1
|
Pirouzzadeh M, Moraffah F, Samadi N, Sharifzadeh M, Motasadizadeh H, Vatanara A. Enhancement of burn wound healing using optimized bioactive probiotic-loaded alginate films. Int J Biol Macromol 2025; 301:140454. [PMID: 39884613 DOI: 10.1016/j.ijbiomac.2025.140454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Wound infection can prolong the healing process, leading to various complications. Although the use of antibiotics is common, it presents challenges such as poor pharmacokinetics. The prevalence of antibiotic resistance has further complicated wound management. Studies have demonstrated the potential of topical probiotics; however, stabilizing these cells and creating appropriate conditions for their colonization are essential. In this study, polymeric films were utilized to immobilize probiotics and provide an effective dressing. Aloe vera gel was incorporated into the films to enhance anti-inflammatory activity and probiotic viability. The optimal film was developed using sodium alginate and zinc chloride, with manufacturing parameters optimized to achieve the highest cell viability and suitable properties through the D-optimal method. The models were verified by comparing the actual and predictive responses of the optimized formulation. The optimal film was characterized using microscopic, mechanical, and microbial examinations. The cross-linked alginate matrix improved the stability of probiotics during storage. In vivo tests demonstrated that the formulation could reduce microbial counts and shorten healing duration. This dressing improved wound healing with immobilized probiotics and aloe vera gel, offering promising directions for future research on advanced biomaterials to enhance wound care and combat antibiotic resistance.
Collapse
Affiliation(s)
- Maryam Pirouzzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1414614411, Iran
| | - Fatemeh Moraffah
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1414614411, Iran.
| | - Nasrin Samadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1414614411, Iran; Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1414614411, Iran.
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1414614411, Iran.
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1414614411, Iran
| | - Alireza Vatanara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1414614411, Iran.
| |
Collapse
|
2
|
Guo P, Wang S, Yue H, Zhang X, Ma G, Li X, Wei W. Advancement of Engineered Bacteria for Orally Delivered Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302702. [PMID: 37537714 DOI: 10.1002/smll.202302702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/06/2023] [Indexed: 08/05/2023]
Abstract
The use of bacteria and their biotic components as therapeutics has shown great potential in the treatment of diseases. Orally delivered bacteria improve patient compliance compared with injection-administered bacteria and are considered the preferred mode. However, due to the harsh gastrointestinal environment, the viability and therapeutic efficacy of orally delivered bacteria are significantly reduced in vivo. In recent years, with the rapid development of synthetic biology and nanotechnology, bacteria and biotic components have been engineered to achieve directed genetic reprogramming for construction and precise spatiotemporal control in the gastrointestinal tract, which can improve viability and therapeutic efficiency. Herein, a state-of-the-art review on the current progress of engineered bacterial systems for oral delivery is provided. The different types of bacterial and biotic components for oral administration are first summarized. The engineering strategies of these bacteria and biotic components and their treatment of diseases are next systematically summarized. Finally, the current challenges and prospects of these bacterial therapeutics are highlighted that will contribute to the development of next-generation orally delivered bacteriotherapy.
Collapse
Affiliation(s)
- Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Zhang C, Gao X, Ren X, Xu T, Peng Q, Zhang Y, Chao Z, Jiang W, Jia L, Han L. Bacteria-Induced Colloidal Encapsulation for Probiotic Oral Delivery. ACS NANO 2023; 17:6886-6898. [PMID: 36947056 DOI: 10.1021/acsnano.3c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Probiotic oral delivery has crucial implications in biomedical engineering, but its oral bioavailability remains unsatisfactory because of the limited survival and colonization of probiotics in the harsh gastrointestinal tract. Here, a bacteria-induced encapsulation strategy is achieved by assembling metastable colloids to enhance the oral bioavailability of probiotics. The colloids (NTc) composed of amino-modified poly-β-cyclodextrin and tannic acid are formed based on the balance of host-guest interaction-driven attraction and electrostatic repulsion between colloids. Negatively charged probiotics electrostatically attract positively charged NTc to break the balance and induce further assembly surrounding the probiotics. Through a facile one-step mixing, 97% of bacteria are rapidly encapsulated into NTc shells within 10 s, with a high utilization rate of feeding colloids of 91%. More importantly, we show that the compact, thick, and positively charged NTc shells synergistically endow the encapsulated probiotics with strong resistance against simulated gastric fluid with an excellent survival rate of up to 19%, 7500 times superior to the commercial enteric material L100. Moreover, owing to the dynamically noncovalent and self-adaptive nature of host-guest interactions, NTc shells support the proliferation of the encapsulated EcN comparable with that of the naked EcN. In vitro and in vivo experiments also confirm that the NTc-encapsulated probiotics possess durable intestinal adhesion, continuous proliferation activity, enhanced oral bioavailability, good oral biosafety, and excellent therapeutic efficacy in a colitis mouse model. This facile bacteria-induced colloidal encapsulation strategy may extend to various microbes as oral bioagents for treating various diseases.
Collapse
Affiliation(s)
- Chong Zhang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Xiaorong Gao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Xinxiu Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Ting Xu
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Qiang Peng
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Yixin Zhang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Zhenhua Chao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Wenning Jiang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| |
Collapse
|
4
|
Nair VV, Cabrera P, Ramírez-Lecaros C, Jara MO, Brayden DJ, Morales JO. Buccal delivery of small molecules and biologics: Of mucoadhesive polymers, films, and nanoparticles - An update. Int J Pharm 2023; 636:122789. [PMID: 36868332 DOI: 10.1016/j.ijpharm.2023.122789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023]
Abstract
Buccal delivery of small and large molecules is an attractive route of administration that has been studied extensively over the past few decades. This route bypasses first-pass metabolism and can be used to deliver therapeutics directly to systemic circulation. Moreover, buccal films are efficient dosage forms for drug delivery due to their simplicity, portability, and patient comfort. Films have traditionally been formulated using conventional techniques, including hot-melt extrusion and solvent casting. However, newer methods are now being exploited to improve the delivery of small molecules and biologics. This review discusses recent advances in buccal film manufacturing, using the latest technologies, such as 2D and 3D printing, electrospraying, and electrospinning. This review also focuses on the excipients used in the preparation of these films, with emphasis on mucoadhesive polymers and plasticizers. Along with advances in manufacturing technology, newer analytical tools have also been used for the assessment of permeation of the active agents across the buccal mucosa, the most critical biological barrier and limiting factor of this route. Additionally, preclinical and clinical trial challenges are discussed, and some small molecule products already on the market are explored.
Collapse
Affiliation(s)
- Varsha V Nair
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Pablo Cabrera
- Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Independencia, Santiago 8380494, Chile; Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | | | - Miguel O Jara
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, Belfield, Dublin D04 V1W8, Ireland
| | - Javier O Morales
- Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Independencia, Santiago 8380494, Chile; Center of New Drugs for Hypertension (CENDHY), Santiago 8380492, Chile; Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile.
| |
Collapse
|
5
|
Kulkarni R, Fanse S, Burgess DJ. Mucoadhesive drug delivery systems: a promising noninvasive approach to bioavailability enhancement. Part II: formulation considerations. Expert Opin Drug Deliv 2023; 20:413-434. [PMID: 36803264 DOI: 10.1080/17425247.2023.2181332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Mucoadhesive drug delivery systems (MDDS) are specifically designed to interact and bind to the mucosal layer of the epithelium for localized, prolonged, and/or targeted drug delivery. Over the past 4 decades, several dosage forms have been developed for localized as well as systemic drug delivery at different anatomical sites. AREAS COVERED The objective of this review is to provide a detailed understanding of the different aspects of MDDS. Part II describes the origin and evolution of MDDS, followed by a discussion of the properties of mucoadhesive polymers. Finally, a synopsis of the different commercial aspects of MDDS, recent advances in the development of MDDS for biologics and COVID-19 as well as future perspectives are provided. EXPERT OPINION A review of the past reports and recent advances reveal MDDS as highly versatile, biocompatible, and noninvasive drug delivery systems. The rise in the number of approved biologics, the introduction of newer highly efficient thiomers, as well as the recent advances in the field of nanotechnology have led to several excellent applications of MDDS, which are predicted to grow significantly in the future.
Collapse
Affiliation(s)
- Radha Kulkarni
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Suraj Fanse
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Diane J Burgess
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
6
|
Luo Y, De Souza C, Ramachandran M, Wang S, Yi H, Ma Z, Zhang L, Lin K. Precise oral delivery systems for probiotics: A review. J Control Release 2022; 352:371-384. [PMID: 36309096 DOI: 10.1016/j.jconrel.2022.10.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
Probiotics have several health benefits to the host. However, low pH in the stomach, various digestive enzymes and bile salts in the intestine threaten their viability and function. Thus, probiotics need to be protected during gastric transit to address challenges associated with low viability and impaired function. At present, probiotic delivery systems with different trigger mechanisms have been constructed to successfully introduce numerous high-viability probiotics to the intestine. On this basis, the application of non-targeted/targeted probiotic delivery systems in different gut microenvironment and the adjuvant therapeutic effect of probiotic delivery systems on other disease were discussed in detail. It is important to also note that most of the current studies in this area focused on non-targeted probiotic delivery systems. Moreover, changes in intestinal microenvironment under disease state and discontinuous distribution of disease site limit their development. Thus, emphasis were made on the optimization of non-targeted probiotic delivery systems and the necessity of designing more precisely targeted ones.
Collapse
Affiliation(s)
- Ya Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Cristabelle De Souza
- Department of Stem Cell Research and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mythili Ramachandran
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Shaolei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Kai Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
7
|
Zhao Z, Xu S, Zhang W, Wu D, Yang G. Probiotic Escherichia coli NISSLE 1917 for inflammatory bowel disease applications. Food Funct 2022; 13:5914-5924. [PMID: 35583304 DOI: 10.1039/d2fo00226d] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Escherichia coli NISSLE 1917 (EcN) is a Gram-negative strain with many prominent probiotic properties in the treatment of intestinal diseases such as diarrhea and inflammatory bowel disease (IBD), in particular ulcerative colitis. EcN not only exhibits antagonistic effects on a variety of intestinal pathogenic bacteria, but also regulates the secretion of immune factors in vivo and enhances the ability of host immunity. In this review, the mechanisms of EcN in the remission of inflammatory bowel disease are proposed and recent advances on the functionalized EcN are compiled to provide novel therapeutic strategies for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Zejing Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Shumin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wangyang Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Danjun Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Gensheng Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Kalantarmahdavi M, Khanzadi S, Salari A. Edible Films Incorporating with
Lactobacillus plantarum
Based on Sourdough, Wheat Flour, and Gelatin: Films Characterization and Cell Viability During Storage and Simulated Gastrointestinal Condition. STARCH-STARKE 2021. [DOI: 10.1002/star.202000268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mahboubeh Kalantarmahdavi
- Department of Food Hygiene and Aquaculture Faculty of Veterinary Medicine Ferdowsi University of Mashhad (FUM) Mashhad Iran
| | - Saeid Khanzadi
- Department of Food Hygiene and Aquaculture Faculty of Veterinary Medicine Ferdowsi University of Mashhad (FUM) Mashhad Iran
| | - Amir Salari
- Department of Food Hygiene and Aquaculture Faculty of Veterinary Medicine Ferdowsi University of Mashhad (FUM) Mashhad Iran
| |
Collapse
|
9
|
Jacob S, Nair AB, Boddu SHS, Gorain B, Sreeharsha N, Shah J. An Updated Overview of the Emerging Role of Patch and Film-Based Buccal Delivery Systems. Pharmaceutics 2021; 13:1206. [PMID: 34452167 PMCID: PMC8399227 DOI: 10.3390/pharmaceutics13081206] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Buccal mucosal membrane offers an attractive drug-delivery route to enhance both systemic and local therapy. This review discusses the benefits and drawbacks of buccal drug delivery, anatomical and physiological aspects of oral mucosa, and various in vitro techniques frequently used for examining buccal drug-delivery systems. The role of mucoadhesive polymers, penetration enhancers, and enzyme inhibitors to circumvent the formulation challenges particularly due to salivary renovation cycle, masticatory effect, and limited absorption area are summarized. Biocompatible mucoadhesive films and patches are favored dosage forms for buccal administration because of flexibility, comfort, lightness, acceptability, capacity to withstand mechanical stress, and customized size. Preparation methods, scale-up process and manufacturing of buccal films are briefed. Ongoing and completed clinical trials of buccal film formulations designed for systemic delivery are tabulated. Polymeric or lipid nanocarriers incorporated in buccal film to resolve potential formulation and drug-delivery issues are reviewed. Vaccine-enabled buccal films have the potential ability to produce both antibodies mediated and cell mediated immunity. Advent of novel 3D printing technologies with built-in flexibility would allow multiple drug combinations as well as compartmentalization to separate incompatible drugs. Exploring new functional excipients with potential capacity for permeation enhancement of particularly large-molecular-weight hydrophilic drugs and unstable proteins, oligonucleotides are the need of the hour for rapid advancement in the exciting field of buccal drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| |
Collapse
|
10
|
Lordello VB, Meneguin AB, de Annunzio SR, Taranto MP, Chorilli M, Fontana CR, Cavallini DCU. Orodispersible Film Loaded with Enterococcus faecium CRL183 Presents Anti- Candida albicans Biofilm Activity In Vitro. Pharmaceutics 2021; 13:pharmaceutics13070998. [PMID: 34209453 PMCID: PMC8309053 DOI: 10.3390/pharmaceutics13070998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Probiotic bacteria have been emerging as a trustworthy choice for the prevention and treatment of Candida spp. infections. This study aimed to develop and characterize an orodispersible film (ODF) for delivering the potentially probiotic Enterococcus faecium CRL 183 into the oral cavity, evaluating its in vitro antifungal activity against Candida albicans. Methods and Results: The ODF was composed by carboxymethylcellulose, gelatin, and potato starch, and its physical, chemical, and mechanical properties were studied. The probiotic resistance and viability during processing and storage were evaluated as well as its in vitro antifungal activity against C. albicans. The ODFs were thin, resistant, and flexible, with neutral pH and microbiologically safe. The probiotic resisted the ODF obtaining process, demonstrating high viability (>9 log10 CFU·g−1), up to 90 days of storage at room temperature. The Probiotic Film promoted 68.9% of reduction in fungal early biofilm and 91.2% in its mature biofilm compared to the group stimulated with the control film. Those results were confirmed through SEM images. Conclusion: The probiotic ODF developed is a promising strategy to prevent oral candidiasis, since it permits the local probiotic delivery, which in turn was able to reduce C. albicans biofilm formation.
Collapse
Affiliation(s)
- Virgínia Barreto Lordello
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
| | - Andréia Bagliotti Meneguin
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
| | - Sarah Raquel de Annunzio
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
| | - Maria Pía Taranto
- Reference Center for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145, Tucumán T4000 ILC, Argentina;
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
| | - Carla Raquel Fontana
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
- Correspondence: (C.R.F.); (D.C.U.C.)
| | - Daniela Cardoso Umbelino Cavallini
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
- Correspondence: (C.R.F.); (D.C.U.C.)
| |
Collapse
|
11
|
Liu Y, Li Z, Wu Y, Jing X, Li L, Fang X. Intestinal Bacteria Encapsulated by Biomaterials Enhance Immunotherapy. Front Immunol 2021; 11:620170. [PMID: 33643302 PMCID: PMC7902919 DOI: 10.3389/fimmu.2020.620170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
The human intestine contains thousands of bacterial species essential for optimal health. Aside from their pathogenic effects, these bacteria have been associated with the efficacy of various treatments of diseases. Due to their impact on many human diseases, intestinal bacteria are receiving increasing research attention, and recent studies on intestinal bacteria and their effects on treatments has yielded valuable results. Particularly, intestinal bacteria can affect responses to numerous forms of immunotherapy, especially cancer therapy. With the development of precision medicine, understanding the factors that influence intestinal bacteria and how they can be regulated to enhance immunotherapy effects will improve the application prospects of intestinal bacteria therapy. Further, biomaterials employed for the convenient and efficient delivery of intestinal bacteria to the body have also become a research hotspot. In this review, we discuss the recent findings on the regulatory role of intestinal bacteria in immunotherapy, focusing on immune cells they regulate. We also summarize biomaterials used for their delivery.
Collapse
Affiliation(s)
- Yilun Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongmin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuanyu Wu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiabin Jing
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Oral delivery of bacteria: Basic principles and biomedical applications. J Control Release 2020; 327:801-833. [DOI: 10.1016/j.jconrel.2020.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022]
|
13
|
Sánchez-Portilla Z, Melgoza-Contreras LM, Reynoso-Camacho R, Pérez-Carreón JI, Gutiérrez-Nava A. Incorporation of Bifidobacterium sp. into powder products through a fluidized bed process for enteric targeted release. J Dairy Sci 2020; 103:11129-11137. [PMID: 33069409 DOI: 10.3168/jds.2020-18516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
Abstract
Considering the increase in evidence regarding the benefits of probiotics on human health, there is interest in developing solid products with proper functional characteristics, such as temperature and pH stability, that can be added to oral solid dosage forms or to dairy products to release microorganisms directly at their site of action. The aim of this work was to develop a product with an enteric coat containing probiotics that is stable at room temperature and resists low pH to ensure that the probiotics are passed through the stomach and reach the colon. We obtained 2 enteric-release products based on the incorporation of Bifidobacterium sp. using commercial microcrystalline cellulose (BIP-Av) and prebiotic inulin (BIP-In) as cores. Both products had an initial concentration of approximately 1 × 108 bifidobacteria per gram (cfu/g) and showed a suitable resistance to acid; complete release from the products at a pH of 7.5 was observed at 120 min for BIP-In and 180 min for BIP-Av. The viability of bacteria in both products decreased by approximately 3 orders of magnitude. The death rate constant corresponded to 0.1143 for BIP-Av and 0.1466 for BIP-In, which means that in these storage conditions, the viability decreased slightly. Both products protected bifidobacteria for more than 2 yr, delivering a concentration of more than 1 × 105 cfu/g. Due to these characteristics, the products could be incorporated into solid pharmaceutical forms for oral administration. These products could have significant advantages over existing products on the market and provide protection for bacteria, allowing their passage through the stomach to reach the colon, and the viability of bacteria was maintained after storage at room temperature for more than 1 yr.
Collapse
Affiliation(s)
- Zacnite Sánchez-Portilla
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, CP 14380, México
| | - Luz M Melgoza-Contreras
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, CP 04960, México
| | | | - Julio I Pérez-Carreón
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Ciudad de México, CP 14610, México
| | - Angélica Gutiérrez-Nava
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, CP 04960, México.
| |
Collapse
|
14
|
Feng P, Cao Z, Wang X, Li J, Liu J. On-Demand Bacterial Reactivation by Restraining within a Triggerable Nanocoating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002406. [PMID: 32686247 DOI: 10.1002/adma.202002406] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Bacteria have been widely exploited as bioagents for applications in diagnosis and treatment, benefitting from their living characteristics including colonization, rapid proliferation, and facile genetic manipulation. As such, bacteria being tailored to perform precisely in the right place at the right time to avoid potential side effects would be of great importance but has proven to be difficult. Here, a strategy of on-demand bacterial reactivation is described by individually restraining within a triggerable nanocoating. Upon reaching at a location of interest, nanocoatings can be triggered to dissolution in situ and subsequently decoat the bacteria which are able to recover their bioactivities as needed. It is demonstrated that gut microbiota coated with an enteric nanocoating can respond to gastrointestinal environments and reactivate in the intestine by a pH-triggered decoating. In virtue of this unique, coated bacteria remain inactive following oral administration to exempt acidic insults, while revive to restore therapeutic effects after gastric emptying. Consequently, improved oral availability and treatment efficacy are achieved in two mouse models of intestinal infection. Bacteria restrained by a triggerable nanocoating represent a smart therapeutic that can take effect when necessary. On-demand bacterial reactivation suggests a robust platform for the development of precision bacterial-mediated bioagents.
Collapse
Affiliation(s)
- Pingping Feng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinyue Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Juanjuan Li
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
15
|
Hellebois T, Tsevdou M, Soukoulis C. Functionalizing and bio-preserving processed food products via probiotic and synbiotic edible films and coatings. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:161-221. [PMID: 32892833 DOI: 10.1016/bs.afnr.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Edible films and coatings constitute an appealing concept of innovative, cost-effective, sustainable and eco-friendly packaging solution for food industry applications. Edible packaging needs to comply with several technological pre-requisites such as mechanical durability, low permeability to water vapor and gases, good optical properties, low susceptibility to chemical or microbiological alterations and neutral sensory profile. Over the past few years, functionalization of edible films and coatings via the inclusion of bioactive compounds (antioxidants, micronutrients, antimicrobials, natural coloring and pigmentation agents) and beneficial living microorganisms has received much attention. As for living microorganisms, probiotic bacterial cells, primarily belonging to the Lactobacilli or Bifidobacteria genera, have been exploited to impart bespoke health and biopreservation benefits to processed food. Given that the health benefit conferring and biopreservation potential of probiotics is dependent on several extrinsic and intrinsic parameters, the development of probiotic and synbiotic edible packaging concepts is a quite challenging task. In the present chapter, we aimed at a timely overview of the technological advances in the field of probiotic, symbiotic and synbiotic edible films and coatings. The individual or combined effects of intrinsic (matrix composition and physical state, pH, dissolved oxygen, water activity, presence of growth stimulants or inhibitors) and extrinsic (film forming method, food processing, storage time and conditions, exposure to gastrointestinal conditions) factors on maintaining the biological activity of probiotic cells were addressed. Moreover, the impact of living cells inclusion on the mechanical, physicochemical and barrier properties of the edible packaging material as well as on the shelf-life and quality of the coated or wrapped food products, were duly discussed.
Collapse
Affiliation(s)
- Thierry Hellebois
- Environmental Research and Innovation (ERIN) Department, Systems and Bioprocessing Engineering Group, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg; Université de Lorraine, LIBio, Nancy, France
| | - Maria Tsevdou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christos Soukoulis
- Environmental Research and Innovation (ERIN) Department, Systems and Bioprocessing Engineering Group, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
16
|
Jain SK, Jain AK, Rajpoot K. Expedition of Eudragit® Polymers in the Development of Novel Drug Delivery Systems. Curr Drug Deliv 2020; 17:448-469. [PMID: 32394836 DOI: 10.2174/1567201817666200512093639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/10/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Eudragit® polymer has been widely used in film-coating for enhancing the quality of products over other materials (e.g., shellac or sugar). Eudragit® polymers are obtained synthetically from the esters of acrylic and methacrylic acid. For the last few years, they have shown immense potential in the formulations of conventional, pH-triggered, and novel drug delivery systems for incorporating a vast range of therapeutics including proteins, vitamins, hormones, vaccines, and genes. Different grades of Eudragit® have been used for designing and delivery of therapeutics at a specific site via the oral route, for instance, in stomach-specific delivery, intestinal delivery, colon-specific delivery, mucosal delivery. Further, these polymers have also shown their great aptitude in topical and ophthalmic delivery. Moreover, available literature evidences the promises of distinct Eudragit® polymers for efficient targeting of incorporated drugs to the site of interest. This review summarizes some potential researches that are being conducted by eminent scientists utilizing the distinct grades of Eudragit® polymers for efficient delivery of therapeutics at various sites of interest.
Collapse
Affiliation(s)
- Sunil Kumar Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| | - Akhlesh K Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| | - Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| |
Collapse
|
17
|
Luo X, Song H, Yang J, Han B, Feng Y, Leng Y, Chen Z. Encapsulation of Escherichia coli strain Nissle 1917 in a chitosan-alginate matrix by combining layer-by-layer assembly with CaCl 2 cross-linking for an effective treatment of inflammatory bowel diseases. Colloids Surf B Biointerfaces 2020; 189:110818. [PMID: 32018138 DOI: 10.1016/j.colsurfb.2020.110818] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Escherichia coli strain Nissle 1917 (EcN) has been widely shown to effectively treat inflammatory bowel diseases (IBDs). Unfortunately, after oral administration, EcN viability dramatically decreases due to severe environmental factors, including low gastric pH, temperature and osmotic pressure. To address these challenges and improve oral bio-availability, this study utilized layer-by-layer assembly (LbL) and ionic cross-linking with CaCl2 as a method of EcN encapsulation (GEcN). Upon examination, GEcN cells were shown to maintain their ability to grow and proliferate, but had a slightly longer stationary phase (10 h) relative to free EcN (4 h). When exposed to simulated gastric fluid (SGF), a higher number of GEcN cells survived up to 12 h when compared to the other groups. To assess the therapeutic effect of EcN encapsulation in vivo, a TNBS-induced colitis rat model was established. When compared with the oral administration of free EcN, GEcN exhibited a significantly enhanced anti-inflammatory effect. Furthermore, GEcN treatment showed a lower disease activity index (DAI), decreased pro-inflammatory cytokine expression (MPO, TNF-α, IL-6) and increased anti-inflammatory cytokine expression (IL-10). Additionally, rats that received GEcN had much higher ZO-1 expression levels. These results suggest that EcN encapsulation in a chitosan-alginate matrix when utilizing the LbL assembly with CaCl2 cross-linking can improve probiotic viability in a gastric environmental and thereby offer a more effective treatment for IBDs.
Collapse
Affiliation(s)
- Xiaoming Luo
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China
| | - Haixing Song
- Experimental Teaching Center, School of Biotechnology College, Chengdu Medical College, Chengdu 610500, PR China
| | - Jing Yang
- Experimental Teaching Center, School of Biotechnology College, Chengdu Medical College, Chengdu 610500, PR China
| | - Bin Han
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China
| | - Ye Feng
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China
| | - Yanbing Leng
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China.
| | - Zhaoqiong Chen
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China.
| |
Collapse
|
18
|
Asgari S, Pourjavadi A, Licht TR, Boisen A, Ajalloueian F. Polymeric carriers for enhanced delivery of probiotics. Adv Drug Deliv Rev 2020; 161-162:1-21. [PMID: 32702378 DOI: 10.1016/j.addr.2020.07.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022]
Abstract
Probiotics are live microorganisms (usually bacteria), which are defined by their ability to confer health benefits to the host, if administered adequately. Probiotics are not only used as health supplements but have also been applied in various attempts to prevent and treat gastrointestinal (GI) and non-gastrointestinal diseases such as diarrhea, colon cancer, obesity, diabetes, and inflammation. One of the challenges in the use of probiotics is putative loss of viability by the time of administration. It can be due to procedures that the probiotic products go through during fabrication, storage, or administration. Biocompatible and biodegradable polymers with specific moieties or pH/enzyme sensitivity have shown great potential as carriers of the bacteria for 1) better viability, 2) longer storage times, 3) preservation from the aggressive environment in the stomach and 4) topographically targeted delivery of probiotics. In this review, we focus on polymeric carriers and the procedures applied for encapsulation of the probiotics into them. At the end, some novel methods for specific probiotic delivery, possibilities to improve the targeted delivery of probiotics and some challenges are discussed.
Collapse
|
19
|
Yus C, Gracia R, Larrea A, Andreu V, Irusta S, Sebastian V, Mendoza G, Arruebo M. Targeted Release of Probiotics from Enteric Microparticulated Formulations. Polymers (Basel) 2019; 11:E1668. [PMID: 31614915 PMCID: PMC6835770 DOI: 10.3390/polym11101668] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
The development of advanced probiotic delivery systems, which preserve bacteria from degradation of the gastrointestinal tract and achieve a targeted release mediated by pH-independent swelling, is of great interest to improve the efficient delivery of probiotic bacteria to the target tissue. Gram-positive and Gram-negative bacteria models (Lactobacillus acidophilus (Moro) Hansen and Mocquot (ATCC® 4356™) and Escherichia coli S17, respectively) have been successfully encapsulated for the first time in pH-independent microparticulate polymethacrylates (i.e., Eudraguard biotic) used for the targeted delivery of nutraceuticals to the colon. These bacteria have also been encapsulated within the mucoadhesive polymethacrylate Eudragit RS 100 widely used as targeted release formulation for active pharmaceutical ingredients. The enteric microparticles remained unaltered under simulated gastric conditions and released the contained viable microbial cargo under simulated intestinal conditions. Buoyancies of 90.2% and 57.3% for Eudragit and Eudraguard microparticles, respectively, and long-term stability (5 months) for the encapsulated microorganisms were found. Cytotoxicity of the microparticles formulated with both polymers was evaluated (0.5-20 mg/mL) on Caco-2 cells, showing high cytocompatibility. These results underline the suitability of the synthesized materials for the successful delivery of probiotic formulations to the target organ, highlighting for the first time the potential use of Eudraguard biotic as an effective enteric coating for the targeted delivery of probiotics.
Collapse
Affiliation(s)
- Cristina Yus
- Department of Chemical Engineering. Aragón Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain.
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain.
| | - Ruben Gracia
- Department of Chemical Engineering. Aragón Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain.
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain.
| | - Ane Larrea
- Department of Chemical Engineering. Aragón Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain.
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain.
| | - Vanesa Andreu
- Department of Chemical Engineering. Aragón Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain.
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain.
| | - Silvia Irusta
- Department of Chemical Engineering. Aragón Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain.
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain.
| | - Victor Sebastian
- Department of Chemical Engineering. Aragón Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain.
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain.
| | - Gracia Mendoza
- Department of Chemical Engineering. Aragón Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain.
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain.
| | - Manuel Arruebo
- Department of Chemical Engineering. Aragón Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain.
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain.
| |
Collapse
|
20
|
Saleem I, Coombes AGA, Chambers MA. In Vitro Evaluation of Eudragit Matrices for Oral Delivery of BCG Vaccine to Animals. Pharmaceutics 2019; 11:pharmaceutics11060270. [PMID: 31185612 PMCID: PMC6630751 DOI: 10.3390/pharmaceutics11060270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Bacillus Calmette–Guérin (BCG) vaccine is the only licensed vaccine against tuberculosis (TB) in humans and animals. It is most commonly administered parenterally, but oral delivery is highly advantageous for the immunisation of cattle and wildlife hosts of TB in particular. Since BCG is susceptible to inactivation in the gut, vaccine formulations were prepared from suspensions of Eudragit L100 copolymer powder and BCG in phosphate-buffered saline (PBS), containing Tween® 80, with and without the addition of mannitol or trehalose. Samples were frozen at −20 °C, freeze-dried and the lyophilised powders were compressed to produce BCG–Eudragit matrices. Production of the dried powders resulted in a reduction in BCG viability. Substantial losses in viability occurred at the initial formulation stage and at the stage of powder compaction. Data indicated that the Eudragit matrix protected BCG against simulated gastric fluid (SGF). The matrices remained intact in SGF and dissolved completely in simulated intestinal fluid (SIF) within three hours. The inclusion of mannitol or trehalose in the matrix provided additional protection to BCG during freeze-drying. Control needs to be exercised over BCG aggregation, freeze-drying and powder compaction conditions to minimise physical damage of the bacterial cell wall and maximise the viability of oral BCG vaccines prepared by dry powder compaction.
Collapse
Affiliation(s)
- Imran Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.
| | - Allan G A Coombes
- Pharmacy Australia Centre of Excellence, University of Queensland, School of Pharmacy, 20 Cornwall Street, Woolloongaba, QLD 4102, Australia.
| | - Mark A Chambers
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK.
- School of Veterinary Medicine, University of Surrey, VSM Building, Daphne Jackson Rd, Guildford GU2 7AL, UK.
| |
Collapse
|
21
|
Patel H, Gohel M. A Review on Enteric Coated Pellets Composed of Core Pellets Prepared by Extrusion-Spheronization. RECENT PATENTS ON DRUG DELIVERY & FORMULATION 2019; 13:83-90. [PMID: 30747090 DOI: 10.2174/1872211313666190212115139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Enteric coated dosage form bypasses the stomach and releases the drug into the small intestine. Advantages of enteric coated pellets in comparison with enteric coated tablets are a) Pellets provide rapid onset of action and faster drug release due to the smaller size than tablets and b) Pellets exhibit less residence time of acid-labile drugs in the stomach compared to tablets. Dosage form coat can be damaged by longer resistance time in the stomach. The present review summarizes the current state of enteric coated pellets where core pellets are prepared by extrusion-spheronization technique and the enteric coating is applied in a fluidized bed processor. Two approaches are involved in the preparation of core pellets. In the first approach, a mixture of drug and excipient(s)/co-processed excipient is passed through extruders to prepare core pellets. In the second approach, excipient core pellets are prepared by extrusion technique and the drug is layered onto it before the enteric coating. The excipients present in the core pellets decide immediate or extended release of drug in the intestine. The coprocessed excipient pellets provide less batch variability and provide a platform for layering of many drugs before enteric coating. Some patents included enteric coating pellets [CN105456223 (A), CN105596310 (A), CN105616371 (A), CN105663095 (A), CN101611766B, CN106511862 (A), CN106668018 (A), CN106727381 (A), CN106924222 (A), TW200624127 (A), US 2017/0165248A1, US 2017/0224720A1] are discussed.
Collapse
Affiliation(s)
- Hetal Patel
- Department of Pharmaceutics, Maliba Pharmacy College, Gopal Vidyanagar, Surat, Gujarat, India
| | - Mukesh Gohel
- Department of Pharmacy, Anand Pharmacy College, Anand, Gujarat, India
| |
Collapse
|
22
|
Thangsupanimitchai N, Edwards AD. Mixing is required for uniform reconstitution of filter-dried protein antigens in a single-injection vaccine formulation. Vaccine 2018; 36:5058-5064. [PMID: 30005947 DOI: 10.1016/j.vaccine.2018.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/08/2018] [Accepted: 07/01/2018] [Indexed: 11/17/2022]
Abstract
Ambient temperature filter dried vaccine formulations have been proposed to simultaneously achieve thermostability and offer a ready-to-use immunisation device that combines reconstitution and injection. Vaccine concentration should be uniform at the point of injection, but the uniformity following direct reconstitution of filter-dried vaccines has not been reported. We present here a study of vaccine mixing and release following dissolution of filter-dried model protein and toxoid antigens within a single syringe, filter and needle unit. Release was better for filters made from glass than cellulose. Without additional mixing, uniformity was poor and only 41% of input protein was released from protein filter-dried onto glass fiber. In contrast, adding a simple glass bead and mixing by inversion, 100% release antigen solution was achieved, with uniform concentration at exit from the needle throughout a simulated injection. Adsorption onto alum adjuvant had no detectable effect on vaccine dissolution and mixing. The uniformity and yield of low doses of diphtheria and tetanus toxoid was also improved by mixing, albeit with a lower yield of 60-68%. We conclude that uniformity and mixing should be studied to ensure safety and efficacy of directly reconstituted filter-dried vaccine formulations.
Collapse
Affiliation(s)
| | - Alexander D Edwards
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, United Kingdom.
| |
Collapse
|
23
|
Kwiecień I, Kwiecień M. Application of Polysaccharide-Based Hydrogels as Probiotic Delivery Systems. Gels 2018; 4:E47. [PMID: 30674823 PMCID: PMC6209284 DOI: 10.3390/gels4020047] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
Polysaccharide hydrogels have been increasingly utilized in various fields. In this review, we focus on polysaccharide-based hydrogels used as probiotic delivery systems. Probiotics are microorganisms with a positive influence on our health that live in the intestines. Unfortunately, probiotic bacteria are sensitive to certain conditions, such as the acidity of the gastric juice. Polysaccharide hydrogels can provide a physical barrier between encapsulated probiotic cells and the harmful environment enhancing the cells survival rate. Additionally, hydrogels improve survivability of probiotic bacteria not only under gastrointestinal track conditions but also during storage at various temperatures or heat treatment. The hydrogels described in this review are based on selected polysaccharides: alginate, κ-carrageenan, xanthan, pectin and chitosan. Some hydrogels are obtained from the mixture of two polysaccharides or polysaccharide and non-polysaccharide compounds. The article discusses the efficiency of probiotic delivery systems made of single polysaccharide, as well as of systems comprising more than one component.
Collapse
Affiliation(s)
- Iwona Kwiecień
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland.
| | - Michał Kwiecień
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
| |
Collapse
|
24
|
Puccetti M, Giovagnoli S, Zelante T, Romani L, Ricci M. Development of Novel Indole-3-Aldehyde-Loaded Gastro-Resistant Spray-Dried Microparticles for Postbiotic Small Intestine Local Delivery. J Pharm Sci 2018; 107:2341-2353. [PMID: 29715478 DOI: 10.1016/j.xphs.2018.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/28/2022]
Abstract
Considering the recent evidence on the therapeutic potential of postbiotics, this study focused on 2 main goals: (1) to develop an enteric microparticle (MP) formulation for intestinal localized delivery of indole-3-aldehyde (3-IAld) (a microbial-derived metabolite produced by the host's lactobacilli during the catabolic pathway of tryptophan) and (2) to provide support in the employment of spray-drying as innovative one-step manufacturing technique for enteric products. For this purpose, special attention was taken in the knowledge of the influence of equipment setup and feedstock properties on MP enteric behavior. Eudragit® S100 and L100 and ethyl cellulose were used as wall materials and NaOH and ethanol solutions as solvent systems. 3-IAld loading was maintained at 10% w/w. As postulated, feedstock properties influenced spray-drying regime. In addition, they prevailed over other spray-drying process factors in determining MP enteric behavior. Albeit the high buckling regime that produced crumped particles, gastro resistance was obtained by spray-drying 2:1 Eudragit® S100:L100 with 30% w/w ethyl cellulose in ethanol solution. These results support the use of spray-drying as a method for manufacturing gastro-resistant MP. The obtained 3-IAld-loaded enteric MP will be useful to investigate novel postbiotic-based treatments in different therapeutic areas.
Collapse
Affiliation(s)
- Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy.
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, via Gambuli 1, 06132, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, via Gambuli 1, 06132, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| |
Collapse
|
25
|
Patra CN, Priya R, Swain S, Kumar Jena G, Panigrahi KC, Ghose D. Pharmaceutical significance of Eudragit: A review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2017. [DOI: 10.1016/j.fjps.2017.02.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
26
|
Morales JO, Fathe KR, Brunaugh A, Ferrati S, Li S, Montenegro-Nicolini M, Mousavikhamene Z, McConville JT, Prausnitz MR, Smyth HDC. Challenges and Future Prospects for the Delivery of Biologics: Oral Mucosal, Pulmonary, and Transdermal Routes. AAPS JOURNAL 2017; 19:652-668. [DOI: 10.1208/s12248-017-0054-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/01/2017] [Indexed: 12/25/2022]
|
27
|
Montenegro-Nicolini M, Morales JO. Overview and Future Potential of Buccal Mucoadhesive Films as Drug Delivery Systems for Biologics. AAPS PharmSciTech 2017; 18:3-14. [PMID: 27084567 DOI: 10.1208/s12249-016-0525-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/29/2016] [Indexed: 12/13/2022] Open
Abstract
The main route of administration for drug products is the oral route, yet biologics are initially developed as injectables due to their limited stability through the gastrointestinal tract and solubility issues. In order to avoid injections, a myriad of investigations on alternative administration routes that can bypass enzymatic degradation and the first-pass effect are found in the literature. As an alternative site for biologics absorption, the buccal route presents with a number of advantages. The buccal mucosa is a barrier, providing protection to underlying tissue, but is more permeable than other alternative routes such as the skin. Buccal films are polymeric matrices designed to be mucoadhesive properties and usually formulated with permeability enhancers to improve bioavailability. Conventionally, buccal films for biologics are manufactured by solvent casting, yet recent developments have shown the potential of hot melt extrusion, and most recently ink jet printing as promising strategies. This review aims at depicting the field of biologics-loaded mucoadhesive films as buccal drug delivery systems. In light of the literature available, the buccal epithelium is a promising route for biologics administration, which is reflected in clinical trials currently in progress, looking forward to register and commercialize the first biologic product formulated as a buccal film.
Collapse
|
28
|
|
29
|
de Barros JMS, Costabile A, Charalampopoulos D, Khutoryanskiy VV, Edwards AD. Evaluating and optimizing oral formulations of live bacterial vaccines using a gastro-small intestine model. Eur J Pharm Biopharm 2016; 102:115-22. [PMID: 26969261 DOI: 10.1016/j.ejpb.2016.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/27/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
Gastrointestinal (GI) models that mimic physiological conditions in vitro are important tools for developing and optimizing biopharmaceutical formulations. Oral administration of live attenuated bacterial vaccines (LBV) can safely and effectively promote mucosal immunity but new formulations are required that provide controlled release of optimal numbers of viable bacterial cells, which must survive gastrointestinal transit overcoming various antimicrobial barriers. Here, we use a gastro-small intestine gut model of human GI conditions to study the survival and release kinetics of two oral LBV formulations: the licensed typhoid fever vaccine Vivotif comprising enteric coated capsules; and an experimental formulation of the model vaccine Salmonella Typhimurium SL3261 dried directly onto cast enteric polymer films and laminated to form a polymer film laminate (PFL). Neither formulation released significant numbers of viable cells when tested in the complete gastro-small intestine model. The poor performance in delivering viable cells could be attributed to a combination of acid and bile toxicity plus incomplete release of cells for Vivotif capsules, and to bile toxicity alone for PFL. To achieve effective protection from intestinal bile in addition to effective acid resistance, bile adsorbent resins were incorporated into the PFL to produce a new formulation, termed BR-PFL. Efficient and complete release of 4.4×10(7) live cells per dose was achieved from BR-PFL at distal intestinal pH, with release kinetics controlled by the composition of the enteric polymer film, and no loss in viability observed in any stage of the GI model. Use of this in vitro GI model thereby allowed rational design of an oral LBV formulation to maximize viable cell release.
Collapse
Affiliation(s)
- João M S de Barros
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Adele Costabile
- Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | | | | | - Alexander D Edwards
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK.
| |
Collapse
|
30
|
Snook JD, Chesson CB, Peniche AG, Dann SM, Paulucci A, Pinchuk IV, Rudra JS. Peptide nanofiber–CaCO3 composite microparticles as adjuvant-free oral vaccine delivery vehicles. J Mater Chem B 2016; 4:1640-1649. [DOI: 10.1039/c5tb01623a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To combat mucosal pathogens that cause gastrointestinal (GI) infections, local mucosal immunity is required which is best achieved through oral vaccination.
Collapse
Affiliation(s)
- Joshua D. Snook
- Department of Pharmacology & Toxicology
- University of Texas Medical Branch
- Galveston
- USA
| | - Charles B. Chesson
- Institute for Translation Sciences
- University of Texas Medical Branch
- Galveston
- USA
- Sealy Center for Vaccine Development
| | - Alex G. Peniche
- Department of Internal Medicine-Division of Infectious Diseases
- University of Texas Medical Branch
- Galveston
- USA
| | - Sara M. Dann
- Institute for Translation Sciences
- University of Texas Medical Branch
- Galveston
- USA
- Department of Internal Medicine-Division of Infectious Diseases
| | | | - Iryna V. Pinchuk
- Institute for Translation Sciences
- University of Texas Medical Branch
- Galveston
- USA
- Department of Internal Medicine-Division of Gastroenterology
| | - Jai S. Rudra
- Department of Pharmacology & Toxicology
- University of Texas Medical Branch
- Galveston
- USA
- Sealy Center for Vaccine Development
| |
Collapse
|
31
|
|
32
|
de Barros JMS, Lechner T, Charalampopoulos D, Khutoryanskiy VV, Edwards AD. Enteric coated spheres produced by extrusion/spheronization provide effective gastric protection and efficient release of live therapeutic bacteria. Int J Pharm 2015; 493:483-94. [PMID: 26188314 DOI: 10.1016/j.ijpharm.2015.06.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 11/18/2022]
Abstract
We present a novel but simple enteric coated sphere formulation containing probiotic bacteria (Lactobacillus casei). Oral delivery of live bacterial cells (LBC) requires live cells to survive firstly manufacturing processes and secondly GI microbicidal defenses including gastric acid. We incorporated live L. casei directly in the granulation liquid, followed by granulation, extrusion, spheronization, drying and spray coating to produce dried live probiotic spheres. A blend of MCC, calcium-crosslinked alginate, and lactose was developed that gave improved live cell survival during manufacturing, and gave excellent protection from gastric acid plus rapid release in intestinal conditions. No significant loss of viability was observed in all steps except drying, which resulted in approximately 1 log loss of viable cells. Eudragit coating was used to protect dried live cells from acid, and microcrystalline cellulose (MCC) was combined with sodium alginate to achieve efficient sphere disintegration leading to rapid and complete bacterial cell release in intestinal conditions. Viability and release of L. casei was evaluated in vitro in simulated GI conditions. Uncoated spheres gave partial acid protection, but enteric coated spheres effectively protected dried probiotic LBC from acid for 2h, and subsequently released all viable cells within 1h of transfer into simulated intestinal fluid.
Collapse
Affiliation(s)
- João M S de Barros
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Tabea Lechner
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | | | | | - Alexander D Edwards
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK.
| |
Collapse
|