1
|
Kim W, Ngo HV, Nguyen HD, Park JM, Lee KW, Park C, Park JB, Lee BJ. Nanonization and Deformable Behavior of Fattigated Peptide Drug in Mucoadhesive Buccal Films. Pharmaceutics 2024; 16:468. [PMID: 38675128 PMCID: PMC11054133 DOI: 10.3390/pharmaceutics16040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
This study was tasked with the design of mucoadhesive buccal films (MBFs) containing a peptide drug, leuprolide (LEU), or its diverse nanoparticles (NPs), for enhanced membrane permeability via self-assembled nanonization and deformable behavior. An LEU-oleic acid conjugate (LOC) and its self-assembled NPs (LON) were developed. Additionally, a deformable variant of LON (d-LON) was originally developed by incorporating l-α-phosphatidylcholine into LON as an edge activator. The physicochemical properties of LON and d-LON, encompassing particle size, zeta potential, and deformability index (DI), were evaluated. MBFs containing LEU, LOC, and NPs (LON, d-LON) were prepared using the solvent casting method by varying the ratio of Eudragit RLPO and hydroxypropyl methylcellulose, with propylene glycol used as a plasticizer. The optimization of MBF formulations was based on their physicochemical properties, including in vitro residence time, dissolution, and permeability. The dissolution results demonstrated that the conjugation of oleic acid to LEU exhibited a more sustained LEU release pattern by cleaving the ester bond of the conjugate, as compared to the native LEU, with reduced variability. Moreover, the LOC and its self-assembled NPs (LON, d-LON), equivalent to 1 mg LEU doses in MBF, exhibited an amorphous state and demonstrated better permeability through the nanonization process than LEU alone, regardless of membrane types. The incorporation of lauroyl-L-carnitine into the films as a permeation enhancer synergistically augmented drug permeability. Most importantly, the d-LON-loaded buccal films showed the highest permeability, due to the deformability of NPs. Overall, MBF-containing peptide NPs and permeation enhancers have the potential to replace parenteral LEU administration by improving LEU druggability and patient compliance.
Collapse
Affiliation(s)
- Woojun Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (W.K.); (H.V.N.); (H.D.N.); (J.-M.P.)
| | - Hai V. Ngo
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (W.K.); (H.V.N.); (H.D.N.); (J.-M.P.)
| | - Hy D. Nguyen
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (W.K.); (H.V.N.); (H.D.N.); (J.-M.P.)
| | - Ji-Min Park
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (W.K.); (H.V.N.); (H.D.N.); (J.-M.P.)
| | - Kye Wan Lee
- Dongkook Pharmaceutical Co., Ltd., Seoul 06072, Republic of Korea;
| | - Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea;
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (W.K.); (H.V.N.); (H.D.N.); (J.-M.P.)
- Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
2
|
Tabboon P, Pongjanyakul T, Limpongsa E, Jaipakdee N. Mucosal Delivery of Cannabidiol: Influence of Vehicles and Enhancers. Pharmaceutics 2022; 14:pharmaceutics14081687. [PMID: 36015313 PMCID: PMC9412444 DOI: 10.3390/pharmaceutics14081687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, the mucosal permeation and deposition of cannabidiol (CBD) with neat and binary vehicles were investigated. Permeation experiments were performed using static diffusion cells coupled with fresh porcine esophageal mucosa. The CBD-vehicle solutions were applied at a fixed dose (~5 mg/cm2), and the corresponding permeation parameters were calculated. In neat vehicles, the permeation flux (Jss) ranged from 0.89 ± 0.15 to 179.81 ± 23.46 µg·cm-2·h-1, while the CBD deposition ranged from 11.5 ± 1.8 to 538.3 ± 105.3 μg·cm-2. Propylene glycol (PG) and diethylene glycol monoethyl ether (DEGEE) yielded the highest permeability (Ps) and CBD deposition, while medium-chain triglycerides (MCT) yielded the lowest Ps and deposition. This was due to the difference in apparent partition coefficient (K), which is related to the solubility of CBD in the vehicle. The PG:DEGEE binary vehicle boosted Jss (1.5-1.6 fold) and deposition (2.0-2.7 folds) significantly, compared to neat DEGEE. The combination of DEGEE with MCT dramatically enhanced Jss (11-44 fold) and deposition (1.6-4.7 fold). The addition of lipophilic enhancers, laurocapram, and oleic acid, to PG:DEGEE and DEGEE:MCT vehicles significantly reduced Jss (0.3-0.7 fold) and deposition (0.4-0.8 fold) while nerolidol had no effect. These permeation reductions were found to be related to modification of the K and/or diffusivity values. This study provides useful basic information for the development of CBD formulations intended for transmucosal delivery.
Collapse
Affiliation(s)
- Peera Tabboon
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thaned Pongjanyakul
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ekapol Limpongsa
- College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
- Correspondence: (E.L.); (N.J.); Tel.: +66-80-5194956 (E.L.); +66-81-9749228 (N.J.)
| | - Napaphak Jaipakdee
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: (E.L.); (N.J.); Tel.: +66-80-5194956 (E.L.); +66-81-9749228 (N.J.)
| |
Collapse
|
3
|
Wanasathop A, Patel PB, Choi HA, Li SK. Permeability of Buccal Mucosa. Pharmaceutics 2021; 13:1814. [PMID: 34834229 PMCID: PMC8624797 DOI: 10.3390/pharmaceutics13111814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 11/23/2022] Open
Abstract
The buccal mucosa provides an alternative route of drug delivery that can be more beneficial compared to other administration routes. Although numerous studies and reviews have been published on buccal drug delivery, an extensive review of the permeability data is not available. Understanding the buccal mucosa barrier could provide insights into the approaches to effective drug delivery and optimization of dosage forms. This paper provides a review on the permeability of the buccal mucosa. The intrinsic permeability coefficients of porcine buccal mucosa were collected. Large variability was observed among the published permeability data. The permeability coefficients were then analyzed using a model involving parallel lipoidal and polar transport pathways. For the lipoidal pathway, a correlation was observed between the permeability coefficients and permeant octanol/water partition coefficients (Kow) and molecular weight (MW) in a subset of the permeability data under specific conditions. The permeability analysis suggested that the buccal permeation barrier was less lipophilic than octanol. For the polar pathway and macromolecules, a correlation was observed between the permeability coefficients and permeant MW. The hindered transport analysis suggested an effective pore radius of 1.5 to 3 nm for the buccal membrane barrier.
Collapse
Affiliation(s)
| | | | | | - S. Kevin Li
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, MSB # 3005, Cincinnati, OH 45267, USA; (A.W.); (P.B.P.); (H.A.C.)
| |
Collapse
|
4
|
Drug-Loaded Lipid-Core Micelles in Mucoadhesive Films as a Novel Dosage Form for Buccal Administration of Poorly Water-Soluble and Biological Drugs. Pharmaceutics 2020; 12:pharmaceutics12121168. [PMID: 33266132 PMCID: PMC7761273 DOI: 10.3390/pharmaceutics12121168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to develop a novel buccal dosage form to transport rhodamine 123 and human insulin as models for poorly water-soluble and biological drugs, using lipid-core micelles (LCMs)-loaded mucoadhesive films. LCMs were synthesized by a low-energy hot emulsification process, yielding spherically shaped, small-sized, monodispersed and negatively charged carriers with high entrapment efficiency. In vitro release studies demonstrated a higher release of insulin rather than rhodamine from LCMs in simulated physiological conditions, due to an initial burst release effect; however, both release profiles are mainly explained by a diffusion mechanism. Furthermore, LCMs-loaded mucoadhesive films were manufactured and preserved with similar mechanical properties and optimal mucoadhesive behavior compared to nonloaded films. Ex vivo permeation experiments using excised porcine buccal epithelium reveal that both rhodamine and insulin-loaded LCM films elicited a significantly enhanced permeation effect compared to LCMs in suspension and free drugs in solution as controls. Hence, LCMs-loaded mucoadhesive films are suitable as buccal dosage form for the transport and delivery of rhodamine 123 and insulin, as models for poorly water-soluble and biological drugs, respectively.
Collapse
|
5
|
Moreira-Oliveira SS, Amaral-Machado L, de Oliveira WN, Alencar ÉN, Zatta KC, de Souza LBFC, Medeiros ADC, Chaves GM, Egito EST. Buccal Bullfrog ( Rana catesbeiana Shaw) Oil Emulsion: A Mucoadhesive System Intended for Treatment of Oral Candidiasis. Pharmaceutics 2018; 10:E257. [PMID: 30513861 PMCID: PMC6320908 DOI: 10.3390/pharmaceutics10040257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 11/17/2022] Open
Abstract
Oral candidiasis (OC) is an infectious disease caused by microorganisms of the genus Candida, leading to lesions in the buccal cavity. Its treatment consists of the administration of topical or systemic antifungal agents, which may compromise the patient compliance due to its side effects, highlighting the need for alternative treatments. In this scenario, bullfrog oil, an animal oil composed of a pool of saturated and unsaturated fatty acids, is introduced as a potential antifungal raw material. Thus, the aim of this work was to produce a mucoadhesive emulsified system able to deliver the bullfrog oil in the buccal cavity to treat the OC. The emulsion was produced and characterized by visual inspection, droplet size, polydispersity index (PdI), and zeta potential over the course of 60 days. In addition, its mucoadhesive ability was evaluated using an in vitro mucin model. The antifungal activity, evaluated by the broth microdilution assay and the biocompatibility, performed against human erythrocytes, were also carried out. The emulsion showed a droplet size of 320.79 ± 35.60 nm, a PdI of 0.49 ± 0.08, and a zeta potential of -38.53 ± 6.23 mV, with no significant changes over 60 days. The mucoadhesive properties of the system was improved by the use of pharmaceutical excipients. The antifungal activity showed that the bullfrog oil and the emulsion were able to inhibit the growth of different Candida species. Furthermore, the emulsion showed no significant hemolytic effect. Overall, the system showed suitable physicochemical characteristics and biocompatibility, with substantial in vitro antifungal activity, suggesting that this system can be further investigated for OC treatment.
Collapse
Affiliation(s)
- Susiane S Moreira-Oliveira
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo Cordeiro de Faria-SN-Petrópolis, Natal 59012-570, Brazil.
| | - Lucas Amaral-Machado
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo Cordeiro de Faria-SN-Petrópolis, Natal 59012-570, Brazil.
| | - Wógenes Nunes de Oliveira
- Graduate Program in Pharmaceutical Sciences, UFRN, Av. General Gustavo Cordeiro de Faria-SN-Petrópolis, Natal 59012-570, Brazil.
| | - Éverton N Alencar
- Laboratory of Dispersed Systems (LaSiD), UFRN, Av. General Gustavo Cordeiro de Faria-SN-Petrópolis, Natal 59012-570, Brazil.
| | - Kelly Cristine Zatta
- Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga-2752-Santana, Porto Alegre 90610-000, Brazil.
| | - Luanda B F C de Souza
- Graduate Program in Pharmaceutical Sciences, UFRN, Av. General Gustavo Cordeiro de Faria-SN-Petrópolis, Natal 59012-570, Brazil.
| | - Aldo da Cunha Medeiros
- Department of Surgery, UFRN Av. General Gustavo Cordeiro de Faria-SN-Petrópolis, Natal 59012-570, Brazil.
| | - Guilherme Maranhão Chaves
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo Cordeiro de Faria-SN-Petrópolis, Natal 59012-570, Brazil.
- Graduate Program in Pharmaceutical Sciences, UFRN, Av. General Gustavo Cordeiro de Faria-SN-Petrópolis, Natal 59012-570, Brazil.
| | - Eryvaldo S T Egito
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo Cordeiro de Faria-SN-Petrópolis, Natal 59012-570, Brazil.
- Graduate Program in Pharmaceutical Sciences, UFRN, Av. General Gustavo Cordeiro de Faria-SN-Petrópolis, Natal 59012-570, Brazil.
- Laboratory of Dispersed Systems (LaSiD), UFRN, Av. General Gustavo Cordeiro de Faria-SN-Petrópolis, Natal 59012-570, Brazil.
- Laboratório de Sistemas Dispersos, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Rua Praia de Areia Branca, 8948, Natal 59094-450, RN, Brazil.
| |
Collapse
|
6
|
Effect of Permeation Enhancers on the Buccal Permeability of Nicotine: Ex vivo Transport Studies Complemented by MALDI MS Imaging. Pharm Res 2018; 35:70. [PMID: 29468320 DOI: 10.1007/s11095-017-2332-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of this study was to assess the effect of several chemical permeation enhancers on the buccal permeability of nicotine and to image the spatial distribution of nicotine in buccal mucosa with and without buccal permeation enhancers. METHODS The impact of sodium taurodeoxycholate (STDC), sodium dodecyl sulphate (SDS), dimethyl sulfoxide (DMSO) and Azone® on the permeability of [3H]-nicotine and [14C]-mannitol (a paracellular marker) across porcine buccal mucosa was studied ex vivo in modified Ussing chambers. The distribution of nicotine, mannitol and permeation enhancers was imaged using using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI). RESULTS Despite STDC significantly increasing permeability of [14C]-mannitol, no enhancing effect was seen on [3H]-nicotine permeability with any of the permeation enhancers. Rather, SDS and DMSO retarded nicotine permeability, likely due to nicotine being retained in the donor compartment. The permeability results were complemented by the spatial distribution of nicotine and mannitol determined with MALDI MSI. CONCLUSIONS The buccal permeability of nicotine was affected in an enhancer specific manner, suggesting that nicotine primarily diffuses via the transcellular pathway. MALDI MSI was shown to complement ex vivo permeability studies and to be a useful qualitative tool for visualizing drug and penetration enhancer distribution in buccal mucosa.
Collapse
|
7
|
Sattar M, Lane ME. Oral transmucosal delivery of naratriptan. Int J Pharm 2016; 514:263-269. [PMID: 27863671 DOI: 10.1016/j.ijpharm.2016.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 11/29/2022]
Abstract
Naratriptan (NAR) is currently used as the hydrochloride salt (NAR.HCl) for the treatment of migraine and is available in tablet dosage forms for oral administration. Buccal drug delivery offers a number of advantages compared with conventional oral delivery including rapid absorption, avoidance of first pass metabolism and improved patient compliance. We have previously prepared and characterised the base form of NAR and shown that it has more favourable properties for buccal delivery compared with NAR.HCl. This study describes the design and evaluation of a range of formulations for oral transmucosal delivery of NAR base. Permeation studies were conducted using excised porcine buccal tissue mounted in Franz cells. Of the neat solvents examined, Transcutol® P (TC) showed the greatest enhancement effects and was the vehicle in which NAR was most soluble. The mechanisms by which TC might promote permeation were further probed using binary systems containing TC with either buffer or Miglyol 812® (MG). Mass balance studies were also conducted for these systems. The permeation of TC as well as NAR was also monitored for TC:MG formulations. Overall, TC appears to promote enhanced membrane permeation of NAR because of its rapid uptake into the buccal tissue. Synergistic enhancement of buccal permeation was observed when TC was combined with MG and this is attributed to the increased thermodynamic activity of NAR in these formulations. Significantly enhanced permeation of NAR was achieved for TC:MG and this was also associated with less TC remaining on the tissue or in the tissue at the end of the experiment. To our knowledge this is the first report where both enhancer and active have been monitored in buccal permeation studies. The findings underline the importance of understanding the fate of vehicle components for rational formulation design of buccal delivery systems.
Collapse
Affiliation(s)
- Mohammed Sattar
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; Department of Pharmaceutics, College of Pharmacy, University of Basrah, Basrah, Iraq
| | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
8
|
Ita K. Recent trends in the transdermal delivery of therapeutic agents used for the management of neurodegenerative diseases. J Drug Target 2016; 25:406-419. [PMID: 27701893 DOI: 10.1080/1061186x.2016.1245310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
With the increasing proportion of the global geriatric population, it becomes obvious that neurodegenerative diseases will become more widespread. From an epidemiological standpoint, it is necessary to develop new therapeutic agents for the management of Alzheimer's disease, Parkinson's disease, multiple sclerosis and other neurodegenerative disorders. An important approach in this regard involves the use of the transdermal route. With transdermal drug delivery systems (TDDS), it is possible to modulate the pharmacokinetic profiles of these medications and improve patient compliance. Transdermal drug delivery has also been shown to be useful for drugs with short half-life and low or unpredictable bioavailability. In this review, several transdermal drug delivery enhancement technologies are being discussed in relation to the delivery of medications used for the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Kevin Ita
- a College of Pharmacy, Touro University , Mare Island-Vallejo , CA , USA
| |
Collapse
|
9
|
Sattar M, Sayed OM, Lane ME. Oral transmucosal drug delivery--current status and future prospects. Int J Pharm 2014; 471:498-506. [PMID: 24879936 DOI: 10.1016/j.ijpharm.2014.05.043] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/14/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
Oral transmucosal drug delivery (OTDD) dosage forms have been available since the 1980s. In contrast to the number of actives currently delivered locally to the oral cavity, the number delivered as buccal or sublingual formulations remains relatively low. This is surprising in view of the advantages associated with OTDD, compared with conventional oral drug delivery. This review examines a number of aspects related to OTDD including the anatomy of the oral cavity, models currently used to study OTDD, as well as commercially available formulations and emerging technologies. The limitations of current methodologies to study OTDD are considered as well as recent publications and new approaches which have advanced our understanding of this route of drug delivery.
Collapse
Affiliation(s)
- Mohammed Sattar
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1 N 1AX, United Kingdom; Department of Pharmaceutics, College of Pharmacy, University of Basrah, Basrah, Iraq
| | - Ossama M Sayed
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1 N 1AX, United Kingdom; Pharmaceutics Department, Faculty of Pharmacy, Beni Suef University, P.O. Box 62514, Egypt
| | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1 N 1AX, United Kingdom.
| |
Collapse
|