1
|
Salehi N, Al-Gousous J, Hens B, Amidon GL, Ziff RM, Amidon GE. Comparative Evaluation of Dissolution Performance in a USP 2 Setup and Alternative Stirrers and Vessel Designs: A Systematic Computational Investigation. Mol Pharm 2024; 21:2406-2414. [PMID: 38639477 DOI: 10.1021/acs.molpharmaceut.3c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The dissolution testing method described in the United States Pharmacopeia (USP) Chapter ⟨711⟩ is widely used for assessing the release of active pharmaceutical ingredients from solid dosage forms. However, extensive use over the years has revealed certain issues, including high experimental intervariability observed in specific formulations and the settling of particles in the dead zone of the vessel. To address these concerns and gain a comprehensive understanding of the hydrodynamic conditions within the USP 2 apparatus, computational fluid dynamic simulations have been employed in this study. The base design employed in this study is the 900 mL USP 2 vessel along with a paddle stirrer at a 50 rpm rotational speed. Additionally, alternative stirrer designs, including the hydrofoil, pitched blade, and Rushton impeller, are investigated. A comparison is also made between a flat-bottom tank and the USP round-bottom vessel of the same volume and diameter. Furthermore, this work examines the impact of various parameters, such as clearance distance (distance between the bottom of the impeller and bottom of the vessel), number of impeller blades, impeller diameter, and impeller attachment angle. The volume-average shear rate (Stv), fluid velocity (Utv), and energy dissipation rates (ϵtv) represent the key properties evaluated in this study. Comparing the USP2 design and systems with the same stirrer but flat-bottom vessel reveals more homogeneous mixing compared to the USP2 design. Analyzing fluid flow streamlines in different designs demonstrates that hydrofoil stirrers generate more suspension or upward movement of fluid compared to paddle stirrers. Therefore, when impellers are of a similar size, hydrofoil designs generate higher fluid velocities in the coning area. Furthermore, the angle of blade attachment to the hub influences the fluid velocity in the coning area in a way that the 60° angle design generates more suspension than the 45° angle design. The findings indicate that the paddle stirrer design leads to a heterogeneous shear rate and velocity distributions within the vessel compared with the other designs, suggesting suboptimal performance. These insights provide valuable guidance for the development of improved in vitro dissolution testing devices, emphasizing the importance of optimized design considerations to minimize hydrodynamic variability, enhance dissolution characterization, and reduce variability in dissolution test results. Ultimately, such advancements hold potential for improving in vitro-in vivo correlations in drug development.
Collapse
Affiliation(s)
- Niloufar Salehi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Synthetic Molecule Design & Development, Lilly Technology Center, Eli Lilly and Company, Indianapolis, Indiana 46221, United States
| | - Jozef Al-Gousous
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Bart Hens
- Drug Product Design, Pfizer, Sandwich CT13 9NJ, U.K
| | - Gordon L Amidon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert M Ziff
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gregory E Amidon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Nam EJ, Cho I, Park H, Paik SR. Multifactorial drug carrier system bringing both chemical and physical therapeutics to the treatment of tumor heterogeneity. J Control Release 2024; 369:101-113. [PMID: 38508524 DOI: 10.1016/j.jconrel.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/22/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Tumor heterogeneity and drug resistance have been invincible features of cancer for its complete cure. Despite the advent of immunotherapy, the expansion and diversification of cancer cells evolved even in the absence or presence of drug treatment discourage additional therapeutic interventions. For the eradication of cancer cells, therefore, an 'all-at-once' strategy is required, which exploits both target-selective chemotherapy and non-selective physicotherapy. Multifactorial microcapsules comprising gold nanoparticles (AuNPs) and a self-assembly protein of α-synuclein (αS) were fabricated, in which hydrophobic and hydrophilic drugs could be separately encapsulated by employing lipid-based inverted micelles (IMs). Their combined physico-chemical therapeutic effects were examined since they also contained both membrane-disrupting IMs and heat-generating AuNPs upon irradiation as physicotherapeutic agents. For the optimal enclosure of IMs containing hydrophilic drugs, a porous inner skeleton made of poly(lactic-co-glycolic acid) was introduced, which would play the roles of not only compartmentalizing the internal space but also enhancing proteolytic disintegration of the microcapsules to discharge and stabilize IMs to the outside. In fact, hydrophobic paclitaxel and hydrophilic doxorubicin showed markedly enhanced drug efficacy when delivered in the IM-containing microcapsules exhibiting the 'quantal' release of both drugs into the cells whose integrity could be also affected by the IMs. In addition, the remnants of αS-AuNP microcapsules produced via proteolysis also caused cell death through photothermal effect. The multifactorial microcapsules are therefore considered as a promising anti-cancer drug carrier capable of performing combinatorial selective and non-selective chemical and physical therapies to overcome tumor heterogeneity and drug resistance.
Collapse
Affiliation(s)
- Eun-Jeong Nam
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Inyoung Cho
- Interdisciplinary program of Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeji Park
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung R Paik
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary program of Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Sinko PD, Salehi N, Halseth T, Meyer PJ, Amidon GL, Ziff RM, Amidon GE. Particle Size, Dose, and Confinement Affect Passive Diffusion Flux through the Membrane Concentration Boundary Layer. Mol Pharm 2024; 21:201-215. [PMID: 38115627 DOI: 10.1021/acs.molpharmaceut.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The authors present a steady-state-, particle-size-, and dose-dependent dissolution-permeation model that describes particle dissolution within the concentration boundary layer (CBL) adjacent to a semipermeable surface. It is critical to understand how particle size and dose affect the behavior of dissolving particles in the presence of a CBL adjacent to a semipermeable surface both in vivo and in vitro. Control of particle size is ubiquitous in the pharmaceutical industry; however, traditional pharmaceutical assumptions of particle dissolution typically ignore particle dissolution within the length scale of the CBL. The CBL does not physically prevent particles from traveling to the semipermeable surface (mucus, epithelial barrier, synthetic membrane, etc.), and particle dissolution can occur within the CBL thickness (δC) if the particle is sufficiently small (∼dparticle ≤ δC). The total flux (the time rate transport of molecules across the membrane surface per unit area) was chosen as a surrogate parameter for measuring the additional mass generated by particles dissolving within the donor CBL. Mass transfer experiments aimed to measure the total flux of drug using an ultrathin large-area membrane diffusion cell described by Sinko et al. with a silicone-based membrane ( Mol. Pharmaceutics 2020, 17, (7) 2319-2328, DOI: 10.1021/acs.molpharmaceut.0c00040). Suspensions of ibuprofen, a model weak-acid drug, with three different particle-size distributions with average particle diameters of 6.6, 37.4, and 240 μm at multiple doses corresponding to a range of suspension concentrations with dimensionless dose numbers of 2.94, 14.7, 147, and 588 were used to test the model. Experimentally measured total flux across the semipermeable membrane/CBL region agreed with the predictions from the proposed model, and at a range of relatively low suspension concentrations, dependent on the average particle size, there was a measurable effect on the flux due to the difference in δC that formed at the membrane surface. Additionally, the dose-dependent total flux across the membrane was up to 10% higher than the flux predicted by the standard Higuchi-Hiestand dissolution model where the effects of confinement were ignored as described by Wang et al. ( Mol. Pharmaceutics 2012, 9 (5), 1052-1066, DOI: 10.1021/mp2002818).
Collapse
Affiliation(s)
- Patrick D Sinko
- Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Niloufar Salehi
- Chemical Engineering, College of Engineering, University of Michigan, 3074 H. H. Dow, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Troy Halseth
- Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Pamela J Meyer
- Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Gordon L Amidon
- Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Robert M Ziff
- Chemical Engineering, College of Engineering, University of Michigan, 3074 H. H. Dow, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Gregory E Amidon
- Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
van der Zwaan I, Frenning G. A new modelling approach for dissolution of polydisperse powders. Int J Pharm 2023; 633:122626. [PMID: 36690125 DOI: 10.1016/j.ijpharm.2023.122626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
A new modelling approach for dissolution of polydisperse powders is developed within the framework of the classical Noyes-Whitney/Nernst-Brunner analysis. Its distinguishing feature is that the underlying continuous particle-size distribution is retained. Two different but related dependencies of the diffusion-layer thickness on particle size are considered. First, a power-law dependence that interpolates between a thickness that is proportional to (or equals) the particle radius (obtained when the exponent equals 1) and a constant thickness (obtained when the exponent is 0). Second, a piecewise linear function such that the thickness equals the particle radius for sufficiently small particles and is constant for larger ones. The modelling approach is exemplified by consideration of a lognormal particle-size distribution. Highly accurate closed-form expressions for the fraction of dissolved drug are obtained for dissolution under sink conditions (which are exact if the diffusion-layer thickness is radius-independent). Moreover, it is demonstrated that any result derived under sink conditions can be reused to determine the fraction of dissolved/absorbed drug under non-sink conditions, using the concept of a retarded time. Comparison with literature data and experiments are used to validate the modelling approach and to demonstrate its usefulness in a practical context.
Collapse
Affiliation(s)
- Irès van der Zwaan
- Department of Pharmaceutical Biosciences and the Swedish Drug Delivery Center (SweDeliver), Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden
| | - Göran Frenning
- Department of Pharmaceutical Biosciences and the Swedish Drug Delivery Center (SweDeliver), Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden.
| |
Collapse
|
5
|
Sleziona D, Ely DR, Thommes M. Modeling of Particle Dissolution Behavior Using a Geometrical Phase-Field Approach. Mol Pharm 2022; 19:3749-3756. [PMID: 36066377 DOI: 10.1021/acs.molpharmaceut.2c00214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Material dissolution is a critical attribute of many products in a wide variety of industries. The idealized view of dissolution through established prediction tools should be reconsidered because the number of new substances with low aqueous solubility is increasing. Due to this, a fundamental understanding of the dissolution process is desired. The aim of this study was to develop a tool to predict crystal dissolution performance based on experimentally measurable physical parameters. A numerical simulation, called the phase-field method, was used to simultaneously solve the time evolution of the phase and concentration fields of dissolving particles. This approach applies to diffusion-limited as well as surface reaction-limited systems. The numerical results were compared to analytical solutions, and the influence of particle shape and interparticle proximity on the dissolution process was numerically investigated. Dissolution behaviors of two different substances were modeled. A diffusion-limited model compound, xylitol, with a high aqueous solubility and a surface reaction-limited model compound, griseofulvin, with a low aqueous solubility were chosen. The results of the simulations demonstrated that phase-field modeling is a powerful approach for predicting the dissolution behaviors of pure crystalline substances.
Collapse
Affiliation(s)
- Dominik Sleziona
- TU Dortmund, Department of Biochemical and Chemical Engineering, Laboratory of Solids Process Engineering, Emil-Figge-Str. 68, 44227 Dortmund, Germany
| | - David R Ely
- Ivy Tech Community College, 3101 S Creasy Ln, Lafayette, Indiana 47905, United States
| | - Markus Thommes
- TU Dortmund, Department of Biochemical and Chemical Engineering, Laboratory of Solids Process Engineering, Emil-Figge-Str. 68, 44227 Dortmund, Germany
| |
Collapse
|
6
|
van der Zwaan I, Franek F, Fransson R, Tehler U, Frenning G. Characterization of Membrane-Type Dissolution Profiles of Clinically Available Orally Inhaled Products Using a Weibull Fit and a Mechanistic Model. Mol Pharm 2022; 19:3114-3124. [PMID: 35939615 PMCID: PMC9449970 DOI: 10.1021/acs.molpharmaceut.2c00177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dissolution rate impacts the absorption rate of poorly soluble inhaled drugs. In vitro dissolution tests that can capture the impact of changes in critical quality attributes of the drug product on in vivo dissolution are important for the development of products containing poorly soluble drugs, as well as modified release formulations. In this study, an extended mathematical model allowing for dissolution of polydisperse powders and subsequent diffusion of dissolved drug across a membrane is described. In vitro dissolution profiles of budesonide, fluticasone propionate, and beclomethasone dipropionate delivered from three commercial drug products were determined using a membrane-type Transwell dissolution test, which consists of a donor and an acceptor compartment separated by a membrane. Subsequently, the profiles were analyzed using the developed mechanistic model and a semi-empirical model based on the Weibull distribution. The two mathematical models provided the same rank order of the performance of the three drug products in terms of dissolution rates, but the rates were significantly different. The faster rate extracted from the mechanistic model is expected to reflect the true dissolution rate of the drug; the Weibull model provides an effective and slower rate that represents not only drug dissolution but also diffusion across the Transwell membrane. In conclusion, the developed extended model provides superior understanding of the dissolution mechanisms in membrane-type (Transwell) dissolution tests.
Collapse
Affiliation(s)
- Irès van der Zwaan
- Department of Pharmaceutical Biosciences and the Swedish Drug Delivery Center (SweDeliver), Uppsala University, P.O. Box 580, 751 23 Uppsala, Sweden
| | - Frans Franek
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Rebecca Fransson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Ulrika Tehler
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Göran Frenning
- Department of Pharmaceutical Biosciences and the Swedish Drug Delivery Center (SweDeliver), Uppsala University, P.O. Box 580, 751 23 Uppsala, Sweden
| |
Collapse
|
7
|
Djukaj S, Kolář J, Lehocký R, Zadražil A, Štěpánek F. Design of particle size distribution for custom dissolution profiles by solving the inverse problem. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
The Kinetic Aspects of the Dissolution of Slightly Soluble Lanthanoid Carbonates. METALS 2021. [DOI: 10.3390/met11111793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The problem of the complex use of mineral raw materials is significant in the context of many industries. In the rare earth industry, in the context of limited traditional domestic reserves and dependence on imports of lanthanides, an unambiguous and comprehensive solution has not yet been developed. Promising areas include the involvement of technogenic raw materials in the industrial turnover. The present study examines the kinetics of the dissolution process of poorly soluble lanthanide compounds when changing the parameters of the system. The results obtained reflect the dependence of the degree of extraction of lanthanide on the following variable parameters of the system: temperature, concentration of the complexing agent, and intensity of mixing. On the basis of the experiment, the values of the activation energy and the reaction orders were calculated. The activation energy of the carbonate dissolution process, in kJ/mol, was as follows: 61.6 for cerium, 39.9 for neodymium, 45.4 for ytterbium. The apparent reaction orders of the carbonates are equal to one. The prospect of using the research results lies in the potential to create a mathematical model of the process of extracting a rare earth metal by the carbonate alkaline method.
Collapse
|
9
|
Ranjan A, Jha PK. Studying Drug Release through Polymeric Controlled Release Formulations in United States Pharmacopoeia 2 Apparatus Using Multiphysics Simulation and Experiments. Mol Pharm 2021; 18:2600-2611. [PMID: 34056905 DOI: 10.1021/acs.molpharmaceut.1c00086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro dissolution of oral drug formulations is often studied using the United States Pharmacopoeia (USP) apparatus. Although a well-stirred vessel or a perfect sink assumption is often employed in the modeling of in vitro dissolution in USP apparatus, such a limit is usually not realized in actual experimental conditions. The interplay of hydrodynamics in the vessel and the swelling and erosion of dosage forms often results in substantial deviations from the dissolution behavior obtained under perfect sink approximation. We develop a multiphysics model of drug release from controlled release tablets of polymeric excipients with active pharmaceutical ingredients (APIs). Simulations are performed in COMSOL for the USP 2 (paddle) apparatus and the effects of stirring speed, drug loading, erosion rate, and polymer swelling and erosion are analyzed in detail. We demonstrate that the drug release phenomena can be conveniently interpreted using the Weibull equation to fit the simulation results. This is further confirmed using drug release experiments performed on mechanically compressed tablets of naproxen sodium as the API with poly-methyl-methacrylate-co-methacrylic acid as the excipient. We show that the API-to-polymer ratio may be varied to obtain different regimes of controlled release.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Prateek K Jha
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
10
|
Moroney KM, Kotamarthy L, Muthancheri I, Ramachandran R, Vynnycky M. A moving-boundary model of dissolution from binary drug-excipient granules incorporating microstructure. Int J Pharm 2021; 599:120219. [PMID: 33548366 DOI: 10.1016/j.ijpharm.2021.120219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/07/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Accurate mechanistic in vitro dissolution models can deliver insight into drug release behaviour and guide formulation development. Drug release profiles from drug-excipient granules can be impacted by variation of porosity and drug load within granules, which may arise from inherent variability in granulation processes. Here, we analyse and validate a recent model of drug release from a single spherical granule with a matrix of insoluble excipient, incorporating radial variation of porosity and drug load. The model is presented and specialised to the case where the initial drug load is large compared to the capacity of the granule's pores at solubility. In this limit, the model reduces to a single ordinary differential equation describing depletion of a shrinking, drug-saturated core. Model validation is performed using drug release data from the literature for a granule system consisting of acetaminophen and microcrystalline cellulose. A new extended model to describe dissolution from a polydisperse collection of granules is derived. The performance is compared to single particle models using equivalent spherical diameters. The developed model provides a new tool to explore the dissolution parameter space for these systems and for considering the impact of radial variation of granule porosity and drug load arising from manufacturing processes.
Collapse
Affiliation(s)
- Kevin M Moroney
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Ireland; MACSI, Department of Mathematics and Statistics, University of Limerick, Ireland.
| | - Lalith Kotamarthy
- Dept. of Chemical & Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Indu Muthancheri
- Dept. of Chemical & Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rohit Ramachandran
- Dept. of Chemical & Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Michael Vynnycky
- MACSI, Department of Mathematics and Statistics, University of Limerick, Ireland
| |
Collapse
|
11
|
Gao Y, Glennon B, He Y, Donnellan P. Dissolution Kinetics of a BCS Class II Active Pharmaceutical Ingredient: Diffusion-Based Model Validation and Prediction. ACS OMEGA 2021; 6:8056-8067. [PMID: 33817465 PMCID: PMC8014923 DOI: 10.1021/acsomega.0c05558] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/05/2021] [Indexed: 05/28/2023]
Abstract
In this work, a diffusion-theory-based model has been devised to simulate dissolution kinetics of a poorly water-soluble drug, ibuprofen. The model was developed from the Noyes-Whitney equation in which the dissolution rate term is a function of the remaining particulate surface area and the concentration gradient across the boundary layer. Other dissolution parameters include initial particle size, diffusion coefficient, material density, and diffusion boundary layer thickness. It is useful for predicting nonsink circumstances under which pure API polydisperse powders are suspended in a well-mixing tank. The model was used to compare the accuracy of simulations using spherical (single dimensional characteristic length) and cylindrical particle (multidimensional characteristic lengths) geometries, with and without size-dependent diffusion layer thickness. Experimental data was fitted to the model to obtain the diffusion layer thickness as well as used for model validation and prediction. The CSDs of postdissolution were also predicted with this model, demonstrating good agreement between theory and experiment.
Collapse
Affiliation(s)
- Yuan Gao
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), School of Chemical and
Bioprocess Engineering, University College
Dublin, Belfield, Dublin 4, Ireland
| | - Brian Glennon
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), School of Chemical and
Bioprocess Engineering, University College
Dublin, Belfield, Dublin 4, Ireland
- APC
Ltd, Building 11 Cherrywood
Business Park, Loughlinstown, Dublin 18, Ireland
| | - Yunliang He
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), School of Chemical and
Bioprocess Engineering, University College
Dublin, Belfield, Dublin 4, Ireland
| | - Philip Donnellan
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), School of Chemical and
Bioprocess Engineering, University College
Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
12
|
Salehi N, Al-Gousous J, Mudie DM, Amidon GL, Ziff RM, Amidon GE. Hierarchical Mass Transfer Analysis of Drug Particle Dissolution, Highlighting the Hydrodynamics, pH, Particle Size, and Buffer Effects for the Dissolution of Ionizable and Nonionizable Drugs in a Compendial Dissolution Vessel. Mol Pharm 2020; 17:3870-3884. [PMID: 32886520 DOI: 10.1021/acs.molpharmaceut.0c00614] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dissolution is a crucial process for the oral delivery of drug products. Before being absorbed through epithelial cell membranes to reach the systemic circulation, drugs must first dissolve in the human gastrointestinal (GI) tract. In vivo and in vitro dissolutions are complex because of their dependency upon the drug physicochemical properties, drug product, and GI physiological properties. However, an understanding of this process is critical for the development of robust drug products. To enhance our understanding of in vivo and in vitro dissolutions, a hierarchical mass transfer (HMT) model was developed that considers the drug properties, GI fluid properties, and fluid hydrodynamics. The key drug properties include intrinsic solubility, acid/base character, pKa, particle size, and particle polydispersity. The GI fluid properties include bulk pH, buffer species concentration, fluid shear rate, and fluid convection. To corroborate the model, in vitro dissolution experiments were conducted in the United States Pharmacopeia (USP) 2 dissolution apparatus. A weakly acidic (ibuprofen), a weakly basic (haloperidol), and a nonionizable (felodipine) drug were used to study the effects of the acid/base character, pKa, and intrinsic solubility on dissolution. 900 mL of 5 mM bicarbonate and phosphate buffers at pH 6.5 and 37 °C was used to study the impact of the buffer species on drug dissolution. To investigate the impacts of fluid shear rate and convection, the apparatus was operated at different impeller rotational speeds. Moreover, presieved ibuprofen particles with different average diameters were used to investigate the effect of particle size on drug dissolution. In vitro experiments demonstrate that the dissolution rates of both the ionizable compounds used in this study were slower in bicarbonate buffer than in phosphate buffer, with the same buffer concentration, because of the lower interfacial buffer capacity, a unique behavior of bicarbonate buffer. Therefore, using surrogates (i.e., 50 mM phosphate) for bicarbonate buffer for biorelevant in vitro dissolution testing may overestimate the in vivo dissolution rate for ionizable drugs. Model simulations demonstrated that, assuming a monodisperse particle size when modeling, dissolution may overestimate the dissolution rate for polydisperse particle size distributions. The hydrodynamic parameters (maximum shear rate and fluid velocity) under in vitro conditions in the USP 2 apparatus under different rotational speeds are orders of magnitude higher compared to the in vivo situation. The inconsistencies between the in vivo and in vitro drug dissolution hydrodynamic conditions may cause an overestimation of the dissolution rate under in vitro conditions. The in vitro dissolution data supported the accuracy of the HMT for drug dissolution. This is the first drug dissolution model that incorporates the effect of the bulk pH and buffer concentration on the interfacial drug particle solubility of ionizable compounds, combined with the medium hydrodynamics effect (diffusion, convection, shear, and confinement components), and drug particle size distribution.
Collapse
Affiliation(s)
- Niloufar Salehi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan,48109, United States
| | - Jozef Al-Gousous
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Deanna M Mudie
- Global Research and Development, Lonza, Bend, Oregon 97703, United States
| | - Gordon L Amidon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan,48109, United States
| | - Robert M Ziff
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gregory E Amidon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan,48109, United States
| |
Collapse
|
13
|
Mudie DM, Samiei N, Marshall DJ, Amidon GE, Bergström CAS. Selection of In Vivo Predictive Dissolution Media Using Drug Substance and Physiological Properties. AAPS JOURNAL 2020; 22:34. [PMID: 31989343 PMCID: PMC6985051 DOI: 10.1208/s12248-020-0417-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/04/2020] [Indexed: 12/20/2022]
Abstract
The rate and extent of drug dissolution in the gastrointestinal (GI) tract are highly dependent upon drug physicochemical properties and GI fluid properties. Biorelevant dissolution media (BDM), which aim to facilitate in vitro prediction of in vivo dissolution performance, have evolved with our understanding of GI physiology. However, BDM with a variety of properties and compositions are available, making the choice of dissolution medium challenging. In this tutorial, we describe a simple and quantitative methodology for selecting practical, yet physiologically relevant BDM representative of fasted humans for evaluating dissolution of immediate release formulations. Specifically, this methodology describes selection of pH, buffer species, and concentration and evaluates the importance of including bile salts and phospholipids in the BDM based upon drug substance log D, pKa, and intrinsic solubility. The methodology is based upon a mechanistic understanding of how three main factors affect dissolution, including (1) drug ionization at gastrointestinal pH, (2) alteration of surface pH by charged drug species, and (3) drug solubilization in mixed lipidic aggregates comprising bile salts and phospholipids. Assessment of this methodology through testing and comparison with literature reports showed that the recommendations correctly identified when a biorelevant buffer capacity or the addition of bile salts and phospholipids to the medium would appreciably change the drug dissolution profile. This methodology can enable informed decisions about when a time, complexity, and/or cost-saving buffer is expected to lead to physiologically meaningful in vitro dissolution testing, versus when a more complex buffer would be required.
Collapse
Affiliation(s)
- Deanna M Mudie
- Global Research and Development, Lonza, Bend, Oregon, 97703, USA.
| | - Nasim Samiei
- Department of Pharmacy, Uppsala Biomedical Centre, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden
| | - Derrick J Marshall
- Global Research and Development, Lonza, Bend, Oregon, 97703, USA.,Pivotal Drug Product Technologies, Amgen, Cambridge, Massachusetts, 02141, USA
| | - Gregory E Amidon
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, 48103, USA
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala Biomedical Centre, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden
| |
Collapse
|
14
|
Wang Y, Brasseur JG. Enhancement of mass transfer from particles by local shear‐rate and correlations with application to drug dissolution. AIChE J 2019. [DOI: 10.1002/aic.16617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanxing Wang
- School of Aerospace EngineeringGeorgia Institute of Technology Atlanta Georgia
| | - James G. Brasseur
- Smead Aerospace Engineering SciencesUniversity of Colorado Boulder Colorado
- Mechanical EngineeringPennsylvania State University University Park Pennsylvania
| |
Collapse
|
15
|
Biorelevant intrinsic dissolution profiling in early drug development: Fundamental, methodological, and industrial aspects. Eur J Pharm Biopharm 2019; 139:101-114. [PMID: 30862481 DOI: 10.1016/j.ejpb.2019.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/07/2019] [Accepted: 03/08/2019] [Indexed: 01/24/2023]
Abstract
Intrinsic dissolution rate (IDR) is the surface specific dissolution rate of a drug. In early drug development, this property (among other parameters) is measured in order to compare different polymorphs and salt forms, guide formulation decisions, and to provide a quality marker of the active pharmaceutical ingredient (API) during production. In this review, an update on different methods and small-scale techniques that have recently evolved for determination of IDR is provided. The importance of biorelevant media and the hydrodynamic conditions of dissolution are also discussed. Different preparation techniques for samples are presented with a focus on disc, particle- and crystal-based methods. A number of small-scale techniques are then described in detail, and their applicability domains are identified. Finally, an updated industrial perspective is provided about IDR's place in the early drug development process.
Collapse
|
16
|
Zaborenko N, Shi Z, Corredor CC, Smith-Goettler BM, Zhang L, Hermans A, Neu CM, Alam MA, Cohen MJ, Lu X, Xiong L, Zacour BM. First-Principles and Empirical Approaches to Predicting In Vitro Dissolution for Pharmaceutical Formulation and Process Development and for Product Release Testing. AAPS J 2019; 21:32. [PMID: 30790200 PMCID: PMC6394641 DOI: 10.1208/s12248-019-0297-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/02/2018] [Indexed: 11/30/2022] Open
Abstract
This manuscript represents the perspective of the Dissolution Working Group of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) and of two focus groups of the American Association of Pharmaceutical Scientists (AAPS): Process Analytical Technology (PAT) and In Vitro Release and Dissolution Testing (IVRDT). The intent of this manuscript is to show recent progress in the field of in vitro predictive dissolution modeling and to provide recommended general approaches to developing in vitro predictive dissolution models for both early- and late-stage formulation/process development and batch release. Different modeling approaches should be used at different stages of drug development based on product and process understanding available at those stages. Two industry case studies of current approaches used for modeling tablet dissolution are presented. These include examples of predictive model use for product development within the space explored during formulation and process optimization, as well as of dissolution models as surrogate tests in a regulatory filing. A review of an industry example of developing a dissolution model for real-time release testing (RTRt) and of academic case studies of enabling dissolution RTRt by near-infrared spectroscopy (NIRS) is also provided. These demonstrate multiple approaches for developing data-rich empirical models in the context of science- and risk-based process development to predict in vitro dissolution. Recommendations of modeling best practices are made, focused primarily on immediate-release (IR) oral delivery products for new drug applications. A general roadmap is presented for implementation of dissolution modeling for enhanced product understanding, robust control strategy, batch release testing, and flexibility toward post-approval changes.
Collapse
Affiliation(s)
- Nikolay Zaborenko
- Small Molecule Design and Development, Eli Lilly and Company, Lilly Technology Center North, B302, Drop 3210, Indianapolis, Indiana, 46285, USA
| | - Zhenqi Shi
- Small Molecule Design and Development, Eli Lilly and Company, Lilly Technology Center North, B302, Drop 3210, Indianapolis, Indiana, 46285, USA.
| | - Claudia C Corredor
- Drug Product Science and Technology, Bristol-Myers Squibb, New Brunswick, New Jersey, 08903, USA
| | | | - Limin Zhang
- Drug Product Science and Technology, Bristol-Myers Squibb, New Brunswick, New Jersey, 08903, USA
| | - Andre Hermans
- Merck & Co., Inc., Kenilworth, New Jersey, 07033, USA
| | - Colleen M Neu
- Merck & Co., Inc., Kenilworth, New Jersey, 07033, USA
| | - Md Anik Alam
- Analytical Research and Development, Pfizer Inc., Groton, Connecticut, 06340, USA
| | - Michael J Cohen
- Global Chemistry and Manufacturing Controls, Pfizer Inc., Groton, Connecticut, 06340, USA
| | - Xujin Lu
- Drug Product Science and Technology, Bristol-Myers Squibb, New Brunswick, New Jersey, 08903, USA
| | - Leah Xiong
- Merck & Co., Inc., Kenilworth, New Jersey, 07033, USA
| | - Brian M Zacour
- Drug Product Science and Technology, Bristol-Myers Squibb, New Brunswick, New Jersey, 08903, USA
| |
Collapse
|
17
|
Hens B, Sinko PD, Job N, Dean M, Al-Gousous J, Salehi N, Ziff RM, Tsume Y, Bermejo M, Paixão P, Brasseur JG, Yu A, Talattof A, Benninghoff G, Langguth P, Lennernäs H, Hasler WL, Marciani L, Dickens J, Shedden K, Sun D, Amidon GE, Amidon GL. Formulation predictive dissolution (fPD) testing to advance oral drug product development: An introduction to the US FDA funded '21st Century BA/BE' project. Int J Pharm 2018; 548:120-127. [PMID: 29944899 PMCID: PMC8845961 DOI: 10.1016/j.ijpharm.2018.06.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/26/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
Over the past decade, formulation predictive dissolution (fPD) testing has gained increasing attention. Another mindset is pushed forward where scientists in our field are more confident to explore the in vivo behavior of an oral drug product by performing predictive in vitro dissolution studies. Similarly, there is an increasing interest in the application of modern computational fluid dynamics (CFD) frameworks and high-performance computing platforms to study the local processes underlying absorption within the gastrointestinal (GI) tract. In that way, CFD and computing platforms both can inform future PBPK-based in silico frameworks and determine the GI-motility-driven hydrodynamic impacts that should be incorporated into in vitro dissolution methods for in vivo relevance. Current compendial dissolution methods are not always reliable to predict the in vivo behavior, especially not for biopharmaceutics classification system (BCS) class 2/4 compounds suffering from a low aqueous solubility. Developing a predictive dissolution test will be more reliable, cost-effective and less time-consuming as long as the predictive power of the test is sufficiently strong. There is a need to develop a biorelevant, predictive dissolution method that can be applied by pharmaceutical drug companies to facilitate marketing access for generic and novel drug products. In 2014, Prof. Gordon L. Amidon and his team initiated a far-ranging research program designed to integrate (1) in vivo studies in humans in order to further improve the understanding of the intraluminal processing of oral dosage forms and dissolved drug along the gastrointestinal (GI) tract, (2) advancement of in vitro methodologies that incorporates higher levels of in vivo relevance and (3) computational experiments to study the local processes underlying dissolution, transport and absorption within the intestines performed with a new unique CFD based framework. Of particular importance is revealing the physiological variables determining the variability in in vivo dissolution and GI absorption from person to person in order to address (potential) in vivo BE failures. This paper provides an introduction to this multidisciplinary project, informs the reader about current achievements and outlines future directions.
Collapse
Affiliation(s)
- Bart Hens
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA; Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven 3000, Belgium
| | - Patrick D Sinko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Nicholas Job
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Meagan Dean
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Jozef Al-Gousous
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Niloufar Salehi
- Center for the Study of Complex Systems and Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136, USA
| | - Robert M Ziff
- Center for the Study of Complex Systems and Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136, USA
| | - Yasuhiro Tsume
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Marival Bermejo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA; Department Engineering Pharmacy Section, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain
| | - Paulo Paixão
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - James G Brasseur
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA; Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Alex Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Arjang Talattof
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Gail Benninghoff
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Peter Langguth
- Department of Pharmaceutical Technology and Biopharmaceutics, Johannes Gutenberg University Mainz, Staudinger Weg 5, Mainz D-55099, Germany
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - William L Hasler
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Luca Marciani
- Nottingham Digestive Diseases Centre and NIHR Nottingham Biomedical Research Centre at Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Joseph Dickens
- Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kerby Shedden
- Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Gregory E Amidon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Gordon L Amidon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA.
| |
Collapse
|
18
|
Galipeau K, Socki M, Socia A, Harmon PA. Incomplete Loading of Sodium Lauryl Sulfate and Fasted State Simulated Intestinal Fluid Micelles Within the Diffusion Layers of Dispersed Drug Particles During Dissolution. J Pharm Sci 2018. [DOI: 10.1016/j.xphs.2017.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Jones DKF, Andrews GP, Jones DS. Strontium-containing, carbohydrate-based polymer networks as tooth-adherent systems for the treatment of dentine hypersensitivity. Carbohydr Polym 2017; 157:400-408. [PMID: 27987944 DOI: 10.1016/j.carbpol.2016.09.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 11/27/2022]
Abstract
This study describes the design/physicochemical properties of strontium-containing, mucoadhesive carbohydrate polymeric platforms, designed as treatments for dentine hypersensitivity. Interactive networks were composed of strontium chloride (10% w/w), one of two base polymers (sodium carboxymethylcellulose, NaCMC or hydroxyethylcellulose, HEC), polycarbophil (PC) and, when required, polyvinylpyrrolidone (PVP). The physicochemical properties were characterised using oscillatory and flow rheometry, texture profile analysis, mucoadhesion analysis and, additionally, the strontium release properties were examined. All platforms exhibited pseudoplastic flow. Increasing polymer concentrations increased network viscoelasticity, consistency, hardness, compressibility, gel strength, adhesiveness, mucoadhesion and, retarded strontium release. Principally zero-order strontium release was observed from all platforms. Incorporation of strontium reduced the network elasticity, consistency, hardness, compressibility, gel strength and mucoadhesion; HEC-based platforms being affected to a greater extent than NaCMC platforms. NaCMC-based platforms containing 10% strontium chloride, PVP (3% w/w) and PC (3% w/w) potentially displayed the correct balance of physicochemical properties for the treatment of dentine sensitivity.
Collapse
Affiliation(s)
- Dary K F Jones
- School of Pharmacy, Queen's University of Belfast, Belfast, Antrim, Northern Ireland, UK
| | - Gavin P Andrews
- School of Pharmacy, Queen's University of Belfast, Belfast, Antrim, Northern Ireland, UK
| | - David S Jones
- School of Pharmacy, Queen's University of Belfast, Belfast, Antrim, Northern Ireland, UK.
| |
Collapse
|
20
|
Mitra A, Zhu W, Kesisoglou F. Physiologically Based Absorption Modeling for Amorphous Solid Dispersion Formulations. Mol Pharm 2016; 13:3206-15. [PMID: 27442959 DOI: 10.1021/acs.molpharmaceut.6b00424] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amitava Mitra
- Biopharmaceutics, Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., West Point, Pennsylvania 19486, United States
| | - Wei Zhu
- Biopharmaceutics, Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., West Point, Pennsylvania 19486, United States
| | - Filippos Kesisoglou
- Biopharmaceutics, Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|