1
|
Wong KY, Nie Z, Wong MS, Wang Y, Liu J. Metal-Drug Coordination Nanoparticles and Hydrogels for Enhanced Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404053. [PMID: 38602715 DOI: 10.1002/adma.202404053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Drug delivery is a key component of nanomedicine, and conventional delivery relies on the adsorption or encapsulation of drug molecules to a nanomaterial. Many delivery vehicles contain metal ions, such as metal-organic frameworks, metal oxides, transition metal dichalcogenides, MXene, and noble metal nanoparticles. These materials have a high metal content and pose potential long-term toxicity concerns leading to difficulties for clinical approval. In this review, recent developments are summarized in the use of drug molecules as ligands for metal coordination forming various nanomaterials and soft materials. In these cases, the drug-to-metal ratio is much higher than conventional adsorption-based strategies. The drug molecules are divided into small-molecule drugs, nucleic acids, and proteins. The formed hybrid materials mainly include nanoparticles and hydrogels, upon which targeting ligands can be grafted to improve efficacy and further decrease toxicity. The application of these materials for addressing cancer, viral infection, bacterial infection inflammatory bowel disease, and bone diseases is reviewed. In the end, some future directions are discussed from fundamental research, materials science, and medicine.
Collapse
Affiliation(s)
- Ka-Ying Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
| | - Zhenyu Nie
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha , 410008, P. R. China
| | - Man-Sau Wong
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha , 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
| |
Collapse
|
2
|
Kakkar V, Narula P. Role of molecularly imprinted hydrogels in drug delivery - A current perspective. Int J Pharm 2022; 625:121883. [PMID: 35870667 DOI: 10.1016/j.ijpharm.2022.121883] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 10/17/2022]
Abstract
Molecular imprinting in hydrogels crafts memory for template molecules in a flexible macromolecular structure. Molecular imprinting can control the pattern of the drug release via different mechanistic pathways which may involve swelling, which releases the drug via diffusion or receptive-swollen networks. Responsive hydrogels or smart hydrogels can be tailored to undergo a change in the network structure in response to a stimulus by inserting specific chemical or biological entities along their backbone polymer chains. The stimuli which can be either physical, chemical or biochemical in nature, may impact at various energy levels thereby initiating the molecular interactions at critical onset points. Conventional hydrogels lack in responding to an external stimuli in a swift manner, hence the molecular imprinting technology can significantly advance the therapeutic efficiency of the drugs with anticipated controlled release and targeting efficiency. Molecular imprinting in hydrogels is thus anticipated as a step towards establishment of drug delivery systems by providing improved delivery profiles or longer release times and deliver the drugs in a feedback regulated way. The review article focuses on the current scenario of molecularly imprinted hydrogels with emphasis on the imprinting strategies within hydrogels and challenges encountered, latent translational applications, and future perspectives.
Collapse
Affiliation(s)
- Vandita Kakkar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 5 160014, India.
| | - Priyanka Narula
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 5 160014, India
| |
Collapse
|
3
|
Louadj L, Pagani A, Benghouzi P, Sabbah M, Griffete N. How Molecularly Imprinted Polymers can be Used for Diagnostic and Treatment of Tropical Diseases? CHEMISTRY AFRICA 2022. [PMCID: PMC9273706 DOI: 10.1007/s42250-022-00397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecularly imprinted polymers (MIPs) have been widely used in nanomedicine in the last few years. However, their use for diagnostic and treatment of tropical diseases is limited. Through this review, we aim to illustrate how MIPs were used to detect tropical disease and we show that they are not exploited enough in treatment. We finally show how MIPs could be used in the future in the treatment of tropical disease.
Collapse
|
4
|
Mo C, Luo R, Chen Y. Advances in the stimuli-responsive injectable hydrogel for controlled release of drugs. Macromol Rapid Commun 2022; 43:e2200007. [PMID: 35344233 DOI: 10.1002/marc.202200007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Indexed: 11/11/2022]
Abstract
The stimuli-responsiveness of injectable hydrogel has been drastically developed for the controlled release of drugs and achieved encouraging curative effects in a variety of diseases including wounds, cardiovascular diseases and tumors. The gelation, swelling and degradation of such hydrogels respond to endogenous biochemical factors (such as pH, reactive oxygen species, glutathione, enzymes, glucose) and/or to exogenous physical stimulations (like light, magnetism, electricity and ultrasound), thereby accurately releasing loaded drugs in response to specifically pathological status and as desired for treatment plan and thus improving therapeutic efficacy effectively. In this paper, we give a detailed introduction of recent progresses in responsive injectable hydrogels and focus on the design strategy of various stimuli-sensitivities and their resultant alteration of gel dissociation and drug liberation behaviour. Their application in disease treatment is also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chunxiang Mo
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 410001, China
| | - Rui Luo
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 410001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 410001, China
| |
Collapse
|
5
|
Morsi SMM, Youssef AM, Kamal KH, Abd El‐Aziz ME. Molecular imprinted polymer for tramadol: Absorption and drug release studies. POLYM ENG SCI 2022; 62:883-900. [DOI: 10.1002/pen.25894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/03/2022] [Indexed: 09/02/2023]
Abstract
AbstractSmart polymeric matrices based on 2‐vinyl pyridine (2‐VPY) and three different crosslinkers: ethylene glycol dimethacrylate (EGDMA), divinylbenzene (DVB), and trimethylolpropane trimethacrylate (TMPTMA) were prepared either by the imprinting technique of the tramadol molecule or conventionally by the free radical polymerization process. The polymers were used as sorbent materials for tramadol from its solutions. The polymers prepared by the imprinting technique demonstrated superior absorption of tramadol molecules than those prepared by the conventional method. The two sorbent materials constructed from TMPTMA, regardless of the method, achieved the highest absorption capacity compared with those prepared from EGDMA or DVB. It was found that loaded imprinted polymer released more tramadol than loaded nonimprinted polymer in all media. In the acidic medium, the protonation of the nitrogen atom in the pyridine ring ionized the chains and expanded the loaded pores leading to the rapid release over the neutral and alkaline media. Additionally, the isothermal studies of MIP3 and NIP3 were extremely fitted to Freundlich adsorption and the (D–R) isotherm, respectively, while the kinetic studies of both sorbents were fitted to the pseudo‐second‐order model.
Collapse
Affiliation(s)
- Samir M. M. Morsi
- Polymers and Pigments Department National Research Centre Giza Egypt
| | - Ahmed M. Youssef
- Packaging Materials Department National Research Centre Giza Egypt
| | - Kholod H. Kamal
- Water Pollution Research Department National Research Centre Giza Egypt
| | | |
Collapse
|
6
|
Morsi SMM, Abd El-Aziz ME, Mohamed HA. Smart polymers as molecular imprinted polymers for recognition of target molecules. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2042287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Samir M. M. Morsi
- Polymer and Pigments Department, National Research Centre, Dokki, Egypt
| | | | - Heba A. Mohamed
- Polymer and Pigments Department, National Research Centre, Dokki, Egypt
| |
Collapse
|
7
|
Bodoki AE, Iacob BC, Bodoki E. Perspectives of Molecularly Imprinted Polymer-Based Drug Delivery Systems in Cancer Therapy. Polymers (Basel) 2019; 11:polym11122085. [PMID: 31847103 PMCID: PMC6960886 DOI: 10.3390/polym11122085] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023] Open
Abstract
Despite the considerable effort made in the past decades, multiple aspects of cancer management remain a challenge for the scientific community. The severe toxicity and poor bioavailability of conventional chemotherapeutics, and the multidrug resistance have turned the attention of researchers towards the quest of drug carriers engineered to offer an efficient, localized, temporized, and doze-controlled delivery of antitumor agents of proven clinical value. Molecular imprinting of chemotherapeutics is very appealing in the design of drug delivery systems since the specific and selective binding sites created within the polymeric matrix turn these complex structures into value-added carriers with tunable features, notably high loading capacity, and a good control of payload release. Our work aims to summarize the present state-of-the art of molecularly imprinted polymer-based drug delivery systems developed for anticancer therapy, with emphasis on the particularities of the chemotherapeutics’ release and with a critical assessment of the current challenges and future perspectives of these unique drug carriers.
Collapse
Affiliation(s)
- Andreea Elena Bodoki
- Inorganic Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Ion Creangă St., 400010 Cluj-Napoca, Romania;
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
| | - Ede Bodoki
- Analytical Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
- Correspondence: ; Tel.: +40-264-597-256 (int. 2838)
| |
Collapse
|
8
|
Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109220] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Zhai H, Liang G, Guo X, Chen Z, Yu J, Lin H, Zhou Q. Novel coordination imprinted polymer monolithic column applied to the solid-phase extraction of flumequine from fish samples. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:55-62. [PMID: 31029034 DOI: 10.1016/j.jchromb.2019.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/15/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022]
Abstract
In this study, a coordination imprinted polymer (CIP) solid-phase extraction (SPE) method was developed to determine the residues of flumequine (FLU) in fish samples. Silanized graphene oxide-doped CIP (SGO-CIP) monolithic column was prepared using FLU-Zn2+ as template in the presence of SGO. The synthesis conditions of SGO-CIP column were optimized by the response surface methodology. Under the optimum conditions, this column showed high specificity to FLU, and the adsorption capacity reached 61.74 ng mg-1. The enrichment factor of the monolithic column was over 40-fold. Various factors affecting the extraction efficiency of SGO-CIP column during SPE were tested to achieve optimal enrichment and to reduce non-specific adsorption. FLU in fish was detected by using a high-performance liquid chromatography-fluorescence detection system. The detection limit was as low as 0.32 ng g-1 and the recovery was as high as 95.2%, with relative standard deviations of below 5.9%. This simple and sensitive method may be applicable to the determination of FLU residues in foods.
Collapse
Affiliation(s)
- Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Guohuan Liang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaojing Guo
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zuanguang Chen
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiaer Yu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haidan Lin
- Guangzhou Institute of Veterinary Drug and Feed Inspection, Guangzhou 510230, China
| | - Qing Zhou
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
10
|
Zaidi SA. Molecular Imprinting Prevents Environmental Contamination and Body Toxicity from Anticancer Drugs: An Update. Crit Rev Anal Chem 2019; 49:324-335. [PMID: 30601038 DOI: 10.1080/10408347.2018.1527207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cancer has been responsible for high morbidity and mortality globally. The treatment of cancer is possible using different kinds of therapies using anticancer drugs if it is diagnosed at the right time. Nevertheless, their appropriate administration for maximum therapeutic effect and their elimination from the patient's body causing environmental problems are two big issues which could be successfully abated using molecular imprinted polymers (MIPs) owing to their unique features. In this review, we have compiled and discussed the works on the determination and controlled release of anticancer drugs based on MIPs. We also highlighted the current challenges and remedies, and the future direction of MIPs in this area.
Collapse
Affiliation(s)
- Shabi Abbas Zaidi
- a Department of Chemistry , Kwangwoon University , Nowon-Gu , Seoul , Korea
| |
Collapse
|
11
|
Tuwahatu CA, Yeung CC, Lam YW, Roy VAL. The molecularly imprinted polymer essentials: curation of anticancer, ophthalmic, and projected gene therapy drug delivery systems. J Control Release 2018; 287:24-34. [PMID: 30110614 DOI: 10.1016/j.jconrel.2018.08.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 02/06/2023]
Abstract
The development of polymeric materials as drug delivery systems has advanced from systems that rely on classical passive targeting to carriers that can sustain the precisely controlled release of payloads upon physicochemical triggers in desired microenvironment. Molecularly imprinted polymers (MIP), materials designed to capture specific molecules based on their molecular shape and charge distribution, are attractive candidates for fulfilling these purposes. In particular, drug-imprinted polymers coupled with active targeting mechanisms have been explored as potential drug delivery systems. In this review, we have curated important recent efforts in the development of drug-imprinted polymers in a variety of clinical applications, especially oncology and ophthalmology. MIP possesses properties that may complement the traditional delivery systems of these two disciplines, such as passive enhanced permeability and retention effect (EPR) in cancer tumors, and passive drug diffusion in delivering ophthalmic therapeutics. Furthermore, the prospects of MIP integration with the emerging gene therapies will be discussed.
Collapse
Affiliation(s)
- Christian Antonio Tuwahatu
- Department of Materials Science and Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chi Chung Yeung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Vellaisamy Arul Lenus Roy
- Department of Materials Science and Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
12
|
Molecularly imprinted polymers based drug delivery devices: a way to application in modern pharmacotherapy. A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1344-1353. [PMID: 28482502 DOI: 10.1016/j.msec.2017.02.138] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/14/2016] [Accepted: 02/24/2017] [Indexed: 01/26/2023]
Abstract
This review presents the current status of molecularly imprinted polymers (MIPs) for drug delivery, in particular the studies that focus on biocompatibility, cytotoxicity, and in vitro or in vivo behavior of MIPs. It also shows the limitations that hamper the introduction of MIPs to pharmacotherapy and prevent this class of polymers from commercialization. MIPs are promising materials in the construction of drug delivery devices because they can provide improved delivery profiles or longer release times and deliver the drugs in the feedback regulated way, which is extremely important in modern pharmacotherapy. Here, a brief overview of the imprinting process and a concise description of drug release mechanisms from the imprinted materials will be presented followed by the discussion of potential MIP drug delivery devices for ocular, dermal, intravenous and oral routes of administration. Finally, future prospects for imprinted drug delivery forms will be outlined.
Collapse
|
13
|
Zhang Q, Zhao H, Li D, Liu L, Du S. A surface-grafted ligand functionalization strategy for coordinate binding of doxorubicin at surface of PEGylated mesoporous silica nanoparticles: Toward pH-responsive drug delivery. Colloids Surf B Biointerfaces 2017; 149:138-145. [DOI: 10.1016/j.colsurfb.2016.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/04/2016] [Accepted: 10/09/2016] [Indexed: 01/01/2023]
|
14
|
Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev 2016; 45:2137-211. [DOI: 10.1039/c6cs00061d] [Citation(s) in RCA: 1438] [Impact Index Per Article: 159.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This critical review presents a survey of recent developments in technologies and strategies for the preparation of MIPs, followed by the application of MIPs in sample pretreatment, chromatographic separation and chemical sensing.
Collapse
Affiliation(s)
- Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaoyan Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Wenhui Lu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaqing Wu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Jinhua Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|
15
|
Molecularly Imprinted Polymers with Stimuli-Responsive Affinity: Progress and Perspectives. Polymers (Basel) 2015. [DOI: 10.3390/polym7091478] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
16
|
Çetin K, Denizli A. 5-Fluorouracil delivery from metal-ion mediated molecularly imprinted cryogel discs. Colloids Surf B Biointerfaces 2015; 126:401-6. [PMID: 25601094 DOI: 10.1016/j.colsurfb.2014.12.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/25/2022]
Abstract
The objective of this study is to prepare imprinted cryogel discs for delivery of 5-fluorouracil. The coordinate bond interactions are utilized to accomplish a coordination complex between metal-chelate monomer N-methacryloyl-L-histidine and 5-FU with the assistance of Cu(2+) ion. The complex is copolymerized with hydroxyethyl methacrylate to produce poly(hydroxyethyl methacrylate-N-methacryloyl-(L)-histidine methyl ester) cryogel discs. The cryogel discs are characterized thoroughly by performing swelling tests, scanning electron microscopy, differential scanning calorimetry and X-ray diffraction studies. In vitro delivery studies are performed to investigate the effects of cross-linker ratio, medium pH and drug concentration. 5-FU imprinted cryogel discs have highly macroporous structures. Drug molecules are homogeneously dispersed in the 5-FU imprinted cryogel matrix. The cumulative release of 5-FU decreased by increasing the cross-linker density in the polymer matrix. Delivery rate of 5-FU varied with different pH values in a coordination complex since metal ion acts as a Lewis acid, and the ligand, i.e. 5-FU acts as a Lewis base. The cumulative release of 5-FU increased with increasing drug concentration in polymer matrix. The nature of the 5-FU transport mechanism is non-Fickian.
Collapse
Affiliation(s)
- Kemal Çetin
- Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
17
|
Cevik O, Gidon D, Kizilel S. Visible-light-induced synthesis of pH-responsive composite hydrogels for controlled delivery of the anticonvulsant drug pregabalin. Acta Biomater 2015; 11:151-61. [PMID: 25242648 DOI: 10.1016/j.actbio.2014.09.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/26/2014] [Accepted: 09/12/2014] [Indexed: 11/16/2022]
Abstract
We report here a novel method for the synthesis of a pH-responsive composite using visible light. Formation of the pH-responsive layer is based on poly(methacrylic acid-g-ethylene glycol) as the macromer, eosin Y as the photoinitiator and triethanolamine as the co-initiator. The hydrogel was functionalized with hydrophobic domains through incorporation of crosslinked styrene-butadiene-styrene (SBS) copolymer into the pH-responsive prepolymer. Swelling ratios were decreased with the addition of SBS, and resulted in high hydrogel crosslink density. The composite allowed for controlled release of an anticonvulsant model drug, pregabalin, under neutral pH condition and the release was analyzed to describe the mode of transport through the network. In vitro human fibroblast survival assay and in vivo rabbit implantation experiments demonstrated that this hybrid network is not toxic and has desirable biocompatibility properties. This is the first report about the synthesis of a pH-responsive network incorporating crosslinked SBS synthesized under visible light. The approach for multifunctional membranes could allow the incorporation of molecules with specific functionalities so that sequential molecule delivery in response to specific stimuli could be achieved.
Collapse
Affiliation(s)
- Ozlem Cevik
- Chemical and Biological Engineering, Koc University, 34450 Sariyer, Istanbul, Turkey
| | - Dogan Gidon
- Chemical and Biological Engineering, Koc University, 34450 Sariyer, Istanbul, Turkey
| | - Seda Kizilel
- Chemical and Biological Engineering, Koc University, 34450 Sariyer, Istanbul, Turkey.
| |
Collapse
|
18
|
Li L, Chen L, Liu W, Yang Y, Liu X, Chen Y. Preparation and characterization of 5-fluorouracil surface-imprinted thermosensitive magnetic microspheres. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1335-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Tashakori-Sabzevar F, Mohajeri SA. Development of ocular drug delivery systems using molecularly imprinted soft contact lenses. Drug Dev Ind Pharm 2014; 41:703-13. [DOI: 10.3109/03639045.2014.948451] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Alvarez-Lorenzo C, Concheiro A. Smart drug delivery systems: from fundamentals to the clinic. Chem Commun (Camb) 2014; 50:7743-65. [DOI: 10.1039/c4cc01429d] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Smart materials can endow implantable depots, targetable nanocarriers and insertable medical devices with activation-modulated and feedback-regulated control of drug release.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica
- Universidad de Santiago de Compostela
- 15782-Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica
- Universidad de Santiago de Compostela
- 15782-Santiago de Compostela, Spain
| |
Collapse
|