1
|
Li F, Nickerson B, Van Alstine L, Wang K. Statistical approaches to evaluate in vitro dissolution data against proposed dissolution specifications. Pharm Stat 2024. [PMID: 38494795 DOI: 10.1002/pst.2379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/23/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
In vitro dissolution testing is a regulatory required critical quality measure for solid dose pharmaceutical drug products. Setting the acceptance criteria to meet compendial criteria is required for a product to be filed and approved for marketing. Statistical approaches for analyzing dissolution data, setting specifications and visualizing results could vary according to product requirements, company's practices, and scientific judgements. This paper provides a general description of the steps taken in the evaluation and setting of in vitro dissolution specifications at release and on stability.
Collapse
Affiliation(s)
- Fasheng Li
- Pharmaceutical Sciences Statistics, Pfizer Research and Development, Groton, Connecticut, USA
| | - Beverly Nickerson
- Global CMC, Pfizer Research and Development, Groton, Connecticut, USA
| | - Les Van Alstine
- Pharmaceutical Sciences Statistics, Pfizer Research and Development, Groton, Connecticut, USA
| | - Ke Wang
- Pharmaceutical Sciences Statistics, Pfizer Research and Development, Groton, Connecticut, USA
| |
Collapse
|
2
|
Osei-Yeboah F, Sun CC. Effect of drug loading and relative humidity on the mechanical properties and tableting performance of Celecoxib-PVP/VA 64 amorphous solid dispersions. Int J Pharm 2023; 644:123337. [PMID: 37611855 DOI: 10.1016/j.ijpharm.2023.123337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
The mechanical properties of polymer-based amorphous solid dispersions (ASDs) are susceptible to changes in relative humidity (RH) conditions. The purpose of this study is to understand the impact of RH on both the mechanical properties and tableting performance of Celecoxib-polyvinyl pyrrolidone vinyl acetate co-polymer (PVP/VA 64) ASDs. The ASDs were prepared by solvent evaporation technique to obtain films for nanoindentation, which were also pulverized to obtain powder for compaction. Our results show that higher RH corresponds to lower Hardness, H, and Elastic Modulus, E. At a given RH, both the E and H increase with drug loading to a maximum and decrease with further drug loading. Using ASD powders with a narrow particle size range (d50 = 9-14 µm), we have demonstrated that increasing RH from 11% to 67% leads to improved tablet tensile strength for pure PVP/VA 64 and the ASDs. However, the extent of the increase in tablet tensile strength depends on their mechanical properties, H and E, and drug loading. At a higher compaction pressure and a higher RH, the effect of ASD mechanical properties on tabletability is less because the particles are nearly fully deformed so that bonding areas are approximately the same. Thus, difference in tablet strength is mainly contributed by the inter-particulate forces of attraction. Understanding the impact of these key processing conditions, i.e., RH and compaction pressure, will guide the design of an ASD tablet formulation with robust manufacturability.
Collapse
Affiliation(s)
- Frederick Osei-Yeboah
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Bendas ER, Rezk MR, Badr KA. Does the Ethnic Difference Affect the Pharmacokinetics of Favipiravir? A Pharmacokinetic Study in Healthy Egyptian Volunteers and Development of Level C In-vitro In-vivo Correlation. Drug Res (Stuttg) 2023. [PMID: 37094796 DOI: 10.1055/a-2061-7074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Favipiravir is an antiviral drug used to treat influenza and is also being investigated for the treatment of SARS-CoV-2. Its pharmacokinetic profile varies depending on ethnic group. The present research examines the pharmacokinetic features of favipiravir in healthy male Egyptian volunteers. Another goal of this research is to determine the optimum dissolution testing conditions for immediate release tablets. In vitro dissolution testing was investigated for favipiravir tablets in three different pH media. The pharmacokinetic features of favipiravir were examined in 27 healthy male Egyptian volunteers. The parameter "AUC0-t" vs. percent dissolved was used to develop level C in vitro in vivo correlation (IVIVC) to set the optimum dissolution medium to achieve accurate dissolution profile for favipiravir (IR) tablets. The in vitro release results revealed significant difference among the three different dissolution media. The Pk parameters of twenty-seven human subjects showed mean value of Cpmax of 5966.45 ng/mL at median tmax of 0.75 h with AUC0-∞ equals 13325.54 ng.h/mL, showing half-life of 1.25 h. Level C IVIVC was developed successfully. It was concluded that Egyptian volunteers had comparable Pk values to American and Caucasian volunteers, however they were considerably different from Japanese subjects. AUC0-t vs. % dissolved was used to develop level C IVIVC to set the optimum dissolution medium. Phosphate buffer medium (pH 6.8) was found to be the optimum dissolution medium for in vitro dissolution testing for Favipiravir IR tablets.
Collapse
Affiliation(s)
- Ehab R Bendas
- Department of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Mamdouh R Rezk
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Kamal A Badr
- Pharmaceutics Department, Faculty of Pharmacy, Deraya University, New Minya, Egypt
- Advanced Research Center, Nasr City, Cairo, Egypt
| |
Collapse
|
4
|
Abend AM, Hoffelder T, Cohen MJ, Van Alstine L, Diaz DA, Fredro-Kumbaradzi E, Reynolds J, Zheng Y, Witkowski K, Heimbach T. Dissolution Profile Similarity Assessment-Best Practices, Decision Trees and Global Harmonization. AAPS J 2023; 25:44. [PMID: 37084114 DOI: 10.1208/s12248-023-00795-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/15/2023] [Indexed: 04/22/2023] Open
Abstract
During the write-up of the meeting summary reports from the 2019 dissolution similarity workshop held at the University of Maryland's Center of Excellence in Regulatory Science and Innovation (M-CERSI), several coauthors continued their discussions to develop a "best-practice" document defining the steps required to assess dissolution profiles in support of certain biowaivers and postapproval changes. In previous reports, current challenges related to dissolution profile studies were discussed such that the steps outlined in the two flow charts ("decision trees") presented here can be applied. These decision trees include both recommendations for the use of equivalence procedures between reference and test products as well as application of the dissolution safe space concept. Common approaches towards establishing dissolution safe spaces are described. This paper encourages the preparation of protocols clearly describing why and how testing is performed along with the expected pass/fail criteria prior to generating data on the materials to be evaluated. The target audience of this manuscript includes CMC regulatory scientists, laboratory analysts, as well as statisticians from industry and regulatory health agencies involved in the assessment of product quality via in vitro dissolution testing. Building upon previous publications, this manuscript provides a solution to the current ambiguity related to dissolution profile comparison. The principles outlined in this and previous manuscripts provide a basis for global regulatory alignment in the application of dissolution profile assessment to support manufacturing changes and biowaiver requests.
Collapse
Affiliation(s)
- Andreas M Abend
- Pharmaceutical Sciences and Clinical Supplies, Merck Sharp & Dohme LLC, 126 E. Lincoln Avenue, Rahway, New Jersey, 07065, USA
| | - Thomas Hoffelder
- Global Biostatistics and Data Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Binger Straße 173, 55216, Ingelheim Am Rhein, Germany.
| | - Michael J Cohen
- Global Product Development, Chemistry Manufacturing and Controls, Pfizer Inc, Groton, Connecticut, USA
| | - Leslie Van Alstine
- Pharmaceutical Sciences and Manufacturing Statistics, Pfizer Worldwide Research & Development, Groton, Connecticut, USA
| | - Dorys Argelia Diaz
- Global Product Development, Chemistry Manufacturing and Controls, Pfizer Inc, Groton, Connecticut, USA
| | - Emilija Fredro-Kumbaradzi
- Biowaivers, Biocorrelation and Statistical Support, Global Research and Development, Apotex Inc., Toronto, Canada
| | - James Reynolds
- Data and Statistical Sciences, AbbVie Inc., North Chicago, Illinois, 60064, USA
| | - Yanbing Zheng
- Data and Statistical Sciences, AbbVie Inc., North Chicago, Illinois, 60064, USA
| | - Krista Witkowski
- Center for Mathematical Sciences, Merck & Co., Inc., Merck Manufacturing Division, Kenilworth, New Jersey, 07033, USA
| | - Tycho Heimbach
- Pharmaceutical Sciences and Clinical Supplies, Merck Sharp & Dohme LLC, 126 E. Lincoln Avenue, Rahway, New Jersey, 07065, USA
| |
Collapse
|
5
|
Alzahrani A, Nyavanandi D, Mandati P, Adel Ali Youssef A, Narala S, Bandari S, Repka M. A systematic and robust assessment of hot-melt extrusion-based amorphous solid dispersions: Theoretical prediction to practical implementation. Int J Pharm 2022; 624:121951. [PMID: 35753536 DOI: 10.1016/j.ijpharm.2022.121951] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Amorphous solid dispersions (ASDs) have gained attention as a formulation strategy in recent years, with the potential to improve the apparent solubility and, hence, the oral bioavailability of poorly soluble drugs. The process of formulating ASDs is commonly faced with challenges owing to the intrinsic physical and chemical instability of the initial amorphous form and the long-term physical stability of drug formulations. Numerous research publications on hot-melt extrusion (HME) technology have demonstrated that it is the most efficient approach for manufacturing reasonably stable ASDs. The HME technique has been established as a faster scale-up production strategy for formulation evaluation and has the potential to minimize the time to market. Thermodynamic evaluation and theoretical predictions of drug-polymer solubility and miscibility may assist to reduce the product development cost by HME. This review article highlights robust and established prediction theories and experimental approaches for the selection of polymeric carriers for the development of hot melt extrusion based stable amorphous solid dispersions (ASDs). In addition, this review makes a significant contribution to the literature as a pilot guide for ASD assessment, as well as to confirm the drug-polymer compatibility and physical stability of HME-based formulations.
Collapse
Affiliation(s)
- Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677; Department of Pharmacy, East Jeddah Hospital, Ministry of Health, Jeddah 22253, Saudi Arabia
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677; Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Michael Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
6
|
Salave S, Prayag K, Rana D, Amate P, Pardhe R, Jadhav A, Jindal AB, Benival D. Recent Progress in Hot Melt Extrusion Technology in Pharmaceutical Dosage Form Design. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:170-191. [PMID: 35986528 DOI: 10.2174/2667387816666220819124605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The Hot Melt Extrusion (HME) technique has shown tremendous potential in transforming highly hydrophobic crystalline drug substances into amorphous solids without using solvents. This review explores in detail the general considerations involved in the process of HME, its applications and advances. OBJECTIVE The present review examines the physicochemical properties of polymers pertinent to the HME process. Theoretical approaches for the screening of polymers are highlighted as a part of successful HME processed drug products. The critical quality attributes associated with the process of HME are also discussed in this review. HME plays a significant role in the dosage form design, and the same has been mentioned with suitable examples. The role of HME in developing several sustained release formulations, films, and implants is described along with the research carried out in a similar domain. METHODS The method includes the collection of data from different search engines like PubMed, ScienceDirect, and SciFinder to get coverage of relevant literature for accumulating appropriate information regarding HME, its importance in pharmaceutical product development, and advanced applications. RESULTS HME is known to have advanced pharmaceutical applications in the domains related to 3D printing, nanotechnology, and PAT technology. HME-based technologies explored using Design-of- Experiments also lead to the systematic development of pharmaceutical formulations. CONCLUSION HME remains an adaptable and differentiated technique for overall formulation development.
Collapse
Affiliation(s)
- Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Kedar Prayag
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani, Rajasthan, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Prakash Amate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Rupali Pardhe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Ajinkya Jadhav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani, Rajasthan, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| |
Collapse
|
7
|
Huang Y, Yu Q, Chen Z, Wu W, Zhu Q, Lu Y. In vitro and in vivo correlation for lipid-based formulations: Current status and future perspectives. Acta Pharm Sin B 2021; 11:2469-2487. [PMID: 34522595 PMCID: PMC8424225 DOI: 10.1016/j.apsb.2021.03.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/03/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid-based formulations (LBFs) have demonstrated a great potential in enhancing the oral absorption of poorly water-soluble drugs. However, construction of in vitro and in vivo correlations (IVIVCs) for LBFs is quite challenging, owing to a complex in vivo processing of these formulations. In this paper, we start with a brief introduction on the gastrointestinal digestion of lipid/LBFs and its relation to enhanced oral drug absorption; based on the concept of IVIVCs, the current status of in vitro models to establish IVIVCs for LBFs is reviewed, while future perspectives in this field are discussed. In vitro tests, which facilitate the understanding and prediction of the in vivo performance of solid dosage forms, frequently fail to mimic the in vivo processing of LBFs, leading to inconsistent results. In vitro digestion models, which more closely simulate gastrointestinal physiology, are a more promising option. Despite some successes in IVIVC modeling, the accuracy and consistency of these models are yet to be validated, particularly for human data. A reliable IVIVC model can not only reduce the risk, time, and cost of formulation development but can also contribute to the formulation design and optimization, thus promoting the clinical translation of LBFs.
Collapse
Key Words
- ANN, artificial neural network
- AUC, area under the curve
- Absorption
- BCS, biopharmaceutics classification system
- BE, bioequivalence
- CETP, cholesterol ester transfer protein
- Cmax, peak plasma concentration
- DDS, drug delivery system
- FDA, US Food and Drug Administration
- GI, gastrointestinal
- HLB, hydrophilic–lipophilic balance
- IVIVC, in vitro and in vivo correlation
- IVIVR, in vitro and in vivo relationship
- In silico prediction
- In vitro and in vivo correlations
- LBF, lipid-based formulation
- LCT, long-chain triglyceride
- Lipid-based formulation
- Lipolysis
- MCT, medium-chain triglyceride
- Model
- Oral delivery
- PBPK, physiologically based pharmacokinetic
- PK, pharmacokinetic
- Perspectives
- SCT, short-chain triglyceride
- SEDDS, self-emulsifying drug delivery system
- SGF, simulated gastric fluid
- SIF, simulated intestinal fluid
- SLS, sodium lauryl sulfate
- SMEDDS, self-microemulsifying drug delivery system
- SNEDDS, self-nanoemulsifying drug delivery system
- TIM, TNO gastrointestinal model
- TNO, Netherlands Organization for Applied Scientific Research
- Tmax, time to reach the peak plasma concentration
Collapse
|
8
|
Kapoor Y, Meyer RF, Ferguson HM, Skomski D, Daublain P, Troup GM, Dalton C, Ramasamy M, Templeton AC. Flexibility in Drug Product Development: A Perspective. Mol Pharm 2021; 18:2455-2469. [PMID: 34165309 DOI: 10.1021/acs.molpharmaceut.1c00210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The process of bringing a drug to market involves innumerable decisions to refine a concept into a final product. The final product goes through extensive research and development to meet the target product profile and to obtain a product that is manufacturable at scale. Historically, this process often feels inflexible and linear, as ideas and development paths are eliminated early on to allow focus on the workstream with the highest probability of success. Carrying multiple options early in development is both time-consuming and resource-intensive. Similarly, changing development pathways after significant investment carries a high "penalty of change" (PoC), which makes pivoting to a new concept late in development inhibitory. Can drug product (DP) development be made more flexible? The authors believe that combining a nonlinear DP development approach, leveraging state-of-the art data sciences, and using emerging process and measurement technologies will offer enhanced flexibility and should become the new normal. Through the use of iterative DP evaluation, "smart" clinical studies, artificial intelligence, novel characterization techniques, automation, and data collection/modeling/interpretation, it should be possible to significantly reduce the PoC during development. In this Perspective, a review of ideas/techniques along with supporting technologies that can be applied at each stage of DP development is shared. It is further discussed how these contribute to an improved and flexible DP development through the acceleration of the iterative build-measure-learn cycle in laboratories and clinical trials.
Collapse
Affiliation(s)
- Yash Kapoor
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Robert F Meyer
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Heidi M Ferguson
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Daniel Skomski
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Pierre Daublain
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Gregory M Troup
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Chad Dalton
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Manoharan Ramasamy
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Allen C Templeton
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
9
|
Kendall T, Stratford S, Patterson AR, Lunt RA, Cruickshank D, Bonnaud T, Scott CD. An industrial perspective on co-crystals: Screening, identification and development of the less utilised solid form in drug discovery and development. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:345-442. [PMID: 34147205 DOI: 10.1016/bs.pmch.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Active pharmaceutical ingredients are commonly marketed as a solid form due to ease of transport, storage and administration. In the design of a drug formulation, the selection of the solid form is incredibly important and is traditionally based on what polymorphs, hydrates or salts are available for that compound. Co-crystals, another potential solid form available, are currently not as readily considered as a viable solid form for the development process. Even though co-crystals are gaining an ever-increasing level of interest within the pharmaceutical community, their acceptance and application is still not as standard as other solid forms such as the ubiquitous pharmaceutical salt and stabilised amorphous formulations. Presented in this chapter is information that would allow for a co-crystal screen to be planned and conducted as well as scaled up using solution and mechanochemistry based methods commonly employed in both the literature and industry. Also presented are methods for identifying the formation of a co-crystal using a variety of analytical techniques as well as the importance of confirming the formation of co-crystals from a legal perspective and demonstrating the legal precedent by looking at co-crystalline products already on the market. The benefits of co-crystals have been well established, and presented in this chapter are a selection of examples which best exemplify their potential. The goal of this chapter is to increase the understanding of co-crystals and how they may be successfully exploited in early stage development.
Collapse
Affiliation(s)
- Thomas Kendall
- Technobis Crystallization Systems, Alkmaar, The Netherlands.
| | - Sam Stratford
- Johnson Matthey, Pharmorphix, Cambridge, United Kingdom
| | | | - Ruth A Lunt
- Johnson Matthey, Pharmorphix, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
10
|
Recent Advances in Dissolution Testing and Their Use to Improve In Vitro–In Vivo Correlations in Oral Drug Formulations. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09565-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Sahoo RN, Satapathy BS, Ray J, Dash R, Mallick S. Celecoxib Crystallized from Hydrophilic Polymeric Solutions Showed Modified Crystalline Behavior with an Improved Dissolution Profile. Assay Drug Dev Technol 2021; 19:237-245. [PMID: 33970022 DOI: 10.1089/adt.2020.1058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The crystallization technique has been established as a cost-effective and simple approach to improve the dissolution rate and oral bioavailability of poorly soluble drugs. This study was carried out to study the effect of some selected hydrophilic polymers such as methyl cellulose, hydroxypropyl methylcellulose (HPMC), polyvinyl alcohol, and carboxymethyl cellulose on the crystal behavior and dissolution properties of celecoxib (CLX), a common nonsteroidal anti-inflammatory drug. Structural and spectral characteristics of crystallized CLX have been studied by Fourier transform infrared (FTIR) spectroscopy, diffraction scanning calorimetry (DSC), and X-ray diffraction (XRD) analysis. From FTIR and DSC analysis, no significant shifting of peaks or appearance of any new peaks (for polymers) were observed, which indicated the absence of any major interaction between drug and polymers as well as the absence of polymers in the final crystallized product of CLX. The XRD analysis showed a change in crystalline morphology to some extent. The dissolution rate of crystallized CLX in the presence of polymers (particularly with HPMC) was significantly improved compared with plain CLX. The improved dissolution profile of the experimental CLX crystal products could be an indication of improved bioavailability of CLX for better clinical outcome.
Collapse
Affiliation(s)
- Rudra Narayan Sahoo
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, India.,Centurion University of Technology and Management, Bhubaneswar, India
| | - Bhabani Sankar Satapathy
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Jayashree Ray
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rasmita Dash
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Subrata Mallick
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
12
|
Li G, Yang H, Liu W, Shen C, Ji Y, Sun Y, Huo Q, Liu Y, Wang G. Development of an In Vivo Predictive Dissolution Methodology of Topiroxostat Immediate-Release Tablet Using In Silico Simulation. AAPS PharmSciTech 2021; 22:132. [PMID: 33851275 DOI: 10.1208/s12249-021-01992-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022] Open
Abstract
The main objective of this study was to develop an in vivo predictive dissolution (IVPD) model for topiroxostat immediate-release (IR) formulation by the combination of mechanistic absorption model (MAM) deconvolution method with time shifting factor (TSF) adjustment. The in vitro dissolution profiles in different biorelevant dissolution media containing different concentrations of sodium lauryl sulfate (SLS) were obtained from dissolution testing with the paddle method of the US Pharmacopeia, while the human pharmacokinetic profile was taken from the published experimental results. The GastroPlus™ software was used to observe the linear relationship between in vitro drug dissolution and in vivo absorption. The pharmacokinetic profile of topiroxostat IR tablet was first deconvoluted through the MAM method to obtain the fraction absorbed in vivo. Next, Levy plot was constructed to estimate the TSF, and the time scale for both processes of dissolution and absorption was then adjusted to be superimposable. The IVPD modelling was subsequently established with data between in vitro dissolution profiles and fraction absorbed in vivo. Finally, the dissolution profiles of topiroxostat IR tablet were translated into a pharmacokinetic curve in terms of convolution method. The comparison between translated and observed pharmacokinetic data will validate the performance of the developed IVPD model. This new linear IVPD model with high predictive power for the tablet can predict the in vivo pharmacokinetic differences through in vitro dissolution data, and it can be utilized as a risk-control tool for the formulation development of the topiroxostat IR tablet and the quality control of product batches.
Collapse
|
13
|
Selen A, Müllertz A, Kesisoglou F, Ho RJY, Cook JA, Dickinson PA, Flanagan T. Integrated Multi-stakeholder Systems Thinking Strategy: Decision-making with Biopharmaceutics Risk Assessment Roadmap (BioRAM) to Optimize Clinical Performance of Drug Products. AAPS JOURNAL 2020; 22:97. [PMID: 32719954 DOI: 10.1208/s12248-020-00470-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Decision-making in drug development benefits from an integrated systems approach, where the stakeholders identify and address the critical questions for the system through carefully designed and performed studies. Biopharmaceutics Risk Assessment Roadmap (BioRAM) is such a systems approach for application of systems thinking to patient focused and timely decision-making, suitable for all stages of drug discovery and development. We described the BioRAM therapy-driven drug delivery framework, strategic roadmap, and integrated risk assessment instrument (BioRAM Scoring Grid) in previous publications (J Pharm Sci 103:3377-97, 2014; J Pharm Sci 105:3243-55, 2016). Integration of systems thinking with pharmaceutical development, manufacturing, and clinical sciences and health care is unique to BioRAM where the developed strategy identifies the system and enables risk characterization and balancing for the entire system. Successful decision-making process in BioRAM starts with the Blueprint (BP) meetings. Through shared understanding of the system, the program strategy is developed and captured in the program BP. Here, we provide three semi-hypothetical examples for illustrating risk-based decision-making in high and moderate risk settings. In the high-risk setting, which is a rare disease area, two completely alternate development approaches are considered (gene therapy and small molecule). The two moderate-risk examples represent varied knowledge levels and drivers for the programs. In one moderate-risk example, knowledge leveraging opportunities are drawn from the manufacturing knowledge and clinical performance of a similar drug substance. In the other example, knowledge on acute tolerance patterns for a similar mechanistic pathway is utilized for identifying markers to inform the drug release profile from the dosage form with the necessary "flexibility" for dosing. All examples illustrate implementation of the BioRAM strategy for leveraging knowledge and decision-making to optimize the clinical performance of drug products for patient benefit.
Collapse
Affiliation(s)
- Arzu Selen
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Testing and Research, 10903 New Hampshire Ave., Silver Spring, Maryland, 20993, USA.
| | - Anette Müllertz
- Bioneer: FARMA, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Filippos Kesisoglou
- Biopharmaceutics, Pharmaceutical Sciences and Clinical Supply, Merck & Co, Inc., West Point, Pennsylvania, 19486, USA
| | - Rodney J Y Ho
- University of Washington, Seattle, Washington, 98195, USA
| | - Jack A Cook
- Clinical Pharmacology Department, Global Product Development, Pfizer, Inc., Groton, Connecticut, 06340, USA
| | - Paul A Dickinson
- Seda Pharmaceutical Development Services, Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Talia Flanagan
- UCB Pharma S.A., Avenue de l'Industrie, 1420, Braine - l'Alleud, Belgium
| |
Collapse
|
14
|
Establishment of a clinically relevant specification for dissolution testing using physiologically based pharmacokinetic (PBPK) modeling approaches. Eur J Pharm Biopharm 2020; 151:45-52. [DOI: 10.1016/j.ejpb.2020.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/08/2020] [Accepted: 03/22/2020] [Indexed: 11/20/2022]
|
15
|
Cheng X, Gao J, Li J, Cheng G, Zou M, Piao H. In Vitro-In Vivo Correlation for Solid Dispersion of a Poorly Water-Soluble Drug Efonidipine Hydrochloride. AAPS PharmSciTech 2020; 21:160. [PMID: 32476084 DOI: 10.1208/s12249-020-01685-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/11/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this present study was to investigate the ability of different dissolution methods to predict the in vivo performance of efonidipine hydrochloride (EFH). The solid dispersions of EFH were prepared by solvent evaporation method with HPMC-AS as matrix and urea as a pH adjusting agent. The paddle method, the open-loop, and the closed-loop flow-through cell methods were studied. In the study, Weibull's model was the best fit to explain release profiles. The pharmacokinetics behaviors of two kinds of solid dispersions with different release rate were investigated in comparison to the EFH after oral administration in rats. In vivo absorption was calculated by a numerical deconvolution method. In the study, the level A in vivo and in vitro correlation (IVIVC) was utilized. The correlation coefficient was calculated and interpreted by means of linear regression analysis (Origin.Pro.8.5 software). As a result, excellent IVIVC for solid dispersions and crude drug (r2 = 0.9352-0.9916) was obtained for the dissolution rate determined with flow-through cell open-loop system in phosphate buffer solution with 0.1% (w/v) polysorbate 80 at pH 6.5, the flow-rate of 4 mL/min. In addition, the self-assembled flow cell system had good repeatability and accuracy. The dissolution rate of the solid dispersion could be slowed down by the flow-through method, and the difference caused by preparation was significantly distinguished. The study demonstrated that flow-through cell method of the open-loop, compared with paddle method, was suitable for predicting in vivo performance of EFH solid dispersions.
Collapse
|
16
|
Flexible Manufacturing: The Future State of Drug Product Development and Commercialization in the Pharmaceutical Industry. J Pharm Innov 2020. [DOI: 10.1007/s12247-019-09426-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Simões MF, Pinto RM, Simões S. Hot-melt extrusion in the pharmaceutical industry: toward filing a new drug application. Drug Discov Today 2019; 24:1749-1768. [DOI: 10.1016/j.drudis.2019.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/29/2019] [Accepted: 05/17/2019] [Indexed: 01/30/2023]
|
18
|
Zaborenko N, Shi Z, Corredor CC, Smith-Goettler BM, Zhang L, Hermans A, Neu CM, Alam MA, Cohen MJ, Lu X, Xiong L, Zacour BM. First-Principles and Empirical Approaches to Predicting In Vitro Dissolution for Pharmaceutical Formulation and Process Development and for Product Release Testing. AAPS J 2019; 21:32. [PMID: 30790200 PMCID: PMC6394641 DOI: 10.1208/s12248-019-0297-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/02/2018] [Indexed: 11/30/2022] Open
Abstract
This manuscript represents the perspective of the Dissolution Working Group of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) and of two focus groups of the American Association of Pharmaceutical Scientists (AAPS): Process Analytical Technology (PAT) and In Vitro Release and Dissolution Testing (IVRDT). The intent of this manuscript is to show recent progress in the field of in vitro predictive dissolution modeling and to provide recommended general approaches to developing in vitro predictive dissolution models for both early- and late-stage formulation/process development and batch release. Different modeling approaches should be used at different stages of drug development based on product and process understanding available at those stages. Two industry case studies of current approaches used for modeling tablet dissolution are presented. These include examples of predictive model use for product development within the space explored during formulation and process optimization, as well as of dissolution models as surrogate tests in a regulatory filing. A review of an industry example of developing a dissolution model for real-time release testing (RTRt) and of academic case studies of enabling dissolution RTRt by near-infrared spectroscopy (NIRS) is also provided. These demonstrate multiple approaches for developing data-rich empirical models in the context of science- and risk-based process development to predict in vitro dissolution. Recommendations of modeling best practices are made, focused primarily on immediate-release (IR) oral delivery products for new drug applications. A general roadmap is presented for implementation of dissolution modeling for enhanced product understanding, robust control strategy, batch release testing, and flexibility toward post-approval changes.
Collapse
Affiliation(s)
- Nikolay Zaborenko
- Small Molecule Design and Development, Eli Lilly and Company, Lilly Technology Center North, B302, Drop 3210, Indianapolis, Indiana, 46285, USA
| | - Zhenqi Shi
- Small Molecule Design and Development, Eli Lilly and Company, Lilly Technology Center North, B302, Drop 3210, Indianapolis, Indiana, 46285, USA.
| | - Claudia C Corredor
- Drug Product Science and Technology, Bristol-Myers Squibb, New Brunswick, New Jersey, 08903, USA
| | | | - Limin Zhang
- Drug Product Science and Technology, Bristol-Myers Squibb, New Brunswick, New Jersey, 08903, USA
| | - Andre Hermans
- Merck & Co., Inc., Kenilworth, New Jersey, 07033, USA
| | - Colleen M Neu
- Merck & Co., Inc., Kenilworth, New Jersey, 07033, USA
| | - Md Anik Alam
- Analytical Research and Development, Pfizer Inc., Groton, Connecticut, 06340, USA
| | - Michael J Cohen
- Global Chemistry and Manufacturing Controls, Pfizer Inc., Groton, Connecticut, 06340, USA
| | - Xujin Lu
- Drug Product Science and Technology, Bristol-Myers Squibb, New Brunswick, New Jersey, 08903, USA
| | - Leah Xiong
- Merck & Co., Inc., Kenilworth, New Jersey, 07033, USA
| | - Brian M Zacour
- Drug Product Science and Technology, Bristol-Myers Squibb, New Brunswick, New Jersey, 08903, USA
| |
Collapse
|
19
|
Suarez-Sharp S, Cohen M, Kesisoglou F, Abend A, Marroum P, Delvadia P, Kotzagiorgis E, Li M, Nordmark A, Bandi N, Sjögren E, Babiskin A, Heimbach T, Kijima S, Mandula H, Raines K, Seo P, Zhang X. Applications of Clinically Relevant Dissolution Testing: Workshop Summary Report. AAPS JOURNAL 2018; 20:93. [DOI: 10.1208/s12248-018-0252-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/06/2018] [Indexed: 11/30/2022]
|
20
|
Development of a Clinically Relevant Dissolution Method for Metaxalone Immediate Release Formulations Based on an IVIVC Model. Pharm Res 2018; 35:163. [DOI: 10.1007/s11095-018-2434-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/21/2018] [Indexed: 10/28/2022]
|
21
|
Jacob S, Nair AB. An updated overview with simple and practical approach for developing in vitro-in vivo correlation. Drug Dev Res 2018; 79:97-110. [PMID: 29697151 DOI: 10.1002/ddr.21427] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
Preclinical Research & Development An in vitro-in vivo correlation (IVIVC) is as a predictive mathematical model that demonstrates a key role in the development, advancement, evaluation and optimization of extended release, modified release and immediate release pharmaceutical formulations. A validated IVIVC model can serve as a surrogate for bioequivalence studies and subsequently save time, effort and expenditure during pharmaceutical product development. This review discusses about different levels of correlations, general approaches to develop an IVIVC by mathematical modelling, validation, data analysis and various applications. In the current setting, the dearth of success associated with IVIVC is due to complexity of underlying scientific principles as well as the practice of fitting/matching in vivo plasma level-time data with in vitro dissolution profile. Hence, a simple, straightforward practical means to predict plasma drug levels by convolution technique and percentage drug absorbed computed from in vitro dissolution profile based on deconvolution method are illustrated. The bioavailability/bioequivalence assessment and evaluation are frequently validated by the pharmacokinetic parameters such as maximum concentration, time to reach maximum concentration, and area under the curve. The implementation of a quality by design manufacturing based on in vivo bioavailability and clinically relevant dissolution specification are recommended because corresponding design safe space will guarantee that all batches from relevant products are met with sufficient quality and bioperformance. Recently, United States Food and Drug Administration and European Medicines Agency have proposed that in silico/physiologically based pharmacokinetic modelling can be used in decision making during preclinical experiments as well as to recognize the dissolution profiles that can forecast and ensure the desired clinical performance.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, UAE
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
22
|
Warnken Z, Puppolo M, Hughey J, Duarte I, Jansen-Varnum S. In Vitro–In Vivo Correlations of Carbamazepine Nanodispersions for Application in Formulation Development. J Pharm Sci 2018; 107:453-465. [DOI: 10.1016/j.xphs.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
|
23
|
Jermain SV, Brough C, Williams RO. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery – An update. Int J Pharm 2018; 535:379-392. [DOI: 10.1016/j.ijpharm.2017.10.051] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 11/29/2022]
|
24
|
Melt extrusion with poorly soluble drugs - An integrated review. Int J Pharm 2017; 535:68-85. [PMID: 29102700 DOI: 10.1016/j.ijpharm.2017.10.056] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 11/20/2022]
Abstract
Over the last few decades, hot melt extrusion (HME) has emerged as a successful technology for a broad spectrum of applications in the pharmaceutical industry. As indicated by multiple publications and patents, HME is mainly used for the enhancement of solubility and bioavailability of poorly soluble drugs. This review is focused on the recent reports on the solubility enhancement via HME and provides an update for the manufacturing/scaling up aspects of melt extrusion. In addition, drug characterization methods and dissolution studies are discussed. The application of process analytical technology (PAT) tools and use of HME as a continuous manufacturing process may shorten the drug development process; as a result, the latter is becoming the most widely utilized technique in the pharmaceutical industry. The advantages, disadvantages, and practical applications of various PAT tools such as near and mid-infrared, ultraviolet/visible, fluorescence, and Raman spectroscopies are summarized, and the characteristics of other techniques are briefly discussed. Overall, this review also provides an outline for the currently marketed products and analyzes the strengths, weaknesses, opportunities and threats of HME application in the pharmaceutical industry.
Collapse
|
25
|
Emami Riedmaier A, Lindley DJ, Hall JA, Castleberry S, Slade RT, Stuart P, Carr RA, Borchardt TB, Bow DAJ, Nijsen M. Mechanistic Physiologically Based Pharmacokinetic Modeling of the Dissolution and Food Effect of a Biopharmaceutics Classification System IV Compound-The Venetoclax Story. J Pharm Sci 2017; 107:495-502. [PMID: 28993217 DOI: 10.1016/j.xphs.2017.09.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Venetoclax, a selective B-cell lymphoma-2 inhibitor, is a biopharmaceutics classification system class IV compound. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model to mechanistically describe absorption and disposition of an amorphous solid dispersion formulation of venetoclax in humans. A mechanistic PBPK model was developed incorporating measured amorphous solubility, dissolution, metabolism, and plasma protein binding. A middle-out approach was used to define permeability. Model predictions of oral venetoclax pharmacokinetics were verified against clinical studies of fed and fasted healthy volunteers, and clinical drug interaction studies with strong CYP3A inhibitor (ketoconazole) and inducer (rifampicin). Model verification demonstrated accurate prediction of the observed food effect following a low-fat diet. Ratios of predicted versus observed Cmax and area under the curve of venetoclax were within 0.8- to 1.25-fold of observed ratios for strong CYP3A inhibitor and inducer interactions, indicating that the venetoclax elimination pathway was correctly specified. The verified venetoclax PBPK model is one of the first examples mechanistically capturing absorption, food effect, and exposure of an amorphous solid dispersion formulated compound. This model allows evaluation of untested drug-drug interactions, especially those primarily occurring in the intestine, and paves the way for future modeling of biopharmaceutics classification system IV compounds.
Collapse
Affiliation(s)
| | - David J Lindley
- Drug Product Development, AbbVie Inc., North Chicago, Illinois 60064
| | - Jeffrey A Hall
- Drug Product Development, AbbVie Inc., North Chicago, Illinois 60064
| | | | - Russell T Slade
- Drug Product Development, AbbVie Inc., North Chicago, Illinois 60064
| | - Patricia Stuart
- DMPK and Translational Modeling, AbbVie Inc., North Chicago, Illinois 60064
| | - Robert A Carr
- DMPK and Translational Modeling, AbbVie Inc., North Chicago, Illinois 60064
| | | | - Daniel A J Bow
- DMPK and Translational Modeling, AbbVie Inc., North Chicago, Illinois 60064
| | - Marjoleen Nijsen
- DMPK and Translational Modeling, AbbVie Inc., North Chicago, Illinois 60064
| |
Collapse
|
26
|
Hermans A, Abend AM, Kesisoglou F, Flanagan T, Cohen MJ, Diaz DA, Mao Y, Zhang L, Webster GK, Lin Y, Hahn DA, Coutant CA, Grady H. Approaches for Establishing Clinically Relevant Dissolution Specifications for Immediate Release Solid Oral Dosage Forms. AAPS JOURNAL 2017; 19:1537-1549. [DOI: 10.1208/s12248-017-0117-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/16/2017] [Indexed: 12/22/2022]
|
27
|
Han X, Qi W, Dong W, Guo M, Ma P, Wang J. Preparation, optimization and in vitro–in vivo investigation for capsules of the choline salt of febuxostat. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
28
|
Amorphous Solid Dispersions or Prodrugs: Complementary Strategies to Increase Drug Absorption. J Pharm Sci 2016; 105:2498-2508. [DOI: 10.1016/j.xphs.2015.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Al Durdunji A, AlKhatib HS, Al-Ghazawi M. Development of a biphasic dissolution test for Deferasirox dispersible tablets and its application in establishing an in vitro–in vivo correlation. Eur J Pharm Biopharm 2016; 102:9-18. [DOI: 10.1016/j.ejpb.2016.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 02/04/2016] [Accepted: 02/10/2016] [Indexed: 11/29/2022]
|
30
|
Suarez-Sharp S, Delvadia PR, Dorantes A, Duan J, Externbrink A, Gao Z, Ghosh T, Miksinski SP, Seo P. Regulatory Perspectives on Strength-Dependent Dissolution Profiles and Biowaiver Approaches for Immediate Release (IR) Oral Tablets in New Drug Applications. AAPS JOURNAL 2016; 18:578-88. [PMID: 26928450 DOI: 10.1208/s12248-016-9893-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/16/2016] [Indexed: 11/30/2022]
Abstract
Dissolution profile comparisons are used by the pharmaceutical industry to assess the similarity in the dissolution characteristics of two formulations to decide whether the implemented changes, usually minor/moderate in nature, will have an impact on the in vitro/in vivo performance of the drug product. When similarity testing is applied to support the approval of lower strengths of the same formulation, the traditional approach for dissolution profile comparison is not always applicable for drug products exhibiting strength-dependent dissolution and may lead to incorrect conclusions about product performance. The objective of this article is to describe reasonable biopharmaceutic approaches for developing a biowaiver strategy for low solubility, proportionally similar/non-proportionally similar in composition immediate release drug products that exhibit strength-dependent dissolution profiles. The paths highlighted in the article include (1) approaches to address biowaiver requests, such as the use of multi-unit dissolution testing to account for sink condition differences between the higher and lower strengths; (2) the use of a single- vs. strength-dependent dissolution method; and (3) the use of single- vs. strength-dependent dissolution acceptance criteria. These approaches are cost- and time-effective and can avoid unnecessary bioequivalence studies.
Collapse
Affiliation(s)
- Sandra Suarez-Sharp
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.
| | - Poonam R Delvadia
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Angelica Dorantes
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - John Duan
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Anna Externbrink
- Division of Pharmaceutical Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis, Missouri, USA
| | - Zongming Gao
- Division of Pharmaceutical Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis, Missouri, USA
| | - Tapash Ghosh
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sarah Pope Miksinski
- Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Paul Seo
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
31
|
|