arrhenius behavior. Despite this, the rank order of aggregation rates observed at 45 °C, 23 and 4 °C still did not correlate well to each other, indicating that forced degradation at elevated temperatures was not a good screen for predicting behavior at low temperature.
Collapse
Affiliation(s)
- Nesrine Chakroun
- EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K.,Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K
| | - David Hilton
- EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K.,Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K
| | - Shahina S Ahmad
- Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K
| | - Geoffrey W Platt
- Unchained Laboratories, Unit 706, Avenue E West, Thorp Arch Estate, Wetherby LS23 7EG, U.K
| | - Paul A Dalby
- EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K.,Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K
| |
Collapse
|
22
|
Bria CR, Jones J, Charlesworth A, Williams SKR. Probing Submicron Aggregation Kinetics of an IgG Protein by Asymmetrical Flow Field-Flow Fractionation. J Pharm Sci 2016; 105:31-9. [DOI: 10.1002/jps.24703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022]
|
23
|
Shoffner SK, Schnell S. Estimation of the lag time in a subsequent monomer addition model for fibril elongation. Phys Chem Chem Phys 2016; 18:21259-68. [DOI: 10.1039/c5cp07845h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The lag time for dock–lock fibril elongation can be estimated from kinetic parameters.
Collapse
Affiliation(s)
- Suzanne K. Shoffner
- Department of Molecular & Integrative Physiology
- University of Michigan Medical School
- Ann Arbor
- USA
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology
- University of Michigan Medical School
- Ann Arbor
- USA
- Department of Computational Medicine & Bioinformatics
| |
Collapse
|
24
|
Cao X, He Y, Smith J, Wirth MJ. Alleviating nonlinear behavior of disulfide isoforms in the reversed-phase liquid chromatography of IgG2. J Chromatogr A 2015; 1410:147-53. [PMID: 26256919 DOI: 10.1016/j.chroma.2015.07.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 10/23/2022]
Abstract
Reversed-phase chromatography is an established method for characterizing the disulfide isoforms of IgG2. This work explores the effect of mobile phase gradient profile and sample concentration on the separation of disulfide isoforms. The acidic mobile phase can alter the relative proportions of disulfide isoforms, but only when the level of the reactive A1 isoform is much higher than for typical conditions of separation and typical IgG2 samples. Otherwise, there is minimal disulfide scrambling. A slower gradient and flow rate modestly improve resolution, but the peaks remain heavily overlapped. Resolution is further improved and nonlinear chromatography lessened when injection is performed under non-stacking conditions. Non-stacking conditions also keep the concentration from spiking at the head of the column, reducing noncovalent associations that can promote disulfide scrambling. The higher resolution from non-stacking injection reveals the presence of at least seven species.
Collapse
Affiliation(s)
- Xiang Cao
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Yan He
- Pfizer, Inc., AA4 700 Chesterfield Parkway North Chesterfield, MO 63017, USA
| | - Jacquelynn Smith
- Pfizer, Inc., AA4 700 Chesterfield Parkway North Chesterfield, MO 63017, USA
| | - Mary J Wirth
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
25
|
Nicoud L, Owczarz M, Arosio P, Morbidelli M. A multiscale view of therapeutic protein aggregation: A colloid science perspective. Biotechnol J 2015; 10:367-78. [DOI: 10.1002/biot.201400858] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/18/2015] [Accepted: 02/27/2015] [Indexed: 12/16/2022]
|
26
|
Lewis EN, Qi W, Kidder LH, Amin S, Kenyon SM, Blake S. Combined dynamic light scattering and Raman spectroscopy approach for characterizing the aggregation of therapeutic proteins. Molecules 2014; 19:20888-905. [PMID: 25514228 PMCID: PMC6271152 DOI: 10.3390/molecules191220888] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 11/16/2022] Open
Abstract
Determination of the physicochemical properties of protein therapeutics and their aggregates is critical for developing formulations that enhance product efficacy, stability, safety and manufacturability. Analytical challenges are compounded for materials: (1) that are formulated at high concentration, (2) that are formulated with a variety of excipients, and (3) that are available only in small volumes. In this article, a new instrument is described that measures protein secondary and tertiary structure, as well as molecular size, over a range of concentrations and formulation conditions of low volume samples. Specifically, characterization of colloidal and conformational stability is obtained through a combination of two well-established analytical techniques: dynamic light scattering (DLS) and Raman spectroscopy, respectively. As the data for these two analytical modalities are collected on the same sample at the same time, the technique enables direct correlation between them, in addition to the more straightforward benefit of minimizing sample usage by providing multiple analytical measurements on the same aliquot non-destructively. The ability to differentiate between unfolding and aggregation that the combination of these techniques provides enables insights into underlying protein aggregation mechanisms. The article will report on mechanistic insights for aggregation that have been obtained from the application of this technique to the characterization of lysozyme, which was evaluated as a function of concentration and pH.
Collapse
Affiliation(s)
- E Neil Lewis
- Malvern Biosciences Inc., 7221 Lee Deforest Drive, Suite 300, Columbia, MD 21046, USA.
| | - Wei Qi
- Malvern Biosciences Inc., 7221 Lee Deforest Drive, Suite 300, Columbia, MD 21046, USA.
| | - Linda H Kidder
- Malvern Biosciences Inc., 7221 Lee Deforest Drive, Suite 300, Columbia, MD 21046, USA.
| | - Samiul Amin
- Malvern Biosciences Inc., 7221 Lee Deforest Drive, Suite 300, Columbia, MD 21046, USA.
| | - Stacy M Kenyon
- Malvern Biosciences Inc., 7221 Lee Deforest Drive, Suite 300, Columbia, MD 21046, USA.
| | - Steven Blake
- Malvern Biosciences Inc., 7221 Lee Deforest Drive, Suite 300, Columbia, MD 21046, USA.
| |
Collapse
|
27
|
|
28
|
Roberts CJ. Protein aggregation and its impact on product quality. Curr Opin Biotechnol 2014; 30:211-7. [PMID: 25173826 DOI: 10.1016/j.copbio.2014.08.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/02/2014] [Accepted: 08/09/2014] [Indexed: 01/24/2023]
Abstract
Protein pharmaceutical products are typically active as folded monomers that are composed of one or more protein chains, such as the heavy and light chains in monoclonal antibodies that are a mainstay of current drug pipelines. There are numerous possible aggregated states for a given protein, some of which are potentially useful, while most of which are considered deleterious from the perspective of pharmaceutical product quality and performance. This review provides an overview of how and why different aggregated states of proteins occur, how this potentially impacts product quality and performance, fundamental approaches to control aggregate formation, and the practical approaches that are currently used in the pharmaceutical industry.
Collapse
Affiliation(s)
- Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
29
|
Roberts CJ. Therapeutic protein aggregation: mechanisms, design, and control. Trends Biotechnol 2014; 32:372-80. [PMID: 24908382 DOI: 10.1016/j.tibtech.2014.05.005] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 11/28/2022]
Abstract
Although it is well known that proteins are only marginally stable in their folded states, it is often less well appreciated that most proteins are inherently aggregation-prone in their unfolded or partially unfolded states, and the resulting aggregates can be extremely stable and long-lived. For therapeutic proteins, aggregates are a significant risk factor for deleterious immune responses in patients, and can form via a variety of mechanisms. Controlling aggregation using a mechanistic approach may allow improved design of therapeutic protein stability, as a complement to existing design strategies that target desired protein structures and function. Recent results highlight the importance of balancing protein environment with the inherent aggregation propensities of polypeptide chains.
Collapse
Affiliation(s)
- Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
30
|
Alsenaidy MA, Jain NK, Kim JH, Middaugh CR, Volkin DB. Protein comparability assessments and potential applicability of high throughput biophysical methods and data visualization tools to compare physical stability profiles. Front Pharmacol 2014; 5:39. [PMID: 24659968 PMCID: PMC3950620 DOI: 10.3389/fphar.2014.00039] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/19/2014] [Indexed: 11/13/2022] Open
Abstract
In this review, some of the challenges and opportunities encountered during protein comparability assessments are summarized with an emphasis on developing new analytical approaches to better monitor higher-order protein structures. Several case studies are presented using high throughput biophysical methods to collect protein physical stability data as function of temperature, agitation, ionic strength and/or solution pH. These large data sets were then used to construct empirical phase diagrams (EPDs), radar charts, and comparative signature diagrams (CSDs) for data visualization and structural comparisons between the different proteins. Protein samples with different sizes, post-translational modifications, and inherent stability are presented: acidic fibroblast growth factor (FGF-1) mutants, different glycoforms of an IgG1 mAb prepared by deglycosylation, as well as comparisons of different formulations of an IgG1 mAb and granulocyte colony stimulating factor (GCSF). Using this approach, differences in structural integrity and conformational stability profiles were detected under stress conditions that could not be resolved by using the same techniques under ambient conditions (i.e., no stress). Thus, an evaluation of conformational stability differences may serve as an effective surrogate to monitor differences in higher-order structure between protein samples. These case studies are discussed in the context of potential utility in protein comparability studies.
Collapse
Affiliation(s)
- Mohammad A Alsenaidy
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - Nishant K Jain
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - Jae H Kim
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| |
Collapse
|
31
|
Topp EM. Commentary: current perspectives on the aggregation of protein drugs. AAPS JOURNAL 2014; 16:413-4. [PMID: 24563118 DOI: 10.1208/s12248-014-9580-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/10/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Elizabeth M Topp
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, Room 124D, West Lafayette, Indiana, 47901-2091, USA,
| |
Collapse
|
32
|
Khasa H, Kramer R, Maddux N, Hamborg M, Joshi SB, Volkin DB, Middaugh CR. Studies of the aggregation of RNase Sa. J Pharm Sci 2014; 103:395-9. [PMID: 24382748 DOI: 10.1002/jps.23841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 11/10/2022]
Abstract
Thirty-eight mutants of RNase Sa (ribonuclease from Streptomyces aureofaciens) were examined for their structure, thermal sensitivity, and tendency to aggregate. Although a biphasic correlation was seen between the effect of temperature on structure and the free energy of transfer changes in many of the mutants, little correlation was seen between the time at which aggregation is initiated or the rate of aggregation and the thermal sensitivity of the mutants. It is hypothesized that the nature of contacts between protein molecules in the associated (aggregated) phase rather than structural changes dominates the aggregation process for these series of mutants.
Collapse
Affiliation(s)
- Harshit Khasa
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stability Center, University of Kansas, Lawrence, Kansas, 66047
| | | | | | | | | | | | | |
Collapse
|
33
|
Liu Y, Caffry I, Wu J, Geng SB, Jain T, Sun T, Reid F, Cao Y, Estep P, Yu Y, Vásquez M, Tessier PM, Xu Y. High-throughput screening for developability during early-stage antibody discovery using self-interaction nanoparticle spectroscopy. MAbs 2013; 6:483-92. [PMID: 24492294 DOI: 10.4161/mabs.27431] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The discovery of monoclonal antibodies (mAbs) that bind to a particular molecular target is now regarded a routine exercise. However, the successful development of mAbs that (1) express well, (2) elicit a desirable biological effect upon binding, and (3) remain soluble and display low viscosity at high concentrations is often far more challenging. Therefore, high throughput screening assays that assess self-association and aggregation early in the selection process are likely to yield mAbs with superior biophysical properties. Here, we report an improved version of affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS) that is capable of screening large panels of antibodies for their propensity to self-associate. AC-SINS is based on concentrating mAbs from dilute solutions around gold nanoparticles pre-coated with polyclonal capture (e.g., anti-Fc) antibodies. Interactions between immobilized mAbs lead to reduced inter-particle distances and increased plasmon wavelengths (wavelengths of maximum absorbance), which can be readily measured by optical means. This method is attractive because it is compatible with dilute and unpurified mAb solutions that are typical during early antibody discovery. In addition, we have improved multiple aspects of this assay for increased throughput and reproducibility. A data set comprising over 400 mAbs suggests that our modified assay yields self-interaction measurements that are well-correlated with other lower throughput assays such as cross-interaction chromatography. We expect that the simplicity and throughput of our improved AC-SINS method will lead to improved selection of mAbs with excellent biophysical properties during early antibody discovery.
Collapse
Affiliation(s)
- Yuqi Liu
- Protein Analytics; Adimab; Lebanon, NH USA
| | | | - Jiemin Wu
- Center for Biotechnology & Interdisciplinary Studies; Isermann Dept. of Chemical & Biological Engineering; Rensselaer Polytechnic Institute; Troy, NY USA
| | - Steven B Geng
- Center for Biotechnology & Interdisciplinary Studies; Isermann Dept. of Chemical & Biological Engineering; Rensselaer Polytechnic Institute; Troy, NY USA
| | - Tushar Jain
- Computational Biology; Adimab; Palo Alto, CA USA
| | | | | | - Yuan Cao
- Protein Analytics; Adimab; Lebanon, NH USA
| | | | - Yao Yu
- Protein Analytics; Adimab; Lebanon, NH USA
| | | | - Peter M Tessier
- Center for Biotechnology & Interdisciplinary Studies; Isermann Dept. of Chemical & Biological Engineering; Rensselaer Polytechnic Institute; Troy, NY USA
| | - Yingda Xu
- Protein Analytics; Adimab; Lebanon, NH USA
| |
Collapse
|
34
|
Cheng W, Joshi SB, Jain NK, He F, Kerwin BA, Volkin DB, Russell Middaugh C. Linking the Solution Viscosity of an IgG2 Monoclonal Antibody to Its Structure as a Function of pH and Temperature. J Pharm Sci 2013; 102:4291-304. [DOI: 10.1002/jps.23748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 12/13/2022]
|
35
|
Chaudhuri R, Cheng Y, Middaugh CR, Volkin DB. High-throughput biophysical analysis of protein therapeutics to examine interrelationships between aggregate formation and conformational stability. AAPS JOURNAL 2013; 16:48-64. [PMID: 24174400 DOI: 10.1208/s12248-013-9539-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/25/2013] [Indexed: 11/30/2022]
Abstract
Stabilization and formulation of therapeutic proteins against physical instability, both structural alterations and aggregation, is particularly challenging not only due to each protein's unique physicochemical characteristics but also their susceptibility to the surrounding milieu (pH, ionic strength, excipients, etc.) as well as various environmental stresses (temperature, agitation, lyophilization, etc.). The use of high-throughput techniques can significantly aid in the evaluation of stabilizing solution conditions by permitting a more rapid evaluation of a large matrix of possible combinations. In this mini-review, we discuss both key physical degradation pathways observed for protein-based drugs and the utility of various high-throughput biophysical techniques to aid in protein formulation development to minimize their occurrence. We then focus on four illustrative case studies with therapeutic protein candidates of varying sizes, shapes and physicochemical properties to explore different analytical challenges in monitoring protein physical instability. These include an IgG2 monoclonal antibody, an albumin-fusion protein, a recombinant pentameric plasma glycoprotein, and an antibody fragment (Fab). Future challenges and opportunities to improve and apply high-throughput approaches to protein formulation development are also discussed.
Collapse
Affiliation(s)
- Rajoshi Chaudhuri
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, 66047, USA
| | | | | | | |
Collapse
|
36
|
Iacob RE, Bou-Assaf GM, Makowski L, Engen JR, Berkowitz SA, Houde D. Investigating monoclonal antibody aggregation using a combination of H/DX-MS and other biophysical measurements. J Pharm Sci 2013; 102:4315-29. [PMID: 24136070 DOI: 10.1002/jps.23754] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/17/2013] [Accepted: 09/27/2013] [Indexed: 12/13/2022]
Abstract
To determine how structural changes in antibodies are connected with aggregation, the structural areas of an antibody prone to and/or impacted by aggregation must be identified. In this work, the higher-order structure and biophysical properties of two different monoclonal antibody (mAb) monomers were compared with their simplest aggregated form, that is, dimers that naturally occurred during normal production and storage conditions. A combination of hydrogen/deuterium exchange mass spectrometry and other biophysical measurements was used to make the comparison. The results show that the dimerization process for one of the mAb monomers (mAb1) displayed no differences in its deuterium uptake between monomer and dimer forms. However, the other mAb monomer (mAb2) showed subtle changes in hydrogen/deuterium exchange as compared with its dimer form. In this case, differences observed were located in specific functional regions of the CH 2 domain and the hinge region between CH 1 and CH 2 domains. The importance and the implications of these changes on the antibody structure and mechanism of aggregation are discussed.
Collapse
Affiliation(s)
- Roxana E Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| | | | | | | | | | | |
Collapse
|
37
|
Roberts CJ, Nesta DP, Kim N. Effects of Temperature and Osmolytes on Competing Degradation Routes for an IgG1 Antibody. J Pharm Sci 2013; 102:3556-66. [DOI: 10.1002/jps.23668] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 06/06/2013] [Accepted: 06/20/2013] [Indexed: 12/13/2022]
|
38
|
Kim N, Remmele RL, Liu D, Razinkov VI, Fernandez EJ, Roberts CJ. Aggregation of anti-streptavidin immunoglobulin gamma‐1 involves Fab unfolding and competing growth pathways mediated by pH and salt concentration. Biophys Chem 2013; 172:26-36. [DOI: 10.1016/j.bpc.2012.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 11/29/2012] [Accepted: 12/18/2012] [Indexed: 12/16/2022]
|