1
|
Poulin P. An overview of interpretability of two models of unbound fraction that are used in combination with the well-stirred model for predicting hepatic clearance of drugs. J Pharm Sci 2024; 113:3177-3190. [PMID: 39265660 DOI: 10.1016/j.xphs.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Hypothetical and experimental models of unbound fraction have been proposed to facilitate predicting the hepatic clearance (CLH) of drugs from values of intrinsic clearance for the unbound drug (CLint-in vitro-unbound) and the well-stirred model (WSM). The hypothetical model (fu-adjusted) is adjusting the unbound fractions determined in plasma in vitro to estimate the maximum unbound fractions at the hepatocytes if each drug-protein complex in plasma becomes fully dissociated at the membrane by any albumin (ALB)-facilitated hepatic uptake mechanism. The model of fu-adjusted is also adjusting the unbound fraction for a pH gradient effect across the membrane. Alternatively, the new experimental model (fu-dynamic) measures the unbound fractions resulting to the dynamic dissociation kinetics from proteins in the presence of plasma and a liver enzyme in an in vitro assay. The objective of this study was to conduct an in-depth analysis of previous CLH predictions made with these unbound fractions in a companion manuscript. Furthermore, a new dataset on transporter substrates was also included in this study. Finally, the physiological basis of fu-adjusted has been redefined to extend its applicability with more drugs. In this case, there are lower concentrations of binding proteins in liver versus plasma that could also explain the higher unbound fractions for that organ. The outcomes associated to additional analyses pointed out that fu-adjusted, again, generally provided the most accurate predictions of CLH because fu-dynamic has generated superior biases of underpredictions or overpredictions. For slowly metabolized drugs bound to ALB, fu-dynamic was definitively less accurate than fu-adjusted. For other drug properties, fu-dynamic fared better but it was still not generally more accurate than fu-adjusted. Furthermore, experimental values of fu-dynamic were sometimes incoherent. For example, drugs bound to alpha-acid glycoprotein (AGP) did not follow the principle of fu-dynamic (i.e., values of fu-dynamic did not correlate with values of CLint-in vitro-unbound) by contrast to those drugs bound to ALB. Therefore, the current experimental setting for fu-dynamic might be unsuitable in some circumstances. Overall, this study confirmed that calculated values of fu-adjusted were as accurate as experimental values of fu-dynamic and can even be more accurate. A guidance on which unbound fraction to use in the WSM is also provided.
Collapse
Affiliation(s)
- Patrick Poulin
- Consultant Patrick Poulin Inc., Québec City, Québec, Canada; School of Public Health, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
2
|
Nagar S, Parise R, Korzekwa K. Predicting Clearance with Simple and Permeability-Limited Physiologically Based Pharmacokinetic Frameworks: Comparison of Well-Stirred, Dispersion, and Parallel-Tube Liver Models. Drug Metab Dispos 2024; 52:1060-1072. [PMID: 39084881 PMCID: PMC11409860 DOI: 10.1124/dmd.124.001782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
One-compartment (1C) and permeability-limited models were used to evaluate the ability of microsomal and hepatocyte intrinsic clearances to predict hepatic clearance. Well-stirred (WSM), parallel-tube (PTM), and dispersion (DM) models were evaluated within the liver as well as within whole-body physiologically based pharmacokinetic frameworks. It was shown that a linear combination of well-stirred and parallel-tube average liver blood concentrations accurately approximates dispersion model blood concentrations. Using a flow/permeability-limited model, a large systematic error was observed for acids and no systematic error for bases. A scaling factor that reduced interstitial fluid (ISF) plasma protein binding could greatly decrease the absolute average fold error (AAFE) for acids. Using a 1C model, a scalar to reduce plasma protein binding decreased the microsomal clearance AAFE for both acids and bases. With a permeability-limited model, only acids required this scalar. The mechanism of the apparent increased cytosolic concentrations for acids remains unknown. We also show that for hepatocyte intrinsic clearance in vitro-in vivo correlations (IVIVCs), a 1C model is mechanistically appropriate since hepatocyte clearance should represent the net clearance from ISF to elimination. A relationship was derived that uses microsomal and hepatocyte intrinsic clearance to solve for an active hepatic uptake clearance, but the results were inconclusive. Finally, the PTM model generally performed better than the WSM or DM models, with no clear advantage between microsomes and hepatocytes. SIGNIFICANCE STATEMENT: Prediction of drug clearance from microsomes or hepatocytes remains challenging. Various liver models (e.g., well-stirred, parallel-tube, and dispersion) have been mathematically incorporated into liver as well as whole-body physiologically based pharmacokinetic frameworks. Although the resulting models allow incorporation of pH partitioning, permeability, and active uptake for prediction of drug clearance, including these processes did not improve clearance predictions for both microsomes and hepatocytes.
Collapse
Affiliation(s)
- Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Rachel Parise
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Schulz Pauly JA, Kalvass JC. How predictive are isolated perfused liver data of in vivo hepatic clearance? A meta-analysis of isolated perfused rat liver data. Xenobiotica 2024; 54:658-669. [PMID: 39279675 DOI: 10.1080/00498254.2024.2404170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Isolated perfused rat liver (IPRL) experiments have been used to answer clearance-related questions, including evaluating the impact of pathological and physiological processes on hepatic clearance (CLH). However, to date, IPRL data has not been evaluated for in vivo CLH prediction accuracy.In addition to a detailed overview of available IPRL literature, we present an in-depth analysis of the performance of IPRL in CLH prediction.While the entire dataset poorly predicted CLH (GAFE = 3.2; 64% within 3-fold), IPRL conducted under optimal experimental conditions, such as in the presence of plasma proteins and with a perfusion rate within 2-fold of physiological liver blood flow and corrected for unbound fraction in the presence of red blood cells, can accurately predict rat CLH (GAFE = 2.0; 78% within 3-fold). Careful consideration of experimental conditions is needed to allow proper data analysis.Further, isolated perfused liver experiments in other species, including human livers, may allow us to address the current in vitro-in vivo disconnects of hepatic metabolic clearance and improve our methodology for CLH predictions.
Collapse
Affiliation(s)
- Julia A Schulz Pauly
- Quantitative, Translational, & ADME Sciences (QTAS), Abbvie Inc., North Chicago, IL, USA
| | - J Cory Kalvass
- Quantitative, Translational, & ADME Sciences (QTAS), Abbvie Inc., North Chicago, IL, USA
| |
Collapse
|
4
|
Trunzer M, Teigão J, Huth F, Poller B, Desrayaud S, Rodríguez-Pérez R, Faller B. Improving In Vitro-In Vivo Extrapolation of Clearance Using Rat Liver Microsomes for Highly Plasma Protein-Bound Molecules. Drug Metab Dispos 2024; 52:345-354. [PMID: 38360916 DOI: 10.1124/dmd.123.001597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024] Open
Abstract
It is common practice in drug discovery and development to predict in vivo hepatic clearance from in vitro incubations with liver microsomes or hepatocytes using the well-stirred model (WSM). When applying the WSM to a set of approximately 3000 Novartis research compounds, 73% of neutral and basic compounds (extended clearance classification system [ECCS] class 2) were well-predicted within 3-fold. In contrast, only 44% (ECCS class 1A) or 34% (ECCS class 1B) of acids were predicted within 3-fold. To explore the hypothesis whether the higher degree of plasma protein binding for acids contributes to the in vitro-in vivo correlation (IVIVC) disconnect, 68 proprietary compounds were incubated with rat liver microsomes in the presence and absence of 5% plasma. A minor impact of plasma on clearance IVIVC was found for moderately bound compounds (fraction unbound in plasma [fup] ≥1%). However, addition of plasma significantly improved the IVIVC for highly bound compounds (fup <1%) as indicated by an increase of the average fold error from 0.10 to 0.36. Correlating fup with the scaled unbound intrinsic clearance ratio in the presence or absence of plasma allowed the establishment of an empirical, nonlinear correction equation that depends on fup Taken together, estimation of the metabolic clearance of highly bound compounds was enhanced by the addition of plasma to microsomal incubations. For standard incubations in buffer only, application of an empirical correction provided improved clearance predictions. SIGNIFICANCE STATEMENT: Application of the well-stirred liver model for clearance in vitro-in vivo extrapolation (IVIVE) in rat generally underpredicts the clearance of acids and the strong protein binding of acids is suspected to be one responsible factor. Unbound intrinsic in vitro clearance (CLint,u) determinations using rat liver microsomes supplemented with 5% plasma resulted in an improved IVIVE. An empirical equation was derived that can be applied to correct CLint,u-values in dependance of fraction unbound in plasma (fup) and measured CLint in buffer.
Collapse
Affiliation(s)
- Markus Trunzer
- Pharmacokinetic Sciences, Novartis Pharma AG, Basel, Switzerland
| | - Joana Teigão
- Pharmacokinetic Sciences, Novartis Pharma AG, Basel, Switzerland
| | - Felix Huth
- Pharmacokinetic Sciences, Novartis Pharma AG, Basel, Switzerland
| | - Birk Poller
- Pharmacokinetic Sciences, Novartis Pharma AG, Basel, Switzerland
| | | | | | - Bernard Faller
- Pharmacokinetic Sciences, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
5
|
Chen M, Du R, Zhang T, Li C, Bao W, Xin F, Hou S, Yang Q, Chen L, Wang Q, Zhu A. The Application of a Physiologically Based Toxicokinetic Model in Health Risk Assessment. TOXICS 2023; 11:874. [PMID: 37888724 PMCID: PMC10611306 DOI: 10.3390/toxics11100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Toxicokinetics plays a crucial role in the health risk assessments of xenobiotics. Classical compartmental models are limited in their ability to determine chemical concentrations in specific organs or tissues, particularly target organs or tissues, and their limited interspecific and exposure route extrapolation hinders satisfactory health risk assessment. In contrast, physiologically based toxicokinetic (PBTK) models quantitatively describe the absorption, distribution, metabolism, and excretion of chemicals across various exposure routes and doses in organisms, establishing correlations with toxic effects. Consequently, PBTK models serve as potent tools for extrapolation and provide a theoretical foundation for health risk assessment and management. This review outlines the construction and application of PBTK models in health risk assessment while analyzing their limitations and future perspectives.
Collapse
Affiliation(s)
- Mengting Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Ruihu Du
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Chutao Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Wenqiang Bao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Fan Xin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Shaozhang Hou
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Qiaomei Yang
- Department of Gynecology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou 350001, China
| | - Li Chen
- Department of Gynecology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou 350001, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| |
Collapse
|
6
|
S M, S J, C P, A MTN, S G. Synthesis and screening of cyclic diketone indanedione derivatives as future scaffolds for neutrophil elastase inhibition. RSC Adv 2023; 13:11838-11852. [PMID: 37077993 PMCID: PMC10107027 DOI: 10.1039/d3ra00106g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
Human neutrophil elastase (HNE) and proteinase 3 (Pr3) released from neutrophils at inflammatory sites are the major causes of pathogens in chronic obstructive pulmonary disease (COPD) and various lung tissue derangements, among which cystic fibrosis and blockade of airway passages are chronic. These proteolytic mediatory agents combined with induced oxidative reactions sustain pathogenicity. Cyclic diketone indane-1,3-dione derivatives were designed, and toxicity evaluation predictions were performed in silico. Benzimidazole and hydrazide derivatives of indanedione were synthesized and characterized. Synthesized compounds were run using neutrophil elastase inhibition assay protocols. The compounds exhibit considerable inhibition of neutrophil elastase enzymes.
Collapse
Affiliation(s)
- Meena S
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University Al Dawadmi Kingdom of Saudi Arabia
| | - Jubie S
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Ooty Tamilnadu India
| | - Pramila C
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University Al Dawadmi Kingdom of Saudi Arabia
| | - Manal T N A
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University Al Dawadmi Kingdom of Saudi Arabia
| | - Gigi S
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University Al Dawadmi Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Huang J, Chen R, Zhou J, Zhang Q, Xue C, Li Y, Zheng L, Huang Y, Wang Q, Chen Y, Gong Z. Comparative pharmacokinetic study of the five anti-inflammatory active ingredients of Inula cappa in a normal and an LPS-induced inflammatory cell model. Front Pharmacol 2022; 13:981112. [PMID: 36199688 PMCID: PMC9527281 DOI: 10.3389/fphar.2022.981112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Inula cappa is a commonly used medicine in the Miao area of Guizhou Province in China. We established an in vitro inflammatory model of mouse macrophage RAW264.7 cells to study the different pharmacokinetics of five anti-inflammatory active ingredients in the I. cappa extract namely luteolin (LUT), chlorogenic acid (CA), cryptochlorogenic acid (CCA), 3,4-dicaffeoylquinic acid (3,4-DCQA) and 4,5-dicaffeoylquinic acid (4,5-DCQA), in a normal and an inflammatory cell model. First, RAW264.7 cells were treated in vitro with l μg/mL lipopolysaccharide (LPS) for 24 h to establish an inflammatory cell model. Then, the pharmacokinetic characteristics of the five ingredients were compared in normal and inflammatory cells after treatment with 200 μg/ml and 800 μg/ml of I. cappa extracts. After treatment with 1 μg/ml LPS for 24 h, the volume of RAW264.7 cells was increased, the morphology was changed, the antennae were obvious, and the secretion of inflammatory factors nitric oxide and TNF-α was increased. The pharmacokinetics results showed that the five ingredients in normal and inflammatory cells exhibited an increase in Cmax and AUC values with increasing doses, and the Cmax and AUC values of five ingredients were positively correlated with the extract concentration. Each of these five ingredients presented nonlinear pharmacokinetic characteristics. After treatment with 200 μg/ml of I. cappa extract, the uptake of five ingredients increased in inflammatory cells, Tmax was prolonged, MRT and t1/2 were prolonged, and CL_F and Vz_F were decreased, while after treatment with 800 μg/ml of I. cappa extract, the uptake of five ingredients decreased, Tmax was prolonged, absorption was faster, and MRT and t1/2 were prolonged. The five analyzed components in I. cappa extract exerted different effects on normal cells and LPS-induced inflammatory cells. Compared to normal cells, the uptake of five ingredients in inflammatory cells was faster and the AUC and Cmax values increased with increasing doses, showing a dose-dependent nonlinear pharmacokinetic profile. These results indicate that the pharmacokinetic effects of the five analyzed ingredients in I. cappa extract are changed in the inflammatory state.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Ruixing Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Jie Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Qing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Cun Xue
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Qun Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, China
- *Correspondence: Yi Chen, ; Zipeng Gong,
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guiyang, China
- *Correspondence: Yi Chen, ; Zipeng Gong,
| |
Collapse
|
8
|
Evidence of the Need for Modified Well-stirred Model in In Vitro to In Vivo Extrapolation. Eur J Pharm Sci 2022; 177:106268. [PMID: 35901930 DOI: 10.1016/j.ejps.2022.106268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022]
Abstract
In vitro to in vivo extrapolation (IVIVE), an approach for hepatic clearance (CLH) prediction used worldwide, remains controversial due to systematic underprediction. Among the various probable factors, the original assumption of the hepatic mathematical model (i.e., the well-stirred model, WSM) may become problematic, leading to the underestimation of drug CLH. Having a similar prerequisite that the well-stirred conditions are homogenous with perfectly mixed reactants, but using a different driving concentration, the modified well-stirred model (MWSM) stands apart from the WSM. However, we believe that both models should coexist so that the entire well-stirred scenario can be completely illustrated. Consequently, we collected published data from the literature and employed a logistic regression method to differentiate the optimal timing of use between WSM and MWSM in drug CLH prediction. Generally, variances adopted in the regression, including partition coefficient (logP), fraction unbound (fu), volumes of distribution at steady-state (Vss), and mean residence time (MRT), corresponded to our assumption when protein-facilitated uptake was considered. Furthermore, a new empirical approach was introduced to allow practical use of the MWSM. The results showed that this model could provide a more precise prediction compared to previous empirical approaches. Therefore, these preliminary results not only delineated a more detailed structure and mechanism of MWSM but also highlighted its necessity and potential.
Collapse
|
9
|
Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B 2022; 12:3049-3062. [PMID: 35865092 PMCID: PMC9293739 DOI: 10.1016/j.apsb.2022.02.002] [Citation(s) in RCA: 473] [Impact Index Per Article: 157.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 12/14/2022] Open
Abstract
Ninety percent of clinical drug development fails despite implementation of many successful strategies, which raised the question whether certain aspects in target validation and drug optimization are overlooked? Current drug optimization overly emphasizes potency/specificity using structure‒activity-relationship (SAR) but overlooks tissue exposure/selectivity in disease/normal tissues using structure‒tissue exposure/selectivity-relationship (STR), which may mislead the drug candidate selection and impact the balance of clinical dose/efficacy/toxicity. We propose structure‒tissue exposure/selectivity-activity relationship (STAR) to improve drug optimization, which classifies drug candidates based on drug's potency/selectivity, tissue exposure/selectivity, and required dose for balancing clinical efficacy/toxicity. Class I drugs have high specificity/potency and high tissue exposure/selectivity, which needs low dose to achieve superior clinical efficacy/safety with high success rate. Class II drugs have high specificity/potency and low tissue exposure/selectivity, which requires high dose to achieve clinical efficacy with high toxicity and needs to be cautiously evaluated. Class III drugs have relatively low (adequate) specificity/potency but high tissue exposure/selectivity, which requires low dose to achieve clinical efficacy with manageable toxicity but are often overlooked. Class IV drugs have low specificity/potency and low tissue exposure/selectivity, which achieves inadequate efficacy/safety, and should be terminated early. STAR may improve drug optimization and clinical studies for the success of clinical drug development.
Collapse
Affiliation(s)
- Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Bristol Meyer Squibb Company, Summit, NJ, 07920, USA
| |
Collapse
|
10
|
Chang X, Tan YM, Allen DG, Bell S, Brown PC, Browning L, Ceger P, Gearhart J, Hakkinen PJ, Kabadi SV, Kleinstreuer NC, Lumen A, Matheson J, Paini A, Pangburn HA, Petersen EJ, Reinke EN, Ribeiro AJS, Sipes N, Sweeney LM, Wambaugh JF, Wange R, Wetmore BA, Mumtaz M. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. TOXICS 2022; 10:232. [PMID: 35622645 PMCID: PMC9143724 DOI: 10.3390/toxics10050232] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023]
Abstract
During the past few decades, the science of toxicology has been undergoing a transformation from observational to predictive science. New approach methodologies (NAMs), including in vitro assays, in silico models, read-across, and in vitro to in vivo extrapolation (IVIVE), are being developed to reduce, refine, or replace whole animal testing, encouraging the judicious use of time and resources. Some of these methods have advanced past the exploratory research stage and are beginning to gain acceptance for the risk assessment of chemicals. A review of the recent literature reveals a burst of IVIVE publications over the past decade. In this review, we propose operational definitions for IVIVE, present literature examples for several common toxicity endpoints, and highlight their implications in decision-making processes across various federal agencies, as well as international organizations, including those in the European Union (EU). The current challenges and future needs are also summarized for IVIVE. In addition to refining and reducing the number of animals in traditional toxicity testing protocols and being used for prioritizing chemical testing, the goal to use IVIVE to facilitate the replacement of animal models can be achieved through their continued evolution and development, including a strategic plan to qualify IVIVE methods for regulatory acceptance.
Collapse
Affiliation(s)
- Xiaoqing Chang
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Yu-Mei Tan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, 109 T.W. Alexander Drive, Durham, NC 27709, USA;
| | - David G. Allen
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Shannon Bell
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Paul C. Brown
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Lauren Browning
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Patricia Ceger
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Jeffery Gearhart
- The Henry M. Jackson Foundation, Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Pertti J. Hakkinen
- National Library of Medicine, National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, MD 20894, USA;
| | - Shruti V. Kabadi
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, 5001 Campus Drive, HFS-275, College Park, MD 20740, USA;
| | - Nicole C. Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, P.O. Box 12233, Research Triangle Park, NC 27709, USA;
| | - Annie Lumen
- U.S. Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA;
| | - Joanna Matheson
- U.S. Consumer Product Safety Commission, Division of Toxicology and Risk Assessment, 5 Research Place, Rockville, MD 20850, USA;
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy;
| | - Heather A. Pangburn
- Air Force Research Laboratory, 711 Human Performance Wing, 2729 R Street, Area B, Building 837, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Elijah J. Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| | - Emily N. Reinke
- U.S. Army Public Health Center, 8252 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, USA;
| | - Alexandre J. S. Ribeiro
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Nisha Sipes
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Lisa M. Sweeney
- UES, Inc., 4401 Dayton-Xenia Road, Beavercreek, OH 45432, Assigned to Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - John F. Wambaugh
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Ronald Wange
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Barbara A. Wetmore
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, Office of the Associate Director for Science, 1600 Clifton Road, S102-2, Atlanta, GA 30333, USA
| |
Collapse
|
11
|
Gao W, Hu H, Dai L, He M, Yuan H, Zhang H, Liao J, Wen B, Li Y, Palmisano M, Traore MDM, Zhou S, Sun D. Structure‒tissue exposure/selectivity relationship (STR) correlates with clinical efficacy/safety. Acta Pharm Sin B 2022; 12:2462-2478. [PMID: 35646532 PMCID: PMC9136610 DOI: 10.1016/j.apsb.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/23/2022] [Accepted: 02/12/2022] [Indexed: 11/17/2022] Open
Abstract
Drug optimization, which improves drug potency/specificity by structure‒activity relationship (SAR) and drug-like properties, is rigorously performed to select drug candidates for clinical trials. However, the current drug optimization may overlook the structure‒tissue exposure/selectivity-relationship (STR) in disease-targeted tissues vs. normal tissues, which may mislead the drug candidate selection and impact the balance of clinical efficacy/toxicity. In this study, we investigated the STR in correlation with observed clinical efficacy/toxicity using seven selective estrogen receptor modulators (SERMs) that have similar structures, same molecular target, and similar/different pharmacokinetics. The results showed that drug's plasma exposure was not correlated with drug's exposures in the target tissues (tumor, fat pad, bone, uterus), while tissue exposure/selectivity of SERMs was correlated with clinical efficacy/safety. Slight structure modifications of four SERMs did not change drug's plasma exposure but altered drug's tissue exposure/selectivity. Seven SERMs with high protein binding showed higher accumulation in tumors compared to surrounding normal tissues, which is likely due to tumor EPR effect of protein-bound drugs. These suggest that STR alters drug's tissue exposure/selectivity in disease-targeted tissues vs. normal tissues impacting clinical efficacy/toxicity. Drug optimization needs to balance the SAR and STR in selecting drug candidate for clinical trial to improve success of clinical drug development.
Collapse
Affiliation(s)
- Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lipeng Dai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miao He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huixia Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jinhui Liao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yan Li
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Maria Palmisano
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Mohamed Dit Mady Traore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Kameyama T, Sodhi JK, Benet LZ. Does Addition of Protein to Hepatocyte or Microsomal In Vitro Incubations Provide a Useful Improvement in In Vitro-In Vivo Extrapolation Predictability? Drug Metab Dispos 2022; 50:401-412. [PMID: 35086847 PMCID: PMC11022888 DOI: 10.1124/dmd.121.000677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022] Open
Abstract
Accurate prediction of in vivo hepatic clearance is an essential part of successful and efficient drug development; however, many investigators have recognized that there are significant limitations in the predictability of clearance with a tendency for underprediction for primarily metabolized drugs. Here, we examine the impact of adding serum or albumin into hepatocyte and microsomal incubations on the predictability of in vivo hepatic clearance. The addition of protein into hepatocyte incubations has been reported to improve the predictability for high clearance (extraction ratio) drugs and highly protein-bound drugs. Analyzing published data for 60 different drugs and 97 experimental comparisons (with 17 drugs being investigated from two to seven) we confirmed the marked underprediction of clearance. However, we could not validate any relevant improved predictability within twofold by the addition of serum to hepatocyte incubations or albumin to microsomal incubations. This was the case when investigating all measurements, or when subdividing analyses by extraction ratio, degree of protein binding, Biopharmaceutics Drug Disposition Classification System class, examining Extended Clearance Classification System class 1B drugs only, or drug charge. Manipulating characteristics of small data sets of like compounds and adding scaling factors can appear to yield good predictability, but the carryover of these methods to alternate drug classes and different laboratories is not evident. Improvement in predictability of poorly soluble compounds is greater than that for soluble compounds, but not to a meaningful extent. Overall, we cannot confirm that protein addition improves in vitro-in vivo extrapolation predictability to any clinically meaningful degree when considering all drugs and different subsets. SIGNIFICANCE STATEMENT: The addition of protein into microsomal or hepatocyte incubations has been widely proposed to improve hepatic clearance predictions. To date, studies examining this phenomenon have not included appropriate negative controls where predictability is achieved without protein addition and have been conducted with small data sets of similar compounds that don't apply to alternate drug classes. Here, an extensive analysis of published data for 60 drugs and 97 experimental comparisons couldn't validate any relevant clinically improved clearance predictability with protein addition.
Collapse
Affiliation(s)
- Tsubasa Kameyama
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California
| | - Jasleen K Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
13
|
Ding N, Yamamoto S, Chisaki I, Nakayama M, Matsumoto SI, Hirabayashi H. Utility of Göttingen minipigs for the prediction of human pharmacokinetic profiles after intravenous drug administration. Drug Metab Pharmacokinet 2021; 41:100408. [PMID: 34710650 DOI: 10.1016/j.dmpk.2021.100408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022]
Abstract
Göttingen minipigs are increasingly used to evaluate the pharmacokinetic (PK) profiles of drug candidates. However, their accuracy in predicting human PK parameters is unclear. In this study, we investigated the utility of Göttingen minipigs for predicting human PK profiles. We evaluated the PK parameters of 30 compounds with diverse metabolic pathways after intravenous administration in minipigs. Human total clearance (CLtotal) was corrected using the blood to plasma ratio, and the volume of distribution at steady state (Vd(ss)) was corrected with plasma unbound fraction (fup). CLtotal and Vd(ss) were predicted using single-species allometric scaling using data from minipigs and other reported animal models (monkeys, human liver chimeric mice, and rats). The predicted values were compared with actual values reported in humans. Göttingen minipig were superior to rats because of their better predictability of Vd(ss) and CLtotal, as represented by lower absolute average fold error values. However, their predictability for Vd(ss) was inferior to monkey and human liver chimeric mice. Prediction of CLtotal from blood-based minipig data showed excellent correlation with human data, and comparable predictability with monkey and human liver chimeric mice. Thus, Göttingen minipigs can be used as an optional model for preclinical pharmaceutical research for predicting human CLtotal.
Collapse
Affiliation(s)
- Ning Ding
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan.
| | - Syunsuke Yamamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Ikumi Chisaki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Miyu Nakayama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Shin-Ichi Matsumoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Hideki Hirabayashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| |
Collapse
|
14
|
Long L, Tan X, Liu Z, Liu Y, Cao X, Shi C. Effects of Human Serum Albumin on the Fluorescence Intensity and Tumor Imaging Properties of IR-780 Dye. Photochem Photobiol 2021; 98:935-944. [PMID: 34687567 DOI: 10.1111/php.13547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/23/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
IR-780 is a lipophilic dye with excellent optical and tumor imaging properties for early tumor diagnostics. Although the mechanism of tumor targeting has not been fully identified, the view that serum albumin plays an important role in tumor accumulation has been recognized. Here, the mechanism of the interaction between IR-780 and HSA was studied to explore the effect of albumin on its tumor targeting properties. Data demonstrate that IR-780 can be tightly adsorbed by HSA at a ratio of 1:1 to form a noncovalent complex, which exhibits significant improvement in the near-infrared fluorescence imaging and tumor diagnosis capacity. During this process, the endogenous fluorescence and esterase activity of HSA are both partially inhibited by IR-780, and the α-helical content of HSA slightly increases. Molecular docking simulation displays that the binding site of IR-780 on HSA is between subdomains IIA and IIB. These results indicate that HSA is an important factor to mediate the optical performance of IR-780, giving it higher tumor diagnosis capability.
Collapse
Affiliation(s)
- Lei Long
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xu Tan
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zujuan Liu
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yunsheng Liu
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xiaohui Cao
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Chunmeng Shi
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
15
|
Zueva I, Lushchekina S, Shulnikova P, Lenina O, Petrov K, Molochkina E, Masson P. α-tocopherol, a slow-binding inhibitor of acetylcholinesterase. Chem Biol Interact 2021; 348:109646. [PMID: 34506764 DOI: 10.1016/j.cbi.2021.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/03/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022]
Abstract
Acetylcholinesterase (AChE) is reversibly inhibited by α-tocopherol (α-T). Steady state kinetic analysis shows that α-T is a mixed slow-binding inhibitor of type A of human enzyme (Kci = 0.49 μM; Kui = 1.6 μM) with a residence time of 2 min on target. Molecular dynamics (MD) simulations support this mechanism, and indicate that α-T first forms multiple non-specific interactions with AChE surface near the gorge entrance, then binds to the peripheral side with alkylene chain slowly sliding down the gorge, inducing no significant conformational change. α-T slightly modulates the progressive inhibition of AChE by the cyclic organophosphorus, cresyl saligenylphosphate, accelerating the fast pseudo-first order process of phosphorylation. A moderate accelerating effect of α-T on phosphorylation by paraoxon was also observed after pre-incubation of AChE in the presence of α-T. This accelerating effect of α-T on ex vivo paraoxon-induced diaphragm muscle weakness was also observed. The effect of α-T on AChE phosphylation was interpreted in light of molecular modeling results. From all results it is clear that α-T does not protect AChE against phosphylation by organophosphorus.
Collapse
Affiliation(s)
- Irina Zueva
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Sofya Lushchekina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str 4, Moscow, 119334, Russian Federation
| | - Polina Shulnikova
- Kazan Federal University, Neuropharmacology Laboratory, Kremlevskaya str 18, 480002, Kazan, Russian Federation
| | - Oksana Lenina
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Elena Molochkina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str 4, Moscow, 119334, Russian Federation
| | - Patrick Masson
- Kazan Federal University, Neuropharmacology Laboratory, Kremlevskaya str 18, 480002, Kazan, Russian Federation.
| |
Collapse
|
16
|
Gaohua L, Miao X, Dou L. Crosstalk of physiological pH and chemical pKa under the umbrella of physiologically based pharmacokinetic modeling of drug absorption, distribution, metabolism, excretion, and toxicity. Expert Opin Drug Metab Toxicol 2021; 17:1103-1124. [PMID: 34253134 DOI: 10.1080/17425255.2021.1951223] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Physiological pH and chemical pKa are two sides of the same coin in defining the ionization of a drug in the human body. The Henderson-Hasselbalch equation and pH-partition hypothesis form the theoretical base to define the impact of pH-pKa crosstalk on drug ionization and thence its absorption, distribution, metabolism, excretion, and toxicity (ADMET).Areas covered: Human physiological pH is not constant, but a diverse, dynamic state regulated by various biological mechanisms, while the chemical pKa is generally a constant defining the acidic dissociation of the drug at various environmental pH. Works on pH-pKa crosstalk are scattered in the literature, despite its significant contributions to drug pharmacokinetics, pharmacodynamics, safety, and toxicity. In particular, its impacts on drug ADMET have not been effectively linked to the physiologically based pharmacokinetic (PBPK) modeling and simulation, a powerful tool increasingly used in model-informed drug development (MIDD).Expert opinion: Lacking a full consideration of the interactions of physiological pH and chemical pKa in a PBPK model limits scientists' capability in mechanistically describing the drug ADMET. This mini-review compiled literature knowledge on pH-pKa crosstalk and its impacts on drug ADMET, from the viewpoint of PBPK modeling, to pave the way to a systematic incorporation of pH-pKa crosstalk into PBPK modeling and simulation.
Collapse
Affiliation(s)
- Lu Gaohua
- Research & Early Development, Princeton, New Jersey, USA
| | - Xiusheng Miao
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Liu Dou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Zandona A, Maraković N, Mišetić P, Madunić J, Miš K, Padovan J, Pirkmajer S, Katalinić M. Activation of (un)regulated cell death as a new perspective for bispyridinium and imidazolium oximes. Arch Toxicol 2021; 95:2737-2754. [PMID: 34173857 DOI: 10.1007/s00204-021-03098-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Oximes, investigated as antidotes against organophosphates (OP) poisoning, are known to display toxic effects on a cellular level, which could be explained beyond action on acetylcholinesterase as their main target. To investigate this further, we performed an in vitro cell-based evaluation of effects of two structurally diverse oxime groups at concentrations of up to 800 μM, on several cell models: skeletal muscle, kidney, liver, and neural cells. As indicated by our results, compounds with an imidazolium core induced necrosis, unregulated cell death characterized by a cell burst, increased formation of reactive oxygen species, and activation of antioxidant scavenging. On the other hand, oximes with a pyridinium core activated apoptosis through specific caspases 3, 8, and/or 9. Interestingly, some of the compounds exhibited a synergistic effect. Moreover, we generated a pharmacophore model for each oxime series and identified ligands from public databases that map to generated pharmacophores. Several interesting hits were obtained including chemotherapeutics and specific inhibitors. We were able to define the possible structural features of tested oximes triggering toxic effects: chlorine atoms in combination with but-2(E)-en-1,4-diyl linker and adding a second benzene ring with substituents such as chlorine and/or methyl on the imidazolium core. Such oximes could not be used in further OP antidote development research, but could be introduced in other research studies on new specific targets. This could undoubtedly result in an overall improved wider use of unexplored oxime database created so far in OP antidotes field of research in a completely new perspective.
Collapse
Affiliation(s)
- Antonio Zandona
- Institute for Medical Research and Occupational Health, POB 291, 10001, Zagreb, Croatia
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, POB 291, 10001, Zagreb, Croatia
| | | | - Josip Madunić
- Institute for Medical Research and Occupational Health, POB 291, 10001, Zagreb, Croatia
| | - Katarina Miš
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | | | - Sergej Pirkmajer
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, POB 291, 10001, Zagreb, Croatia.
| |
Collapse
|
18
|
Effective exposure of chemicals in in vitro cell systems: A review of chemical distribution models. Toxicol In Vitro 2021; 73:105133. [DOI: 10.1016/j.tiv.2021.105133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022]
|
19
|
Luo YS, Ferguson KC, Rusyn I, Chiu WA. In Vitro Bioavailability of the Hydrocarbon Fractions of Dimethyl Sulfoxide Extracts of Petroleum Substances. Toxicol Sci 2021; 174:168-177. [PMID: 32040194 DOI: 10.1093/toxsci/kfaa007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Determining the in vitro bioavailable concentration is a critical, yet unmet need to refine in vitro-to-in vivo extrapolation for unknown or variable composition, complex reaction product or biological material (UVCB) substances. UVCBs such as petroleum substances are commonly subjected to dimethyl sulfoxide (DMSO) extraction in order to retrieve the bioactive polycyclic aromatic compound (PAC) portion for in vitro testing. In addition to DMSO extraction, protein binding in cell culture media and dilution can all influence in vitro bioavailable concentrations of aliphatic and aromatic compounds in petroleum substances. However, these in vitro factors have not been fully characterized. In this study, we aimed to fill in these data gaps by characterizing the effects of these processes using both a defined mixture of analytical standards containing aliphatic and aromatic hydrocarbons, as well as 4 refined petroleum products as prototypical examples of UVCBs. Each substance was extracted with DMSO, and the protein binding in cell culture media was measured by using solid-phase microextraction. Semiquantitative analysis for aliphatic and aromatic compounds was achieved via gas chromatography-mass spectrometry. Our results showed that DMSO selectively extracted PACs from test substances, and that chemical profiles of PACs across molecular classes remained consistent after extraction. With respect to protein binding, chemical profiles were retained at a lower dilution (higher concentration), but a greater dilution factor (ie, lower concentration) resulted in higher protein binding in cell medium, which in turn altered the ultimate chemical profile of bioavailable PACs. Overall, this case study demonstrates that extraction procedures, protein binding in cell culture media, and dilution factors prior to in vitro testing can all contribute to determining the final bioavailable concentrations of bioactive constituents of UVCBs in vitro. Thus, in vitro-to-in vivo extrapolation for UVCBs may require greater attention to the concentration-dependent and compound-specific differences in recovery and bioavailability.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station
| | - Kyle C Ferguson
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station
| |
Collapse
|
20
|
Krause S, Goss KU. Could chemical exposure and bioconcentration in fish be affected by slow binding kinetics in blood? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:714-722. [PMID: 34037639 DOI: 10.1039/d1em00056j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The possible implications of slow binding kinetics on respiratory uptake, bioconcentration and exposure of chemicals were evaluated in the present study. Most physiological and chemical information needed for such an evaluation is already known from the literature or can be estimated. However, data for binding kinetics of chemicals in fish plasma have not been reported in the literature yet. In the first part of this study, we therefore experimentally investigated the plasma binding kinetics for ten chemicals, including pollutants like polycyclic aromatic hydrocarbons and a pesticide. The determined desorption rate constants were in the range of 0.4 s-1 to 0.1 s-1. In the second part of this study, we present a comparative modeling analysis of generic predictions with binding kinetics of different velocities. For doing so, a model that explicitly represents binding kinetics in blood was developed and applied for different hypothetical scenarios. The evaluation showed that slow sorption kinetics only limits respiratory uptake and thus influences the levels of bioaccumulation for extreme and, by that, rather unlikely parameter combinations (i.e. for strongly sorbing chemicals with very slow binding kinetics). It can therefore be assumed that limitations on respiratory uptake due to slow binding kinetics in blood are rather unlikely for most chemicals.
Collapse
Affiliation(s)
- Sophia Krause
- Helmholtz Centre for Environmental Research, Department of Analytical Environmental Chemistry, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Kai-Uwe Goss
- Helmholtz Centre for Environmental Research, Department of Analytical Environmental Chemistry, Permoserstr. 15, 04318 Leipzig, Germany. and University of Halle-Wittenberg, Institute of Chemistry, Kurt-Mothes-Str. 2, 06120 Halle, Germany
| |
Collapse
|
21
|
Yadav J, El Hassani M, Sodhi J, Lauschke VM, Hartman JH, Russell LE. Recent developments in in vitro and in vivo models for improved translation of preclinical pharmacokinetics and pharmacodynamics data. Drug Metab Rev 2021; 53:207-233. [PMID: 33989099 DOI: 10.1080/03602532.2021.1922435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Improved pharmacokinetics/pharmacodynamics (PK/PD) prediction in the early stages of drug development is essential to inform lead optimization strategies and reduce attrition rates. Recently, there have been significant advancements in the development of new in vitro and in vivo strategies to better characterize pharmacokinetic properties and efficacy of drug leads. Herein, we review advances in experimental and mathematical models for clearance predictions, advancements in developing novel tools to capture slowly metabolized drugs, in vivo model developments to capture human etiology for supporting drug development, limitations and gaps in these efforts, and a perspective on the future in the field.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Boston, MA, USA
| | | | - Jasleen Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica H Hartman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
22
|
Abdel-Tawab M. Considerations to Be Taken When Carrying Out Medicinal Plant Research-What We Learn from an Insight into the IC 50 Values, Bioavailability and Clinical Efficacy of Exemplary Anti-Inflammatory Herbal Components. Pharmaceuticals (Basel) 2021; 14:437. [PMID: 34066427 PMCID: PMC8148151 DOI: 10.3390/ph14050437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Medicinal plants represent a big reservoir for discovering new drugs against all kinds of diseases including inflammation. In spite the large number of promising anti-inflammatory plant extracts and isolated components, research on medicinal plants proves to be very difficult. Based on that background this review aims to provide a summarized insight into the hitherto known pharmacologically active concentrations, bioavailability, and clinical efficacy of boswellic acids, curcumin, quercetin and resveratrol. These examples have in common that the achieved plasma concentrations were found to be often far below the determined IC50 values in vitro. On the other hand demonstrated therapeutic effects suggest a necessity of rethinking our pharmacokinetic understanding. In this light this review discusses the value of plasma levels as pharmacokinetic surrogates in comparison to the more informative value of tissue concentrations. Furthermore the need for new methodological approaches is addressed like the application of combinatorial approaches for identifying and pharmacokinetic investigations of active multi-components. Also the physiological relevance of exemplary in vitro assays and absorption studies in cell-line based models is discussed. All these topics should be ideally considered to avoid inaccurate predictions for the efficacy of herbal components in vivo and to unlock the "black box" of herbal mixtures.
Collapse
Affiliation(s)
- Mona Abdel-Tawab
- Central Laboratory of German Pharmacists, Carl-Mannich-Str. 20, 65760 Eschborn, Germany; ; Tel.: +49-6196-937-955
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
23
|
Poulin P, Haddad S. A New Guidance for the Prediction of Hepatic Clearance in the Early Drug Discovery and Development from the in Vitro-to-in Vivo Extrapolation Method and an Approach for Exploring Whether an Albumin-Mediated Hepatic Uptake Phenomenon Could be Present Under in Vivo Conditions. J Pharm Sci 2021; 110:2841-2858. [PMID: 33857483 DOI: 10.1016/j.xphs.2021.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 11/18/2022]
Abstract
The in vitro-to-in vivo extrapolation (IVIVE) methods for predicting the hepatic clearance (CL) of drugs based on microsomal or hepatocyte data have certainly advanced; however, there is still place for improving the extrapolations from in vitro assays containing no plasma proteins. Accordingly, there is a discussion on whether the free drug hypothesis or an albumin (ALB)-mediated hepatic uptake phenomenon is the best scaling method. Therefore, the objectives of this study were to guide the prediction of CL and to diagnose which scaling method between the free drug hypothesis and ALB-mediated uptake could be more accurate; this, irrespective of the mechanism(s) governing CL if the drugs can get to the hepatocyte membrane. The analysis of several datasets demonstrated that almost all values of CL in vivo fall within the two calculated values of CL use as boundaries from: 1) the free drug hypothesis, and 2) ALB-mediated uptake. The average value from these two CL boundaries predicted the CL in vivo with an incredible accuracy. Validating these boundaries in preclinical species prior going to human as well as considering the fractional binding in plasma increased the accuracy. Overall, this study is another step towards guiding the CL prediction in drug discovery and development.
Collapse
Affiliation(s)
- Patrick Poulin
- Consultant Patrick Poulin Inc., Québec City, Québec, Canada; School of Public Health, Université de Montréal, Montréal, Québec, Canada.
| | - Sami Haddad
- School of Public Health, Université de Montréal, Montréal, Québec, Canada; Centre de Recherche en Santé Publique (CReSP), Montréal, Québec, Canada
| |
Collapse
|
24
|
Izat N, Sahin S. Hepatic transporter-mediated pharmacokinetic drug-drug interactions: Recent studies and regulatory recommendations. Biopharm Drug Dispos 2021; 42:45-77. [PMID: 33507532 DOI: 10.1002/bdd.2262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Transporter-mediated drug-drug interactions are one of the major mechanisms in pharmacokinetic-based drug interactions and correspondingly affecting drugs' safety and efficacy. Regulatory bodies underlined the importance of the evaluation of transporter-mediated interactions as a part of the drug development process. The liver is responsible for the elimination of a wide range of endogenous and exogenous compounds via metabolism and biliary excretion. Therefore, hepatic uptake transporters, expressed on the sinusoidal membranes of hepatocytes, and efflux transporters mediating the transport from hepatocytes to the bile are determinant factors for pharmacokinetics of drugs, and hence, drug-drug interactions. In parallel with the growing research interest in this area, regulatory guidances have been updated with detailed assay models and criteria. According to well-established preclinical results, observed or expected hepatic transporter-mediated drug-drug interactions can be taken into account for clinical studies. In this paper, various methods including in vitro, in situ, in vivo, in silico approaches, and combinational concepts and several clinical studies on the assessment of transporter-mediated drug-drug interactions were reviewed. Informative and effective evaluation by preclinical tools together with the integration of pharmacokinetic modeling and simulation can reduce unexpected clinical outcomes and enhance the success rate in drug development.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
25
|
A Novel Experimental and Theoretical Method for Estimating Albumin-Mediated Hepatic Uptake Based on the Albumin Binding Fraction in Plasma and Human PK Prediction Using a Physiologically-Based Pharmacokinetic Approach. J Pharm Sci 2021; 110:2262-2273. [PMID: 33476657 DOI: 10.1016/j.xphs.2021.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/15/2023]
Abstract
Recently, protein-facilitated uptake has been suggested to be an important factor in the precise prediction of the pharmacokinetic (PK) profiles of drugs. In our previous study, a physiologically-based pharmacokinetic (PBPK) approach considering the mechanism of albumin-mediated hepatic uptake was developed for predicting human PK profiles. It was assumed that drugs affected by albumin-mediated hepatic uptake would bind only to albumin, which means that there would be over-estimation of the contribution of protein-facilitated uptake for a drug that could bind to multiple proteins. In this study, we developed a method that can evaluate the albumin binding fraction in plasma considering the affinity for other proteins. Based on the albumin binding fraction, the contribution of albumin-mediated hepatic uptake was theoretically estimated, and then the human PK profiles were predicted by our proposed PBPK approach incorporating this mechanism. As a result, the predicted human PK profiles agreed well with the observed ones, and the absolute average fold error of PK parameters was almost within a 1.5-fold error on average. These findings show the importance of considering protein-facilitated uptake and also suggest that our proposed PBPK approach can be useful in scientific discussions with regulatory authorities.
Collapse
|
26
|
Naresh P, Selvaraj A, Shyam Sundar P, Murugesan S, Sathianarayanan S, Namboori P K K, Jubie S. Targeting a conserved pocket (n-octyl-β-D-glucoside) on the dengue virus envelope protein by small bioactive molecule inhibitors. J Biomol Struct Dyn 2020; 40:4866-4878. [PMID: 33345726 DOI: 10.1080/07391102.2020.1862707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dengue virus enters the cell by receptor-mediated endocytosis followed by a viral envelope (DENVE) protein-mediated membrane fusion. A small detergent molecule n-octyl-β-D-glucoside (βOG) occupies the hydrophobic pocket which is located in the hinge region plays a major role in the rearrangement. It has been reported that mutations occurred in this binding pocket lead to the alterations of pH threshold for fusion. In addition to this event, the protonation of histidine residues present in the hydrophobic pocket would also impart the conformational change of the E protein evidence this pocket as a promising target. The present study identified novel cinnamic acid analogs as significant blockers of the hydrophobic pocket through molecular modeling studies against DENVE. A library of seventy-two analogs of cinnamic acid was undertaken for the discovery process of DENV inhibitors. A Molecular docking study was used to analyze the binding mechanism between these compounds and DENV followed by ADMET prediction. Binding energies were predicted by the MMGBSA study. The Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. The compounds CA and SCA derivatives have been tested against HSV-1 & 2 viruses. From the computational results, the compounds CA1, CA2, SCA 60, SCA 57, SCA 37, SCA 58, and SCA 14 exhibited favorable interaction energy. The compounds have in-vitro antiviral activity; the results clearly indicate that the compounds showed the activity against both the viruses (HSV-1 & HSV-2). Our study provides valuable information on the discovery of small molecules DENVE inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- P Naresh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| | - A Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| | - P Shyam Sundar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| | - S Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, BITS Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, India
| | - S Sathianarayanan
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Ponekkara, Kochi, Kerala, India
| | - Krishnan Namboori P K
- Amrita Molecular Modeling and Synthesis (AMMAS) Research Lab, Amrita Vishwavidyapeetham, Coimbatore, Tamilnadu, India
| | - S Jubie
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| |
Collapse
|
27
|
Comparative Assessment of Extrapolation Methods Based on the Conventional Free Drug Hypothesis and Plasma Protein-Mediated Hepatic Uptake Theory for the Hepatic Clearance Predictions of Two Drugs Extensively Bound to Both the Albumin And Alpha-1-Acid Glycoprotein. J Pharm Sci 2020; 110:1385-1391. [PMID: 33217427 DOI: 10.1016/j.xphs.2020.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022]
Abstract
Bteich and coworkers recently demonstrated in a companion manuscript (J Pharm Sci 109: https://doi.org/10.1016/j.xphs.2020.07.003) that a protein-mediated hepatic uptake have occurred in an isolated perfused rat liver (IPRL) model for two drugs (Perampanel; PER and Fluoxetine; FLU) that bind extensively to the albumin (ALB) and alpha-1-acid glycoprotein (AGP). However, to our knowledge, there is no quantitative model available to predict the impact of a plasma protein-mediated hepatic uptake on the extent of hepatic clearance (CLh) for a drug binding extensively to these two proteins. Therefore, the main objective was to predict the corresponding CLh, which is an extension of the companion manuscript. The method consisted of extrapolating the intrinsic clearance from the unbound fraction measured in the perfusate or the unbound fraction extrapolated to the surface of the hepatocyte membrane by adapting an existing model of protein-mediated hepatic uptake (i.e., the fup-adjusted model) to include a binding ratio between the ALB and AGP. This new approach showed a relevant improvement compared to the free drug hypothesis particularly for FLU that showed the highest degree of ALB-mediated uptake. Overall, this study is a first step towards the development of predictive methods of CLh by considering the binding to ALB and AGP.
Collapse
|
28
|
Li N, Badrinarayanan A, Ishida K, Li X, Roberts J, Wang S, Hayashi M, Gupta A. Albumin-Mediated Uptake Improves Human Clearance Prediction for Hepatic Uptake Transporter Substrates Aiding a Mechanistic In Vitro-In Vivo Extrapolation (IVIVE) Strategy in Discovery Research. AAPS JOURNAL 2020; 23:1. [DOI: 10.1208/s12248-020-00528-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/16/2020] [Indexed: 01/09/2023]
|
29
|
Bi YA, Ryu S, Tess DA, Rodrigues AD, Varma MVS. Effect of Human Plasma on Hepatic Uptake of Organic Anion–Transporting Polypeptide 1B Substrates: Studies Using Transfected Cells and Primary Human Hepatocytes. Drug Metab Dispos 2020; 49:72-83. [DOI: 10.1124/dmd.120.000134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022] Open
|
30
|
Impact of Extensive Plasma Protein Binding on the In Situ Hepatic Uptake and Clearance of Perampanel and Fluoxetine in Sprague Dawley Rats. J Pharm Sci 2020; 109:3190-3205. [DOI: 10.1016/j.xphs.2020.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022]
|
31
|
Jubie S, Durai U, Latha S, Ayyamperumal S, Wadhwani A, Prabha T. Repurposing of Benzimidazole Scaffolds for HER2 Positive Breast Cancer Therapy: An In-Silico Approach. Curr Drug Res Rev 2020; 13:73-83. [PMID: 32955008 DOI: 10.2174/2589977512999200821170221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/06/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND A newer trend has been seen recently to reuse the conventional drugs with distinct indications for the newer applications to speed up the drug discovery and development based on earlier records and safety data. Most of the non-cancerous agents could afford a little or tolerable side effects in individuals. However, the repositioning of these non-cancerous agents for successful anticancer therapy is an outstanding strategy for future anti-cancer drug development. Since more diverse and selective cancer drug targets are being discovered and developed, the approved drug collections are particularly useful to quickly identify clinically advanced anticancer drugs against those targets. OBJECTIVE Antihelminthic drugs such as Mebendazole and Albendazole (Benzimidazole class) have been reported to exhibit cytotoxicity (or anticancer activities) against several types of cancer. Therefore, this study aims to repurpose the benzimidazole scaffold for breast cancer treatment. METHODS In the present study, three hydrazone analogs having a benzimidazole motif in their structural frame were synthesized. Their in-silico binding studies against HER2 receptor (PDB ID: 4LQM) and ADMET studies were carried out using Accelrys drug discovery studio 4.1. Cytotoxicity of the synthesized compounds against HER2 overexpressed MCF-7 cell lines was determined by MTT assay. RESULTS One of the compounds 2-[2-(2,4-dinitrophenyl)hydrazinylidene]-2,3-dihydro-1H-benzimidazole (U1) has shown good cytotoxicity when compared to the standard Lapatinib, which is a well known HER2 inhibitor. CONCLUSIONS Thus, the designed benzimidazole scaffold might serve as the best leads for treating breast cancer, which is additionally confirmed by performing their docking study via Accelrys discovery studio.
Collapse
Affiliation(s)
- Selvaraj Jubie
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Researchooty, Nilgiris, Ooty-643001, Tamilnadu, India
| | - Uma Durai
- Department of Chemistry, PSG College of Arts & Science, Avinasi Road, Coimbatore- 641 014, Tamilnadu, India
| | - Subbiah Latha
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli, Tamilnadu, India
| | - Selvaraj Ayyamperumal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Researchooty, Nilgiris, Ooty-643001, Tamilnadu, India
| | - Ashish Wadhwani
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Researchooty, Nilgiris, Ooty-643001, Tamilnadu, India
| | - Thangavelu Prabha
- Department of Pharmaceutical Chemistry, Nandha College of Pharmacy, Affiliated to The Tamilnadu Dr. MGR. Medical University-Chennai, Erode-638052, Tamilnadu, India
| |
Collapse
|
32
|
Laue H, Hostettler L, Badertscher RP, Jenner KJ, Sanders G, Arnot JA, Natsch A. Examining Uncertainty in In Vitro-In Vivo Extrapolation Applied in Fish Bioconcentration Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9483-9494. [PMID: 32633948 DOI: 10.1021/acs.est.0c01492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In vitro biotransformation rates were determined for 30 chemicals, mostly fragrance ingredients, using trout liver S9 fractions (RT-S9) and incorporated into in vitro-in vivo extrapolation (IVIVE) models to predict bioconcentration factors (BCFs). Predicted BCFs were compared against empirical BCFs to explore potential major uncertainties involved in the in vitro methods and IVIVE models: (i) in vitro chemical test concentrations; (ii) different gill uptake rate constant calculations (k1); (iii) protein binding (different calculations and measurement of the fraction of unbound chemical, fU); (iv) species differences; and (v) extrahepatic biotransformation. Predicted BCFs were within 0.5 log units for 44% of the chemicals compared to empirical BCFs, whereas 56% were overpredicted by >0.5 log units. This trend of overprediction was reduced by alternative k1 calculations to 32% of chemicals being overpredicted. Moreover, hepatic in vitro rates scaled to whole body biotransformation rates (kB) were compared against in vivo kB estimates. In vivo kB was underestimated for 79% of the chemicals. Neither lowering the test concentration, nor incorporation of new measured fU values, nor species matching avoided the tendency to overpredict BCFs indicating that further improvements to the IVIVE models are needed or extrahepatic biotransformation plays an underestimated role.
Collapse
Affiliation(s)
- Heike Laue
- Givaudan Schweiz AG, Fragrances S&T, 8310 Kemptthal, Switzerland
| | - Lu Hostettler
- Givaudan Schweiz AG, Fragrances S&T, 8310 Kemptthal, Switzerland
| | | | - Karen J Jenner
- Givaudan UK Ltd, Regulatory Affairs and Product Safety, Ashford, Kent TN24 OLT, United Kingdom
| | - Gordon Sanders
- Givaudan International SA, Regulatory Affairs and Product Safety, 1214 Vernier, Switzerland
| | - Jon A Arnot
- ARC Arnot Research and Consulting, Toronto, Ontario M4M 1W4, Canada
| | - Andreas Natsch
- Givaudan Schweiz AG, Fragrances S&T, 8310 Kemptthal, Switzerland
| |
Collapse
|
33
|
Kwon JH, Lee HJ, Escher BI. Bioavailability of hydrophobic organic chemicals on an in vitro metabolic transformation using rat liver S9 fraction. Toxicol In Vitro 2020; 66:104835. [DOI: 10.1016/j.tiv.2020.104835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/07/2020] [Accepted: 03/22/2020] [Indexed: 10/24/2022]
|
34
|
Schneider D, Oskamp A, Holschbach M, Neumaier B, Bier D, Bauer A. Influence of binding affinity and blood plasma level on cerebral pharmacokinetics and PET imaging characteristics of two novel xanthine PET radioligands for the A1 adenosine receptor. Nucl Med Biol 2020; 82-83:1-8. [DOI: 10.1016/j.nucmedbio.2019.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/16/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022]
|
35
|
Yang Y, Shi CY, Xie J, Dai JH, He SL, Tian Y. Identification of Potential Dipeptidyl Peptidase (DPP)-IV Inhibitors among Moringa oleifera Phytochemicals by Virtual Screening, Molecular Docking Analysis, ADME/T-Based Prediction, and In Vitro Analyses. Molecules 2020; 25:molecules25010189. [PMID: 31906524 PMCID: PMC6983023 DOI: 10.3390/molecules25010189] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022] Open
Abstract
Moringa oleifera Lam. (MO) is called the “Miracle Tree” because of its extensive pharmacological activity. In addition to being an important food, it has also been used for a long time in traditional medicine in Asia for the treatment of chronic diseases such as diabetes and obesity. In this study, by constructing a library of MO phytochemical structures and using Discovery Studio software, compounds were subjected to virtual screening and molecular docking experiments related to their inhibition of dipeptidyl peptidase (DPP-IV), an important target for the treatment of type 2 diabetes. After the four-step screening process, involving screening for drug-like compounds, predicting the absorption, distribution, metabolism, excretion, and toxicity (ADME/T) of pharmacokinetic properties, LibDock heatmap matching analysis, and CDOCKER molecular docking analysis, three MO components that were candidate DPP-IV inhibitors were identified and their docking modes were analyzed. In vitro activity verification showed that all three MO components had certain DPP-IV inhibitory activities, of which O-Ethyl-4-[(α-l-rhamnosyloxy)-benzyl] carbamate (compound 1) had the highest activity (half-maximal inhibitory concentration [IC50] = 798 nM). This study provides a reference for exploring the molecular mechanisms underlying the anti-diabetic activity of MO. The obtained DPP-IV inhibitors could be used for structural optimization and in-depth in vivo evaluation.
Collapse
Affiliation(s)
- Yang Yang
- College of Science, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Biomass Big Data, Yunnan Agricultural University, Kunming 650201, China;
| | - Chong-Yin Shi
- Institute of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.-Y.S.); (J.-H.D.)
| | - Jing Xie
- Yunnan Key Laboratory of Biomass Big Data, Yunnan Agricultural University, Kunming 650201, China;
| | - Jia-He Dai
- Institute of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.-Y.S.); (J.-H.D.)
| | - Shui-Lian He
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (S.-L.H.); (Y.T.)
| | - Yang Tian
- Yunnan Key Laboratory of Biomass Big Data, Yunnan Agricultural University, Kunming 650201, China;
- Institute of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.-Y.S.); (J.-H.D.)
- Correspondence: (S.-L.H.); (Y.T.)
| |
Collapse
|
36
|
Bowman CM, Chen E, Chen L, Chen YC, Liang X, Wright M, Chen Y, Mao J. Changes in Organic Anion Transporting Polypeptide Uptake in HEK293 Overexpressing Cells in the Presence and Absence of Human Plasma. Drug Metab Dispos 2019; 48:18-24. [DOI: 10.1124/dmd.119.088948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
|
37
|
Wang HJ, Benet LZ. Protein Binding and Hepatic Clearance: Re-Examining the Discrimination between Models of Hepatic Clearance with Diazepam in the Isolated Perfused Rat Liver Preparation. Drug Metab Dispos 2019; 47:1397-1402. [PMID: 31563869 DOI: 10.1124/dmd.119.088872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
This study re-examined the hepatic extraction for diazepam, the only drug for which isolated perfused rat liver (IPRL) studies have been reported not to be consistent with the well stirred model of organ elimination when only entering and exiting liver concentration measurements are available. First, the time dependency of diazepam equilibrium fraction unbound measurements from 4 to 24 hours was tested, reporting the continuing increases with time. The results showed that the time dependency of equilibrium protein-binding measurements for very highly bound drugs may be an issue that is not readily overcome. When examining C out/C in (F obs) measurements for diazepam when no protein is added to the incubation media, IPRL outcomes were consistent with previous reports showing marked underpredictability of in vivo clearance from in vitro measures of elimination in the absence of protein for very highly bound drugs, which is markedly diminished in the presence of albumin. F obs for diazepam at additional low concentrations of protein that would allow discrimination of the models of hepatic elimination produced results that were not consistent with the dispersion and parallel-tube models. Therefore, although the outcomes of this study were similar to those reported by Rowland and co-workers, when no protein is added to the perfusion media, these IPRL results for diazepam cannot be reasonably interpreted as proving that hepatic organ elimination is model-independent or as supporting the dispersion and parallel-tube models of organ elimination. SIGNIFICANCE STATEMENT: The only drug experiments for which isolated perfusion rat liver studies do not support hepatic clearance being best described by the well stirred model have been carried out with diazepam at zero protein concentration. This study repeated those studies, confirming the previous results at zero protein concentration, but the addition of low protein-binding conditions capable of differentiating the various models of hepatic elimination are more consistent with the well stirred model of hepatic elimination. These experimental studies do not support the preference for alternate models of hepatic elimination or the proposal that hepatic organ clearance is model-independent.
Collapse
Affiliation(s)
- Hong-Jaan Wang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan (H.-J.W.), and Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (L.Z.B.)
| | - Leslie Z Benet
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan (H.-J.W.), and Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (L.Z.B.)
| |
Collapse
|
38
|
Bteich M, Poulin P, Haddad S. The potential protein-mediated hepatic uptake: discussion on the molecular interactions between albumin and the hepatocyte cell surface and their implications for the in vitro-to-in vivo extrapolations of hepatic clearance of drugs. Expert Opin Drug Metab Toxicol 2019; 15:633-658. [DOI: 10.1080/17425255.2019.1640679] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Michel Bteich
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada
| | - Patrick Poulin
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada
- Consultant Patrick Poulin Inc., Québec city, Canada
| | - Sami Haddad
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Zhang D, Hop CECA, Patilea-Vrana G, Gampa G, Seneviratne HK, Unadkat JD, Kenny JR, Nagapudi K, Di L, Zhou L, Zak M, Wright MR, Bumpus NN, Zang R, Liu X, Lai Y, Khojasteh SC. Drug Concentration Asymmetry in Tissues and Plasma for Small Molecule-Related Therapeutic Modalities. Drug Metab Dispos 2019; 47:1122-1135. [PMID: 31266753 DOI: 10.1124/dmd.119.086744] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
The well accepted "free drug hypothesis" for small-molecule drugs assumes that only the free (unbound) drug concentration at the therapeutic target can elicit a pharmacologic effect. Unbound (free) drug concentrations in plasma are readily measurable and are often used as surrogates for the drug concentrations at the site of pharmacologic action in pharmacokinetic-pharmacodynamic analysis and clinical dose projection in drug discovery. Furthermore, for permeable compounds at pharmacokinetic steady state, the free drug concentration in tissue is likely a close approximation of that in plasma; however, several factors can create and maintain disequilibrium between the free drug concentration in plasma and tissue, leading to free drug concentration asymmetry. These factors include drug uptake and extrusion mechanisms involving the uptake and efflux drug transporters, intracellular biotransformation of prodrugs, membrane receptor-mediated uptake of antibody-drug conjugates, pH gradients, unique distribution properties (covalent binders, nanoparticles), and local drug delivery (e.g., inhalation). The impact of these factors on the free drug concentrations in tissues can be represented by K p,uu, the ratio of free drug concentration between tissue and plasma at steady state. This review focuses on situations in which free drug concentrations in tissues may differ from those in plasma (e.g., K p,uu > or <1) and discusses the limitations of the surrogate approach of using plasma-free drug concentration to predict free drug concentrations in tissue. This is an important consideration for novel therapeutic modalities since systemic exposure as a driver of pharmacologic effects may provide limited value in guiding compound optimization, selection, and advancement. Ultimately, a deeper understanding of the relationship between free drug concentrations in plasma and tissues is needed.
Collapse
Affiliation(s)
- Donglu Zhang
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Cornelis E C A Hop
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Gabriela Patilea-Vrana
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Gautham Gampa
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Herana Kamal Seneviratne
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Jashvant D Unadkat
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Jane R Kenny
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Karthik Nagapudi
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Li Di
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Lian Zhou
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Mark Zak
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Matthew R Wright
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Namandjé N Bumpus
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Richard Zang
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Xingrong Liu
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Yurong Lai
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - S Cyrus Khojasteh
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| |
Collapse
|
40
|
Bowman CM, Okochi H, Benet LZ. The Presence of a Transporter-Induced Protein Binding Shift: A New Explanation for Protein-Facilitated Uptake and Improvement for In Vitro-In Vivo Extrapolation. Drug Metab Dispos 2019; 47:358-363. [PMID: 30674616 DOI: 10.1124/dmd.118.085779] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Accurately predicting hepatic clearance is an integral part of the drug-development process, and yet current in vitro to in vivo (IVIVE) extrapolation methods yield poor predictions, particularly for highly protein-bound transporter substrates. Explanations for error include inaccuracies in protein-binding measurements and the lack of recognition of protein-facilitated uptake, where both unbound and bound drug may be cleared, violating the principles of the widely accepted free drug theory. A new explanation for protein-facilitated uptake is proposed here, called a transporter-induced protein binding shift High-affinity binding to cell-membrane proteins may change the equilibrium of the nonspecific binding between drugs and plasma proteins, leading to greater cellular uptake and clearance than currently predicted. The uptake of two lower protein-binding organic anion transporting polypeptide substrates (pravastatin and rosuvastatin) and two higher binding substrates (atorvastatin and pitavastatin) were measured in rat hepatocytes in incubations with protein-free buffer versus 100% plasma. Decreased unbound K m values and increased intrinsic clearance values were seen in the plasma incubations for the highly bound compounds, supporting the new hypothesis and mitigating the IVIVE underprediction previously seen for highly bound transporter substrates.
Collapse
Affiliation(s)
- Christine M Bowman
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Hideaki Okochi
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| |
Collapse
|
41
|
Baecker D, Obermoser V, Kirchner EA, Hupfauf A, Kircher B, Gust R. Fluorination as tool to improve bioanalytical sensitivity and COX-2-selective antitumor activity of cobalt alkyne complexes. Dalton Trans 2019; 48:15856-15868. [DOI: 10.1039/c9dt03330k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fluorination of the lead Co-ASS yielded antitumor active cobalt alkyne complexes that exhibited both improved COX-2 selectivity and better bioanalytical sensitivity.
Collapse
Affiliation(s)
- Daniel Baecker
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| | - Victoria Obermoser
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| | - Elisabeth Anna Kirchner
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| | - Andrea Hupfauf
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| | - Brigitte Kircher
- Immunobiology and Stem Cell Laboratory
- Department of Internal Medicine V (Hematology and Oncology)
- Innsbruck Medical University
- 6020 Innsbruck
- Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| |
Collapse
|
42
|
Fujino R, Hashizume K, Aoyama S, Maeda K, Ito K, Toshimoto K, Lee W, Ninomiya SI, Sugiyama Y. Strategies to improve the prediction accuracy of hepatic intrinsic clearance of three antidiabetic drugs: Application of the extended clearance concept and consideration of the effect of albumin on CYP2C metabolism and OATP1B-mediated hepatic uptake. Eur J Pharm Sci 2018; 125:181-192. [DOI: 10.1016/j.ejps.2018.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/03/2018] [Accepted: 09/28/2018] [Indexed: 01/20/2023]
|
43
|
Kim SJ, Lee KR, Miyauchi S, Sugiyama Y. Extrapolation of In Vivo Hepatic Clearance from In Vitro Uptake Clearance by Suspended Human Hepatocytes for Anionic Drugs with High Binding to Human Albumin: Improvement of In Vitro-to-In Vivo Extrapolation by Considering the “Albumin-Mediated” Hepatic Uptake Mechanism on the Basis of the “Facilitated-Dissociation Model”. Drug Metab Dispos 2018; 47:94-103. [DOI: 10.1124/dmd.118.083733] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
|
44
|
Bowman CM, Benet LZ. An examination of protein binding and protein-facilitated uptake relating to in vitro-in vivo extrapolation. Eur J Pharm Sci 2018; 123:502-514. [PMID: 30098391 DOI: 10.1016/j.ejps.2018.08.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 01/09/2023]
Abstract
As explained by the free drug theory, the unbound fraction of drug has long been thought to drive the efficacy of a molecule. Thus, the fraction unbound term, or fu, appears in equations for fundamental pharmacokinetic parameters such as clearance, and is used when attempting in vitro to in vivo extrapolation (IVIVE). In recent years though, it has been noted that IVIVE does not always yield accurate predictions, and that some highly protein bound ligands have more efficient uptake than can be explained by their unbound fractions. This review explores the evolution of fu terms included when implementing IVIVE, the concept of protein-facilitated uptake, and the mechanisms that have been proposed to account for facilitated uptake.
Collapse
Affiliation(s)
- C M Bowman
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - L Z Benet
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
45
|
Fischer FC, Abele C, Droge STJ, Henneberger L, König M, Schlichting R, Scholz S, Escher BI. Cellular Uptake Kinetics of Neutral and Charged Chemicals in in Vitro Assays Measured by Fluorescence Microscopy. Chem Res Toxicol 2018; 31:646-657. [PMID: 29939727 DOI: 10.1021/acs.chemrestox.8b00019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cellular uptake kinetics are key for understanding time-dependent chemical exposure in in vitro cell assays. Slow cellular uptake kinetics in relation to the total exposure time can considerably reduce the biologically effective dose. In this study, fluorescence microscopy combined with automated image analysis was applied for time-resolved quantification of cellular uptake of 10 neutral, anionic, cationic, and zwitterionic fluorophores in two reporter gene assays. The chemical fluorescence in the medium remained relatively constant during the 24-h assay duration, emphasizing that the proteins and lipids in the fetal bovine serum (FBS) supplemented to the assay medium represent a large reservoir of reversibly bound chemicals with the potential to compensate for chemical depletion by cell uptake, growth, and sorption to well materials. Hence FBS plays a role in stabilizing the cellular dose in a similar way as polymer-based passive dosing, here we term this process as serum-mediated passive dosing (SMPD). Neutral chemicals accumulated in the cells up to 12 times faster than charged chemicals. Increasing medium FBS concentrations accelerated uptake due to FBS-facilitated transport but led to lower cellular concentrations as a result of increased sorption to medium proteins and lipids. In vitro cell exposure results from the interaction of several extra- and intracellular processes, leading to variable and time-dependent exposure between different chemicals and assay setups. The medium FBS plays a crucial role for the thermodynamic equilibria as well as for the cellular uptake kinetics, hence influencing exposure. However, quantification of cellular exposure by an area under the curve (AUC) analysis illustrated that, for the evaluated bioassay setup, current in vitro exposure models that assume instantaneous equilibrium between medium and cells still reflect a realistic exposure because the AUC was typically reduced less than 20% compared to the cellular dose that would result from instantaneous equilibrium.
Collapse
Affiliation(s)
- Fabian C Fischer
- Department of Cell Toxicology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Cedric Abele
- Department of Cell Toxicology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Steven T J Droge
- Institute for Biodiversity and Ecosystem Dynamics , University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , Netherlands
| | - Luise Henneberger
- Department of Cell Toxicology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Maria König
- Department of Cell Toxicology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Rita Schlichting
- Department of Cell Toxicology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Beate I Escher
- Department of Cell Toxicology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany.,Environmental Toxicology, Centre for Applied Geoscience , Eberhard Karls University Tübingen , 72074 Tübingen , Germany
| |
Collapse
|
46
|
Poulin P, Haddad S. Extrapolation of the Hepatic Clearance of Drugs in the Absence of Albumin In Vitro to That in the Presence of Albumin In Vivo : Comparative Assessement of 2 Extrapolation Models Based on the Albumin-Mediated Hepatic Uptake Theory and Limitations and Mechanistic Insights. J Pharm Sci 2018; 107:1791-1797. [DOI: 10.1016/j.xphs.2018.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/27/2018] [Accepted: 03/14/2018] [Indexed: 01/12/2023]
|
47
|
Da-Silva F, Boulenc X, Vermet H, Compigne P, Gerbal-Chaloin S, Daujat-Chavanieu M, Klieber S, Poulin P. Improving Prediction of Metabolic Clearance Using Quantitative Extrapolation of Results Obtained From Human Hepatic Micropatterned Cocultures Model and by Considering the Impact of Albumin Binding. J Pharm Sci 2018. [PMID: 29524447 DOI: 10.1016/j.xphs.2018.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The objective was to compare, with the same data set, the predictive performance of 3 in vitro assays of hepatic clearance (CL), namely, micropatterned cocultures (also referring to HepatoPac®) and suspension as well as monolayer hepatocytes to define which assay is the most accurate. Furthermore, existing in vitro-to-in vivo extrapolation (IVIVE) methods were challenged to verify which method is the most predictive (i.e., direct scaling method without binding correction, conventional method based either on the unbound fraction in plasma (fup) according to the free-drug hypothesis, or based on an fup value adjusted for the albumin [ALB]-facilitated hepatic uptake phenomenon). Accordingly, the role of ALB binding was specifically challenged, and consequently, the ALB production was monitored in parallel to the metabolic stability. The ALB concentration data were used to compare the in vitro assays and to adjust the value of fup of each drug to mimic the ALB-facilitated hepatic uptake phenomenon. The results confirmed that the direct and conventional IVIVE methods generally overpredicted and underpredicted the CL in vivo in humans, respectively. However, the underprediction of the conventional IVIVE method based on fup was significantly reduced from data generated with the HepatoPac® system compared with the 2 other in vitro assays, which is possibly because that system is producing ALB at a rate much closer to the in vivo condition in liver. Hence, these observations suggest that the presence of more ALB molecules per hepatocyte in that HepatoPac® system may have facilitated the hepatic uptake of several bound drugs because their intrinsic CL was increased instead of being decreased by the ALB binding effect. Accordingly, the IVIVE method based on the fup value adjusted for the ALB-facilitated uptake phenomenon gave the lowest prediction bias from the statistical analyses. This study indicated that the HepatoPac® system combined with the adjusted value of fup was the most reliable IVIVE method and revealed the importance of quantifying the in vitro-to-in vivo variation of ALB concentration to improve the CL predictions, which would help any future physiologically based pharmacokinetics modeling exercise.
Collapse
Affiliation(s)
- Franck Da-Silva
- Sanofi R&D, Montpellier, France; Institute for Regenerative Medicine and Biotherapy, Université et CHU de Montpellier, INSERM, Montpellier, France
| | | | | | | | - Sabine Gerbal-Chaloin
- Institute for Regenerative Medicine and Biotherapy, Université et CHU de Montpellier, INSERM, Montpellier, France
| | - Martine Daujat-Chavanieu
- Institute for Regenerative Medicine and Biotherapy, Université et CHU de Montpellier, INSERM, Montpellier, France
| | | | - Patrick Poulin
- Consultant, Patrick Poulin Inc., Québec City, Canada; Associate professor, School of Public Health, IRSPUM, Université de Montréal, Canada
| |
Collapse
|
48
|
C-547, a 6-methyluracil derivative with long-lasting binding and rebinding on acetylcholinesterase: Pharmacokinetic and pharmacodynamic studies. Neuropharmacology 2018; 131:304-315. [DOI: 10.1016/j.neuropharm.2017.12.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
|
49
|
Oh Y, Jeong YS, Kim MS, Min JS, Ryoo G, Park JE, Jun Y, Song YK, Chun SE, Han S, Bae SK, Chung SJ, Lee W. Inhibition of Organic Anion Transporting Polypeptide 1B1 and 1B3 by Betulinic Acid: Effects of Preincubation and Albumin in the Media. J Pharm Sci 2018; 107:1713-1723. [PMID: 29462635 DOI: 10.1016/j.xphs.2018.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
Betulinic acid (BA), a plant-derived pentacyclic triterpenoid, may interact with the members of the organic anion transporting polypeptide 1B subfamily. Here, we investigated the interactions of BA and its analogs with OATP1B1/3 and rat Oatp1b2 in vitro and in vivo. BA inhibited the activity of OATP1B1/3 and rat Oatp1b2 in vitro. Systemic exposure of atorvastatin was substantially altered with the intravenous co-administration of BA (20 mg/kg). Preincubation (incubation with inhibitors, followed by washout) with BA led to a sustained inhibition of OATP1B3, which recovered rapidly in the media containing 10% fetal bovine serum. The addition of albumin to the media decreased intracellular concentrations of BA and expedited the recovery of OATP1B3 activity following preincubation. For asunaprevir and cyclosporin A (previously known to inhibit OATP1B3 upon preincubation), the addition of albumin to the media shortened recovery time with asunaprevir, but not with cyclosporin A. Overall, our results showed that BA inhibits OATP1B transporters in vitro and may incur hepatic transporter-mediated drug interactions in vivo. Our results identify BA as another OATP1B3 inhibitor with preincubation effect and suggest that the preincubation effect and its duration is impacted by altered equilibrium of inhibitors between intracellular and extracellular space (e.g., albumin in the media).
Collapse
Affiliation(s)
- Yunseok Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yoo-Seong Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Min-Soo Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Jee Sun Min
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon, Korea
| | - Gongmi Ryoo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Ji Eun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yearin Jun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yoo-Kyung Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Se-Eun Chun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Songhee Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon, Korea
| | - Suk-Jae Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
50
|
Miyauchi S, Masuda M, Kim SJ, Tanaka Y, Lee KR, Iwakado S, Nemoto M, Sasaki S, Shimono K, Tanaka Y, Sugiyama Y. The Phenomenon of Albumin-Mediated Hepatic Uptake of Organic Anion Transport Polypeptide Substrates: Prediction of the In Vivo Uptake Clearance from the In Vitro Uptake by Isolated Hepatocytes Using a Facilitated-Dissociation Model. Drug Metab Dispos 2018; 46:259-267. [DOI: 10.1124/dmd.117.077115] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
|