1
|
Robello M, Nikolayevskiy H, Scerba MT, Nahui Palomino RA, Mercurio V, Appella DH. Prodrug Strategy Extends the Use of Anti-HIV Sulfanylbenzamides for Application In Vivo. ACS Pharmacol Transl Sci 2024; 7:259-273. [PMID: 38250006 PMCID: PMC10795369 DOI: 10.1021/acsptsci.3c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
Sulfanylbenzamide thioesters are molecules with anti-HIV activity that disrupt zinc coordination in the viral protein NCp7. These molecules are useful as topical microbicides; however, they are too unstable to be used systemically. In this article, a nitroimidazole prodrug was used to protect the sulfanylbenzamide to convey blood stability and oral bioavailability to the molecule. Studies on the molecule called nipamovir were performed to assess the rate of prodrug cleavage, antiviral activity, mechanism of metabolism, and in vivo pharmacokinetics in several different species. An efficient and inexpensive synthesis of nipamovir is also described. The results indicate that nipamovir could be further developed as a new type of drug to treat HIV infection.
Collapse
Affiliation(s)
- Marco Robello
- Synthetic Bioactive Molecules Section, Laboratory of
Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center
Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Herman Nikolayevskiy
- Synthetic Bioactive Molecules Section, Laboratory of
Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center
Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Michael T. Scerba
- Synthetic Bioactive Molecules Section, Laboratory of
Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center
Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Rogers Alberto Nahui Palomino
- Section on Intercellular Interactions, Eunice Kennedy
Shriver National Institute of Child Health and Human Development, National
Institutes of Health, Bethesda, Maryland 20892, United
States
| | - Vincenzo Mercurio
- Section on Intercellular Interactions, Eunice Kennedy
Shriver National Institute of Child Health and Human Development, National
Institutes of Health, Bethesda, Maryland 20892, United
States
| | - Daniel H. Appella
- Synthetic Bioactive Molecules Section, Laboratory of
Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center
Drive, Room 404, Bethesda, Maryland 20892, United States
| |
Collapse
|
2
|
Wienen D, Gries T, Cooper SL, Heath DE. An overview of polyurethane biomaterials and their use in drug delivery. J Control Release 2023; 363:376-388. [PMID: 37734672 DOI: 10.1016/j.jconrel.2023.09.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Polyurethanes are a versatile and highly tunable class of materials that possess unique properties including high tensile strength, abrasion and fatigue resistance, and flexibility at low temperatures. The tunability of polyurethane properties has allowed this class of polymers to become ubiquitous in our daily lives in fields as diverse as apparel, appliances, construction, and the automotive industry. Additionally, polyurethanes with excellent biocompatibility and hemocompatibility can be synthesized, enabling their use as biomaterials in the medical field. The tunable nature of polyurethane biomaterials also makes them excellent candidates as drug delivery vehicles, which is the focus of this review. The fundamental idea we aim to highlight in this article is the structure-property-function relationships found in polyurethane systems. Specifically, the chemical structure of the polymer determines its macroscopic properties and dictates the functions for which it will perform well. By exploring the structure-property-function relationships for polyurethanes, we aim to elucidate the fundamental properties that can be tailored to achieve controlled drug release and empower researchers to design new polyurethane systems for future drug delivery applications.
Collapse
Affiliation(s)
- David Wienen
- Institute of Textile Technology, RWTH Aachen, Germany
| | - Thomas Gries
- Institute of Textile Technology, RWTH Aachen, Germany
| | - Stuart L Cooper
- Department of Chemical and Biomolecular Engineering, The Ohio State University, USA
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Australia.
| |
Collapse
|
3
|
Controlled delivery via hot-melt extrusion: A focus on non-biodegradable carriers for non-oral applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
4
|
Rodríguez‐Izquierdo I, Sepúlveda‐Crespo D, Lasso JM, Resino S, Muñoz‐Fernández MÁ. Baseline and time-updated factors in preclinical development of anionic dendrimers as successful anti-HIV-1 vaginal microbicides. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1774. [PMID: 35018739 PMCID: PMC9285063 DOI: 10.1002/wnan.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Although a wide variety of topical microbicides provide promising in vitro and in vivo efficacy, most of them failed to prevent sexual transmission of human immunodeficiency virus type 1 (HIV-1) in human clinical trials. In vitro, ex vivo, and in vivo models must be optimized, considering the knowledge acquired from unsuccessful and successful clinical trials to improve the current gaps and the preclinical development protocols. To date, dendrimers are the only nanotool that has advanced to human clinical trials as topical microbicides to prevent HIV-1 transmission. This fact demonstrates the importance and the potential of these molecules as microbicides. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV-1 that disturb HIV-1 entry. Herein, the most significant advancements in topical microbicide development, trying to mimic the real-life conditions as closely as possible, are discussed. This review also provides the preclinical assays that anionic dendrimers have passed as microbicides because they can improve current antiviral treatments' efficacy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
| | - Daniel Sepúlveda‐Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | | | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | - Ma Ángeles Muñoz‐Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)MadridSpain
- Spanish HIV HGM BioBankMadridSpain
- Section of Immunology, Laboratorio InmunoBiología MolecularHospital General Universitario Gregorio Marañón (HGUGM)MadridSpain
| |
Collapse
|
5
|
3D printed clotrimazole intravaginal ring for the treatment of recurrent vaginal candidiasis. Int J Pharm 2021; 596:120290. [DOI: 10.1016/j.ijpharm.2021.120290] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022]
|
6
|
In vitro release testing methods for drug-releasing vaginal rings. J Control Release 2019; 313:54-69. [PMID: 31626862 DOI: 10.1016/j.jconrel.2019.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022]
Abstract
Drug-releasing vaginal rings are torus-shaped devices, generally fabricated from thermoplastic polymers or silicone elastomers, used to administer pharmaceutical drugs to the human vagina for periods typically ranging from three weeks to twelve months. One of the most important product performance tests for vaginal rings is the in vitro release test. Although it has been fifty years since a vaginal ring device was first described in the scientific literature, and despite seven drug-releasing vaginal rings having been approved for market, there is no universally accepted method for testing in vitro drug release, and only one non-compendial shaking incubator method (for the estradiol-releasing ring Estring®) is described in the US Food and Drug Administration's Dissolution Methods Database. Here, for the first time, we critically review the diverse range of test methods that have been described in the scientific literature for testing in vitro release of drug-releasing vaginal rings. Issues around in vitro-in vivo correlation and modelling of in vitro release data are also discussed.
Collapse
|
7
|
Nikolayevskiy H, Robello M, Scerba MT, Pasternak EH, Saha M, Hartman TL, Buchholz CA, Buckheit RW, Durell SR, Appella DH. The structure-activity profile of mercaptobenzamides' anti-HIV activity suggests that thermodynamics of metabolism is more important than binding affinity to the target. Eur J Med Chem 2019; 178:818-837. [PMID: 31252286 PMCID: PMC8132308 DOI: 10.1016/j.ejmech.2019.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 01/06/2023]
Abstract
Mercaptobenzamide thioesters and thioethers are chemically simple HIV-1 maturation inhibitors with a unique mechanism of action, low toxicity, and a high barrier to viral resistance. A structure-activity relationship (SAR) profile based on 39 mercaptobenzamide prodrug analogs exposed divergent activity/toxicity roles for the internal and terminal amides. To probe the relationship between antiviral activity and toxicity, we generated an improved computational model for the binding of mercaptobenzamide thioesters (SAMTs) to the HIV-1 NCp7 C-terminal zinc finger, revealing the presence of a second low-energy binding orientation, hitherto undisclosed. Finally, using NMR-derived thiol-thioester exchange equilibrium constants, we propose that thermodynamics plays a role in determining the antiviral activity observed in the SAR profile.
Collapse
Affiliation(s)
- Herman Nikolayevskiy
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, MD, 20892, USA
| | - Marco Robello
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, MD, 20892, USA
| | - Michael T Scerba
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, MD, 20892, USA
| | - Evan H Pasternak
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, MD, 20892, USA
| | - Mrinmoy Saha
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, MD, 20892, USA
| | - Tracy L Hartman
- ImQuest Biosciences, 7340 Executive Way, Suite R, Frederick, MD, 21704, USA
| | - Caitlin A Buchholz
- ImQuest Biosciences, 7340 Executive Way, Suite R, Frederick, MD, 21704, USA
| | - Robert W Buckheit
- ImQuest Biosciences, 7340 Executive Way, Suite R, Frederick, MD, 21704, USA
| | - Stewart R Durell
- Laboratory of Cell Biology, NCI, NIH, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Wang Y, Boyd P, Hunter A, Malcolm RK. Intravaginal rings for continuous low-dose administration of cervical ripening agents. Int J Pharm 2018; 549:124-132. [DOI: 10.1016/j.ijpharm.2018.07.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/28/2018] [Accepted: 07/22/2018] [Indexed: 12/31/2022]
|
9
|
Shvadchak V, Zgheib S, Basta B, Humbert N, Langedijk J, Morris MC, Ciaco S, Maskri O, Darlix JL, Mauffret O, Fossé P, Réal E, Mély Y. Rationally Designed Peptides as Efficient Inhibitors of Nucleic Acid Chaperone Activity of HIV-1 Nucleocapsid Protein. Biochemistry 2018; 57:4562-4573. [PMID: 30019894 DOI: 10.1021/acs.biochem.8b00527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to its essential roles in the viral replication cycle and to its highly conserved sequence, the nucleocapsid protein (NCp7) of the human immunodeficiency virus type 1 is a target of choice for inhibiting replication of the virus. Most NCp7 inhibitors identified so far are small molecules. A small number of short peptides also act as NCp7 inhibitors by competing with its nucleic acid (NA) binding and chaperone activities but exhibit antiviral activity only at relatively high concentrations. In this work, in order to obtain more potent NCp7 competitors, we designed a library of longer peptides (10-17 amino acids) whose sequences include most of the NCp7 structural determinants responsible for its specific NA binding and destabilizing activities. Using an in vitro assay, the most active peptide (pE) was found to inhibit the NCp7 destabilizing activity, with a 50% inhibitory concentration in the nanomolar range, by competing with NCp7 for binding to its NA substrates. Formulated with a cell-penetrating peptide (CPP), pE was found to accumulate into HeLa cells, with low cytotoxicity. However, either formulated with a CPP or overexpressed in cells, pE did not show any antiviral activity. In vitro competition experiments revealed that its poor antiviral activity may be partly due to its sequestration by cellular RNAs. The selected peptide pE therefore appears to be a useful tool for investigating NCp7 properties and functions in vitro, but further work will be needed to design pE-derived peptides with antiviral activity.
Collapse
Affiliation(s)
- Volodymyr Shvadchak
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS , Université de Strasbourg , 74 route du Rhin , 67401 Illkirch , France
| | - Sarwat Zgheib
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS , Université de Strasbourg , 74 route du Rhin , 67401 Illkirch , France
| | - Beata Basta
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS , Université de Strasbourg , 74 route du Rhin , 67401 Illkirch , France
| | - Nicolas Humbert
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS , Université de Strasbourg , 74 route du Rhin , 67401 Illkirch , France
| | | | - May C Morris
- Institut des biomolécules Max Mousseron, CNRS, UMR 5247 , Université de Montpellier Faculté de Pharmacie , 15 av Charles Flahault 34093 Montpellier , France
| | - Stefano Ciaco
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS , Université de Strasbourg , 74 route du Rhin , 67401 Illkirch , France
| | - Ouerdia Maskri
- LBPA, ENS Paris Saclay, CNRS , Université Paris-Saclay , 94235 , Cachan Cedex , France
| | - Jean-Luc Darlix
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS , Université de Strasbourg , 74 route du Rhin , 67401 Illkirch , France
| | - Olivier Mauffret
- LBPA, ENS Paris Saclay, CNRS , Université Paris-Saclay , 94235 , Cachan Cedex , France
| | - Philippe Fossé
- LBPA, ENS Paris Saclay, CNRS , Université Paris-Saclay , 94235 , Cachan Cedex , France
| | - Eléonore Réal
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS , Université de Strasbourg , 74 route du Rhin , 67401 Illkirch , France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS , Université de Strasbourg , 74 route du Rhin , 67401 Illkirch , France
| |
Collapse
|
10
|
Nikolayevskiy H, Scerba MT, Deschamps JR, Appella DH. Reaction Kinetics Direct a Rational Synthesis of an HIV-1 Inactivator of Nucleocapsid Protein 7 and Provide Mechanistic Insight into Cellular Metabolism and Antiviral Activity. Chemistry 2018; 24:9485-9489. [PMID: 29653024 DOI: 10.1002/chem.201801253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 12/14/2022]
Abstract
Mercaptobenzamide thioester SAMT-247 is a non-toxic, mutation-resistant HIV-1 maturation inhibitor with a unique mechanism of antiviral activity. NMR spectroscopic analyses of model reactions that mimic the cellular environment answered fundamental questions about the antiviral mechanism and inspired a high-yielding (64 % overall), scalable (75 mmol), and cost-effective ($4 mmol-1 ) three-step synthesis that will enable additional preclinical evaluation.
Collapse
Affiliation(s)
- Herman Nikolayevskiy
- Synthetic Bioactive Molecules Section, Laboratory of, Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of, Health (NIH), 8 Center Drive, Room 404, Bethesda, MD, 20892, USA
| | - Michael T Scerba
- Synthetic Bioactive Molecules Section, Laboratory of, Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of, Health (NIH), 8 Center Drive, Room 404, Bethesda, MD, 20892, USA
| | - Jeffrey R Deschamps
- Naval Research Laboratory, Code 6910, 4555 Overlook Ave. SW, Washington D.C., 20375, USA
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, Laboratory of, Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of, Health (NIH), 8 Center Drive, Room 404, Bethesda, MD, 20892, USA
| |
Collapse
|
11
|
Lowinger MB, Barrett SE, Zhang F, Williams RO. Sustained Release Drug Delivery Applications of Polyurethanes. Pharmaceutics 2018; 10:E55. [PMID: 29747409 PMCID: PMC6027189 DOI: 10.3390/pharmaceutics10020055] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022] Open
Abstract
Since their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years. The chemistry of polyurethanes and the mechanisms of drug release from sustained release dosage forms are briefly reviewed. Studies to assess the impact of intrinsic drug properties on release from polyurethane-based formulations are considered. The impact of hydrophilic water swelling polyurethanes on drug diffusivity and release rate is discussed. The role of pore formers in modulating drug release rate is examined. Finally, the value of assessing mechanical properties of the dosage form and approaches taken in the literature are described.
Collapse
Affiliation(s)
- Michael B Lowinger
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
- MRL, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA.
| | | | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| | - Robert O Williams
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| |
Collapse
|
12
|
Sancineto L, Iraci N, Tabarrini O, Santi C. NCp7: targeting a multitasking protein for next-generation anti-HIV drug development part 1: covalent inhibitors. Drug Discov Today 2017; 23:260-271. [PMID: 29107765 DOI: 10.1016/j.drudis.2017.10.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022]
Abstract
The major internal component of the HIV virion core is the nucleocapsid protein 7 (NCp7), a small, highly basic protein that is essential for multiple stages of the viral replicative cycle, and whose structure is preserved in all viral strains, including clinical isolates from therapy-experienced patients. This key protein is recognised as a potential target for an effective next-generation antiretroviral therapy, because it could offer the possibility to develop broad-spectrum agents that are less prone to select for resistant strains. Here, we provide a comprehensive overview of the covalent NCp7 inhibitors that have emerged over the past 25 years of drug discovery campaigns, emphasising, where possible, their structure-activity relationships (SARs) and pharmacophoric features.
Collapse
Affiliation(s)
- Luca Sancineto
- Department of Heterorganic Chemistry, Centre of Molecular and Macromolecular Studies, Lodz, Poland.
| | - Nunzio Iraci
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Santi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
13
|
Su JT, Teller RS, Srinivasan P, Zhang J, Martin A, Sung S, Smith JM, Kiser PF. A Dose Ranging Pharmacokinetic Evaluation of IQP-0528 Released from Intravaginal Rings in Non-Human Primates. Pharm Res 2017; 34:2163-2171. [PMID: 28770490 DOI: 10.1007/s11095-017-2224-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Design of intravaginal rings (IVRs) for delivery of antiretrovirals is often guided by in vitro release under sink conditions, based on the assumption that in vivo release will follow a similar release profile. METHODS We conducted a dose-ranging study in the female reproductive tract of pigtail macaques using matrix IVRs containing IQP-0528, a poorly soluble but highly potent antiretroviral drug with an IC90 of 146 ng/mL. These IVRs consisted of drug-loaded segments, 15.6% IQP-0528 in Tecoflex 85A, comprising either all, half, or a quarter of the entire ring. RESULTS In vitro release under sink conditions demonstrates loading-proportional release, with a cumulative 30-day release of 48.5 ± 2.2 mg for our 100% loaded ring, 24.8 ± .36 mg from our 50% loaded ring, and 13.99 ± 1.58 mg from our 25% loaded ring. In vivo, while drug concentration in vaginal fluid is well in excess of IQP-0528's EC90, we find no statistical difference between the different ring loadings in either swab drug levels or drug released from our rings. CONCLUSIONS We show that in vitro release may not accurately reflect in vivo release, particularly for poorly soluble drugs. All tested loadings of our IVRs are capable of delivering IQP-0528 well in excess of the IC90.
Collapse
Affiliation(s)
- Jonathan T Su
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois, 60208, USA
| | - Ryan S Teller
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois, 60208, USA
| | - Priya Srinivasan
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Amy Martin
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Samuel Sung
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois, 60208, USA
| | - James M Smith
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Patrick F Kiser
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois, 60208, USA. .,Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
14
|
Kirtane AR, Langer R, Traverso G. Past, Present, and Future Drug Delivery Systems for Antiretrovirals. J Pharm Sci 2016; 105:3471-3482. [PMID: 27771050 DOI: 10.1016/j.xphs.2016.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
Abstract
The human immunodeficiency virus has infected millions of people and the epidemic continues to grow rapidly in some parts of the world. Antiretroviral (ARV) therapy has provided improved treatment and prolonged the life expectancy of patients. Moreover, there is growing interest in using ARVs to protect against new infections. Hence, ARVs have emerged as our primary strategy in combating the virus. Unfortunately, several challenges limit the optimal performance of these drugs. First, ARVs often require life-long use and complex dosing regimens. This results in low patient adherence and periods of lapsed treatment manifesting in drug resistance. This has prompted the development of alternate dosage forms such as vaginal rings and long-acting injectables that stand to improve patient adherence. Another problem central to therapeutic failure is the inadequate penetration of drugs into infected tissues. This can lead to incomplete treatment, development of resistance, and viral rebound. Several strategies have been developed to improve drug penetration into these drug-free sanctuaries. These include encapsulation of drugs in nanoparticles, use of pharmacokinetic enhancers, and cell-based drug delivery platforms. In this review, we discuss issues surrounding ARV therapy and their impact on drug efficacy. We also describe various drug delivery-based approaches developed to overcome these issues.
Collapse
Affiliation(s)
- Ameya R Kirtane
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| | - Giovanni Traverso
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
15
|
Delivery of long-acting injectable antivirals: best approaches and recent advances. Curr Opin Infect Dis 2016; 28:603-10. [PMID: 26524333 DOI: 10.1097/qco.0000000000000214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Treatment of chronic disease in a manner that promotes compliance and patient adherence has necessitated the consideration for drug delivery approaches that reduce the burden of regimens requiring daily treatment. Long-acting injectable (LAI) products have been developed in many disease areas and are now being exploited for the treatment of infectious disease, most notably HIV. RECENT FINDINGS Research published over the past 3 years has shown that LAI nanosuspensions of nonnucleoside reverse transcriptase inhibitors and integrase inhibitors provide extended exposure to the active drug over a period of days to weeks. Some of these candidates are currently in clinical study and are highly anticipated medications for the prevention of HIV. SUMMARY LAIs represent a growing need in the treatment of chronic infections. To date, the approach has been most successfully applied in the treatment of HIV, but could certainly be expanded into other diseases like tuberculosis. Most importantly, LAIs can provide a means to help prevent the emergence of resistance which may be attributed to lack of compliance to regimens requiring daily, oral administration.
Collapse
|
16
|
Malcolm RK, Boyd PJ, McCoy CF, Murphy DJ. Microbicide vaginal rings: Technological challenges and clinical development. Adv Drug Deliv Rev 2016; 103:33-56. [PMID: 26829289 DOI: 10.1016/j.addr.2016.01.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/13/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Vaginal rings (VRs) are flexible, torus-shaped, polymeric devices designed to sustain delivery of pharmaceutical drugs to the vagina for clinical benefit. Following first report in a 1970 patent application, several steroid-releasing VR products have since been marketed for use in hormone replacement therapy and contraception. Since 2002, there has been growing interest in the use of VR technology for delivery of drugs that can reduce the risk of sexual acquisition of human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome (AIDS). Although no vaginally-administered product has yet been approved for HIV reduction/prevention, extensive research efforts are continuing and a number of VR devices offering sustained release of so-called 'HIV microbicide' compounds are currently being evaluated in late-stage clinical studies. This review article provides an overview of the published scientific literature within this important field of research, focusing primarily on articles published within peer-reviewed journal publications. Many important aspects of microbicide-releasing VR technology are discussed, with a particular emphasis on the technological, manufacturing and clinical challenges that have emerged in recent years.
Collapse
|
17
|
Impact of Hydroxychloroquine-Loaded Polyurethane Intravaginal Rings on Lactobacilli. Antimicrob Agents Chemother 2015; 59:7680-6. [PMID: 26416871 DOI: 10.1128/aac.01819-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/25/2015] [Indexed: 12/18/2022] Open
Abstract
The use of polymeric devices for controlled sustained delivery of drugs is a promising approach for the prevention of HIV-1 infection. Unfortunately, certain microbicides, when topically applied vaginally, may be cytotoxic to vaginal epithelial cells and the protective microflora present within the female genital tract. In this study, we evaluated the impact of hydroxychloroquine (HCQ)-loaded, reservoir-type, polyurethane intravaginal rings (IVRs) on the growth of Lactobacillus crispatus and Lactobacillus jensenii and on the viability of vaginal and ectocervical epithelial cells. The IVRs were fabricated using hot-melt injection molding and were capable of providing controlled release of HCQ for 24 days, with mean daily release rates of 17.01 ± 3.6 μg/ml in sodium acetate buffer (pH 4) and 29.45 ± 4.84 μg/ml in MRS broth (pH 6.2). Drug-free IVRs and the released HCQ had no significant effects on bacterial growth or the viability of vaginal or ectocervical epithelial cells. Furthermore, there was no significant impact on the integrity of vaginal epithelial cell monolayers, in comparison with controls, as measured by transepithelial electrical resistance. Overall, this is the first study to evaluate the effects of HCQ-loaded IVRs on the growth of vaginal flora and the integrity of vaginal epithelial cell monolayers.
Collapse
|