1
|
Zhang Y, Zhou W, Shen L, Lang L, Huang X, Sheng H, Ning G, Wang W. Safety, Pharmacokinetics, and Pharmacodynamics of Oral Insulin Administration in Healthy Subjects: A Randomized, Double-Blind, Phase 1 Trial. Clin Pharmacol Drug Dev 2022; 11:606-614. [PMID: 35182035 DOI: 10.1002/cpdd.1060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/21/2021] [Indexed: 11/08/2022]
Abstract
Oral delivery is an ideal method of insulin administration and is currently a promising research field. Here, we evaluated the safety, pharmacokinetic, and pharmacodynamic characteristics of oral administration of an insulin capsule (ORMD-0801) with 2 different sources of recombinant human insulin. This was a single-center, randomized, double-blind, placebo-controlled, dose-escalating phase 1 trial. Single dosing of the oral insulin capsule was administered in 70 healthy Chinese subjects. In stage 1, four dose groups (8, 16, 32, and 48 mg) for capsules containing Sanofi insulin and in stage 2, three dose groups (8, 32, and 48 mg) containing Hefei Tianmai insulin were evaluated consequently. The results showed that the oral insulin formulations with either source in the dose range 8 to 48 mg were safe, and no serious adverse events were observed. After a standard breakfast 45 minutes after dosing, the area under the concentration-time curve (AUC) from time 0 to time t and AUC from time 0 to infinity for insulin in the 8-mg and 48-mg dose groups in stage 1 and for 8- to 48-mg groups in stage 2 were slightly increased compared with placebo, but no significant dose-related changes in the pharmacokinetic parameters were observed for either stage. The peak-valley difference and the change in value of the AUC for glucose from baseline showed a dose-related increase in the dose range from 8 to 48 mg in both stages. Together, this study indicated that in healthy Chinese subjects, this oral capsule containing 2 different insulin formulations was safe and well tolerated after a single-dose administration.
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liyun Shen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqun Lang
- Hefei Tianhui Incubator of Technologies Co., Ltd., Hefei, China
| | - Xing Huang
- Hefei Tianhui Incubator of Technologies Co., Ltd., Hefei, China
| | - Haiyuan Sheng
- Hefei Tianhui Incubator of Technologies Co., Ltd., Hefei, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev 2016; 106:277-319. [PMID: 27320643 DOI: 10.1016/j.addr.2016.06.005] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
Intestinal permeation enhancers (PEs) are one of the most widely tested strategies to improve oral delivery of therapeutic peptides. This article assesses the intestinal permeation enhancement action of over 250 PEs that have been tested in intestinal delivery models. In depth analysis of pre-clinical data is presented for PEs as components of proprietary delivery systems that have progressed to clinical trials. Given the importance of co-presentation of sufficiently high concentrations of PE and peptide at the small intestinal epithelium, there is an emphasis on studies where PEs have been formulated with poorly permeable molecules in solid dosage forms and lipoidal dispersions.
Collapse
|
3
|
Karsdal MA, Riis BJ, Mehta N, Stern W, Arbit E, Christiansen C, Henriksen K. Lessons learned from the clinical development of oral peptides. Br J Clin Pharmacol 2015; 79:720-32. [PMID: 25408230 PMCID: PMC4415709 DOI: 10.1111/bcp.12557] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/14/2014] [Indexed: 01/11/2023] Open
Abstract
The oral delivery of peptides and proteins has been hampered by an array of obstacles. However, several promising novel oral delivery systems have been developed. This paper reviews the most advanced oral formulation technologies, and highlights key lessons and implications from studies undertaken to date with these oral formulations. Special interest is given to oral salmon calcitonin (CT), glucagon-like peptide-1 (GLP-1), insulin, PYY-(3-36), recombinant human parathyroid hormone (rhPTH(1-31)-NH2) and PTH(1-34), by different technologies. The issues addressed include (i) interaction with water, (ii) interaction with food, (iii) diurnal variation, (iv) inter- and intra-subject variability, (v) correlation between efficacy and exposure and (vi) key deliverables of different technologies. These key lessons may aid research in the development of other oral formulations.
Collapse
|
4
|
Karsdal MA, Henriksen K, Bay-Jensen AC, Molloy B, Arnold M, John MR, Byrjalsen I, Azria M, Riis BJ, Qvist P, Christiansen C. Lessons Learned From the Development of Oral Calcitonin: The First Tablet Formulation of a Protein in Phase III Clinical Trials. J Clin Pharmacol 2013; 51:460-71. [DOI: 10.1177/0091270010372625] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Intestinal receptor targeting for peptide delivery: an expert's personal perspective on reasons for failure and new opportunities. Ther Deliv 2012; 2:1575-93. [PMID: 22833983 DOI: 10.4155/tde.11.129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The technology has been available more than 25 years that would enable the oral delivery of vaccines, proteins and peptides, thus avoiding the need for injection. To this day, injection is still the mode of delivery, yet not the main mode of choice. This review focuses on several of the potential modes for oral delivery of peptides, proteins and vaccines. Additionally, the review will provide the reader with an insight into the problems and potential solutions for several of these modes of oral delivery of peptides and proteins.
Collapse
|
6
|
Kajikawa A, Nordone SK, Zhang L, Stoeker LL, LaVoy AS, Klaenhammer TR, Dean GA. Dissimilar properties of two recombinant Lactobacillus acidophilus strains displaying Salmonella FliC with different anchoring motifs. Appl Environ Microbiol 2011; 77:6587-96. [PMID: 21784918 PMCID: PMC3187123 DOI: 10.1128/aem.05153-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/12/2011] [Indexed: 11/20/2022] Open
Abstract
Display of heterologous antigens on the cell surface is considered a useful technique for vaccine delivery by recombinant lactobacilli. In this study, two recombinant Lactobacillus acidophilus derivatives displaying Salmonella flagellin (FliC) were constructed using different anchor motifs. In one instance, the FliC protein was fused to the C-terminal region of a cell envelope proteinase (PrtP) and was bound to the cell wall by electrostatic bonds. In the other case, the same antigen was conjugated to the anchor region of mucus binding protein (Mub) and was covalently associated with the cell wall by an LPXTG motif. These two recombinant L. acidophilus cell surface displays resulted in dissimilar maturation and cytokine production by human myeloid dendritic cells. The surface-associated antigen was highly sensitive to simulated gastric and small intestinal juices. By supplementation with bicarbonate buffer and soybean trypsin inhibitor, the cell surface antigen was protected from proteolytic enzymes during gastric challenge in vitro. The protective reagents also increased the viability of the L. acidophilus cells upon challenge with simulated digestive juices. These results demonstrate the importance of protecting cells and their surface-associated antigens during oral immunization.
Collapse
Affiliation(s)
- Akinobu Kajikawa
- Center for Comparative Medicine and Translational Research, Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Agarwal V, Nazzal S, Khan MA. Optimization and In Vivo Evaluation of an Oral Dual Controlled-Release Tablet Dosage Form of Insulin and Duck Ovomucoid. Pharm Dev Technol 2008; 13:291-8. [PMID: 18618331 DOI: 10.1080/10837450802089123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Yin L, Ding J, Fei L, He M, Cui F, Tang C, Yin C. Beneficial properties for insulin absorption using superporous hydrogel containing interpenetrating polymer network as oral delivery vehicles. Int J Pharm 2008; 350:220-9. [DOI: 10.1016/j.ijpharm.2007.08.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 08/27/2007] [Accepted: 08/31/2007] [Indexed: 10/22/2022]
|
9
|
Novel possibility for protein absorption in the blood through the digestive system. J Drug Deliv Sci Technol 2007. [DOI: 10.1016/s1773-2247(07)50031-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Lee S, Lee J, Lee DY, Kim SK, Lee Y, Byun Y. A new drug carrier, Nalpha-deoxycholyl-L: -lysyl-methylester, for enhancing insulin absorption in the intestine. Diabetologia 2005; 48:405-11. [PMID: 15739118 DOI: 10.1007/s00125-004-1658-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 10/28/2004] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The development of an orally active insulin formulation will offer great advantages over conventional injectable insulin therapy in the treatment of patients with diabetes mellitus. Since insulin absorption in the intestine is restricted by the natural physiological characteristics of insulin, we developed a small synthetic compound, Nalpha-deoxycholyl-L: -lysyl-methylester (DCK), as an insulin carrier to enhance oral delivery. METHODS Streptozotocin-induced diabetic rats orally received single doses of insulin (42 U/kg) or insulin/DCK formulation (10, 21, 30 and 42 U/kg) under fasting conditions. Blood glucose levels and plasma insulin concentrations were measured for 6 h following the administration of the agents. An OGTT was also performed immediately after the administration of the oral insulin/DCK formulation. RESULTS The administration of 21, 30 and 42 U/kg (based on insulin activity) of insulin/DCK formulation reduced plasma glucose levels by up to 33.0% (median; range 30.6-70.2%), 78.5% (39.4-86.8%) and 75.2% (67.0-87.4%), respectively, compared with baseline levels. Furthermore, plasma insulin concentrations were observed to rapidly increase. In the OGTT, the insulin/DCK formulation reduced the AUC0-240 for glucose by 30.8% (22.3-54.9%) (p<0.01), and stabilized glycaemia for up to 4 h. CONCLUSIONS/INTERPRETATION The results of this study demonstrate that the insulin/DCK formulation can be absorbed in the intestine and that it is biologically efficacious. We therefore suggest that this oral formulation could be used as an alternative to injectable insulin with enhanced clinical effects.
Collapse
Affiliation(s)
- S Lee
- Center for Cell and Macromolecular Therapy, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | | | | | | | | | | |
Collapse
|
11
|
Krauland AH, Guggi D, Bernkop-Schnürch A. Oral insulin delivery: the potential of thiolated chitosan-insulin tablets on non-diabetic rats. J Control Release 2005; 95:547-55. [PMID: 15023465 DOI: 10.1016/j.jconrel.2003.12.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 12/23/2003] [Indexed: 12/22/2022]
Abstract
It was the aim of this study to develop a delivery system providing an improved efficacy of orally administered insulin utilizing a thiolated polymer. 2-Iminothiolane was covalently linked to chitosan. The resulting chitosan-TBA (chitosan-4-thiobutylamidine) conjugate exhibited 453.5+/-64.1 micromol thiol groups per gram polymer. 3.1% of these thiol groups were oxidised. Additionally, the enzyme inhibitors BBI (Bowman-Birk-Inhibitor) and elastatinal were covalently linked to chitosan representing 3.5+/-0.1% and 0.5+/-0.03% of the total weight of the resulting polymer conjugate, respectively. Chitosan-TBA conjugate (5 mg), insulin (2.75 mg), the permeation mediator reduced glutathione (0.75 mg) and the two inhibitor conjugates (in each case 0.75 mg) were compressed to so-called chitosan-TBA-insulin tablets. Control tablets consisted of unmodified chitosan (7.25 mg) and insulin (2.75 mg). Chitosan-TBA-insulin tablets showed a controlled release of insulin over 8 h. In vitro mucoadhesion studies showed that the mucoadhesive/cohesive properties of chitosan were at least 60-fold improved by the immobilisation of thiol groups on the polymer. After oral administration of chitosan-TBA-insulin tablets to non-diabetic conscious rats, the blood glucose level decreased significantly for 24 h corresponding to a pharmacological efficacy of 1.69+/-0.42% (means+/-S.D.; n=6) versus s.c. injection. In contrast, neither control tablets nor insulin given in solution showed a comparable effect. According to these results the combination of chitosan-TBA, chitosan-enzyme-inhibitor conjugates and reduced glutathione seems to represent a promising strategy for the oral application of insulin.
Collapse
Affiliation(s)
- Alexander H Krauland
- Institute of Pharmaceutical Technology and Biopharmaceutics, Center of Pharmacy, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria/Europe
| | | | | |
Collapse
|
12
|
Kidron M, Dinh S, Menachem Y, Abbas R, Variano B, Goldberg M, Arbit E, Bar-On H. A novel per-oral insulin formulation: proof of concept study in non-diabetic subjects. Diabet Med 2004; 21:354-7. [PMID: 15049938 DOI: 10.1111/j.1464-5491.2004.01160.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS The aim of our study was to examine the absorption of insulin from the gastrointestinal (GI) tract, using a novel oral formulation-adding a delivery agent SNAC (sodium N-[8-(2-hydroxybenzoyl)amino] caprylate) in combination with insulin. METHODS Capsules containing insulin and SNAC, in various combinations, were administered orally, as a single dose, to 12 non-diabetic subjects and four control subjects (receiving SNAC or insulin only) in order to assess its biological effect and safety. Plasma glucose levels, insulin and C-peptide concentrations, as well as SNAC levels, were determined, at timed intervals up to 4 h. RESULTS In all cases, a glucose-lowering effect was demonstrated, preceded by an increase in plasma insulin levels. The nadir of plasma glucose levels appeared after 30-50 min, following the ingestion of the mixture. The plasma insulin levels were found to parallel the blood SNAC levels. Plasma C-peptide levels were suppressed by the lowered glucose levels achieved concurrent with the increasing amount of exogenous insulin absorbed, indicating that the secretion of endogenous hormone was partially abolished. There were no biological effects regarding blood glucose levels upon administration of SNAC or insulin when given alone. No adverse effects were detected during the trial or several weeks after the trial. CONCLUSIONS Insulin in combination with a novel delivery agent, SNAC, given orally, is absorbed through the GI tract in a biologically active form. This was demonstrated by a glucose lowering effect of the mixture as well as a suppression of an endogenous insulin secretion.
Collapse
Affiliation(s)
- M Kidron
- Division of Medicine, Diabetes Unit, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
OBJECTIVE To comprehensively review the progress to date on the development of alternative routes for insulin delivery. RESEARCH DESIGN AND METHODS Study data were collected through a Medline review. RESULTS Proof of principle has been established for many routes of administration including dermal, nasal, oral, buccal, and pulmonary insulin delivery. CONCLUSIONS Of all the approaches to date, pulmonary delivery appears to be most feasible. Ongoing phase III studies will ultimately determine safety, tolerability, and efficacy before approval for clinical use.
Collapse
Affiliation(s)
- William T Cefalu
- University of Vermont College of Medicine, Burlington, Vermont, USA.
| |
Collapse
|
14
|
Dorkoosh FA, Verhoef JC, Borchard G, Rafiee-Tehrani M, Verheijden JHM, Junginger HE. Intestinal absorption of human insulin in pigs using delivery systems based on superporous hydrogel polymers. Int J Pharm 2002; 247:47-55. [PMID: 12429484 DOI: 10.1016/s0378-5173(02)00361-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this in vivo study, novel delivery systems based on superporous hydrogel (SPH) and SPH composite (SPHC) polymers were used to improve the intestinal absorption of insulin in healthy pigs. Six female pigs of approximately 35 kg body weight were used. A cannula was inserted into the jugular vein for blood sampling and a silicone fistula in the duodenum for administration of gelatin capsules containing the delivery systems or insulin solutions. The delivery systems consisted of two components, (1) conveyor system made of SPH and SPHC; (2) core containing insulin. The core was inserted either into the conveyor system (core inside, c.i.) or attached to the surface of conveyor system (core outside, c.o.). The following intestinal formulations were investigated: c.i., c.o. and intraduodenal (i.d.) administration of insulin solutions. Subcutaneous (s.c.) injection of insulin was also investigated for reasons of comparison. Blood samples were taken and analyzed for insulin and glucose concentrations. Relative bioavalibility values of 1.3+/-0.4 and 1.9+/-0.7% were achieved for c.o. and c.i. administrations, respectively. The bioavalibility for i.d. administration of insulin solution was 0.5+/-0.2%. These results indicate that the absorption of insulin was slightly increased using SPH/SPHC-based delivery systems. Furthermore, a large variability was observed, probably due to physiological and metabolic changes during the experiments. Blood glucose levels were slightly decreased after the c.o. and c.i administrations, whereas these levels did not decrease after i.d. administration of insulin solutions. In conclusion, SPH/SPHC-based delivery systems are able to enhance the intestinal absorption of insulin and are, therefore, considered as promising systems for peroral peptide drug delivery. However, insulin delivery from these delivery systems under in vivo have to be improved.
Collapse
Affiliation(s)
- F A Dorkoosh
- Department of Pharmaceutical Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Sood A, Panchagnula R. Peroral route: an opportunity for protein and peptide drug delivery. Chem Rev 2001; 101:3275-303. [PMID: 11840987 DOI: 10.1021/cr000700m] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- A Sood
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | | |
Collapse
|
16
|
Agarwal V, Reddy IK, Khan MA. Polymethyacrylate based microparticulates of insulin for oral delivery: preparation and in vitro dissolution stability in the presence of enzyme inhibitors. Int J Pharm 2001; 225:31-9. [PMID: 11489552 DOI: 10.1016/s0378-5173(01)00740-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purpose of this investigation was to (a) evaluate the coprecipitation technique for preparing microparticulates of insulin, (b) study the effect of variables such as addition of salts in the precipitating medium and ratio of polymeric solution to volume of precipitating medium on the dissolution and encapsulation efficiency of insulin microparticulates, and (c) evaluate the in-vitro enzymatic dissolution stability of insulin microparticulates in the presence of chicken ovomucoid (CkOVM) and duck ovomucoid (DkOVM) as inhibitors. Insulin dissolved in 0.01 N HCl was mixed with alcohol USP to get a final concentration of 32% v/v. Eudragit L100, a representative polymethyacrylate polymer, was then dissolved in this solution which was transferred to a beaker containing cold water with homogenization to obtain microparticulates. Dissolution studies were carried out in pH 6.8 phosphate buffer using a 100-ml conversion kit in a standard dissolution assembly. Dissolution stability of microparticulates was evaluated in the presence of 0.5 microM trypsin and 0.l microM chymotrypsin at various ratios of CkOVM and DkOVM. The results indicated that insulin microparticulates could be prepared using the coprecipitation technique with high encapsulation efficiency by proper selection of experimental conditions and amount of polymer. Presence of salts in the precipitating medium decreased the dissolution of insulin from the microparticulates. As the ratio of precipitating medium with respect to the polymeric solution was increased, the encapsulation efficiency increased. In dissolution stability experiments, insulin was not detected in the presence of enzymes alone. When CkOVM and DkOVM were incorporated, the stability of insulin increased significantly in a concentration dependent fashion.
Collapse
Affiliation(s)
- V Agarwal
- Department of Pharmaceutical Sciences, Texas Tech University HSC, School of Pharmacy, 1300 Coulter, Suite 400, Amarillo, TX 79106, USA
| | | | | |
Collapse
|
17
|
Agarwal V, Nazzal S, Reddy IK, Khan MA. Transport studies of insulin across rat jejunum in the presence of chicken and duck ovomucoids. J Pharm Pharmacol 2001; 53:1131-8. [PMID: 11518023 DOI: 10.1211/0022357011776522] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Our aim was to evaluate the transport of insulin across rat jejunum in the presence of ovomucoids and to assess the effect of ovomucoids on intestinal tissue by studying the permeation of a lipophilic and a hydrophilic marker. Rat jejunal segments were mounted in a side-by-side diffusion chamber filled with Krebs bicarbonate buffer, bubbled with 95% O2/5% CO2 at a fixed flow rate and maintained at 37 degrees C. The permeation of insulin, a lipophilic marker ([7- 3H] testosterone) and a hydrophilic marker (D-[1- 14C] mannitol) was evaluated in the presence of 0.5-1.5 microM duck ovomucoid (DkOVM) or chicken ovomucoid (CkOVM). For stability and permeation of insulin in the presence of alpha-chymotrypsin, an enzyme-to-inhibitor ratio of 1:1 and 1:2 was used. In the absence of alpha-chymotrypsin, the permeability coefficient (Papp) of insulin at pH 7.4 was 0.922+/- 0.168 x 10(-7) cm s(-1), which decreased with increasing concentrations of DkOVM or CkOVM. Conversely, the permeation of the hydrophilic and lipophilic marker increased with increasing concentrations of CkOVM and DkOVM. In stability studies, the percentage of drug remaining was found to be 2-fold higher at the 1:2 ratio than with the 1:1 ratio of enzyme to inhibitor. This was in agreement with the 2-fold increase in flux values of insulin in the presence of alpha-chymotrypsin and DkOVM at the 1:2 ratio of enzyme to inhibitor. The decrease in permeation of insulin in ovomucoids was unexpected. Marker transport studies indicated that ovomucoids have the potential to modulate transcellular and paracellular permeability. The flux enhancement of insulin in the presence of alpha-chymotrypsin and DkOVM is encouraging. The use of ovomucoids offers potential to enhance oral delivery of insulin and warrants further investigation.
Collapse
Affiliation(s)
- V Agarwal
- Department of Pharmaceutical Sciences, Texas Tech University HSC, School of Pharmacy, Amarillo 79106, USA
| | | | | | | |
Collapse
|
18
|
|
19
|
Abstract
Transport of intact peptides and proteins from the intestinal lumen into the blood is a unique phenomenon, which differs from the regular process of food digestion and absorption. Intestinal absorption of minute amounts of proteins is, however, being considered as a normal physiological process. It is thus important to define and understand the routes for protein transfer from the intestinal lumen to the blood and the mechanisms by which the macromolecules overcome the sieving barrier of the intestinal wall. The study on insulin has demonstrated that, upon proper introduction into the intestinal lumen, insulin is absorbed by the epithelial cells and transferred to the circulation. The peptides absorbed and transferred to the blood retained their biological activity and induced significant lowering of blood glucose levels. The efficiency of the absorption does not differ among the ileum, duodenum, and colon. Morphological examination demonstrated no alteration of the structural integrity of the epithelia, the enterocytes stay intact with well-developed microvilli, and the cells remain joined by tightly closed junctions. Application of immunocytochemistry on thin tissue sections revealed insulin antigenic sites at different locations depending on the time point. Insulin detected in the lumen of the intestinal tract is absorbed through the endosomal compartment of the epithelial cells rather than passing between cells. Internalization occurs through invaginations of the luminal plasma membrane and vesicular structures of the endosomal compartment. In 5-10 minutes, insulin is transferred to the basolateral membrane and released into the interstitial space to reach the circulation. Definition of the transcytotic pathway will contribute to a better understanding of drug delivery for potential therapeutic applications.
Collapse
Affiliation(s)
- E Ziv
- Diabetes Research Unit, Hadassah University Hospital, The Hebrew University, 91120 Jerusalem, Israel.
| | | |
Collapse
|
20
|
Affiliation(s)
- J Brange
- Novo Nordisk A/S, Bagsvaerd, Denmark
| | | |
Collapse
|
21
|
Trenktrog T, Müller BW, Specht FM, Seifert J. Enteric coated insulin pellets: development, drug release and in vivo evaluation. Eur J Pharm Sci 1996. [DOI: 10.1016/0928-0987(95)00162-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Affiliation(s)
- W Wang
- Biotechnology Unit, Bayer Corp., Berkeley, CA 94701, USA
| |
Collapse
|
23
|
Huffman A, Shaked I, Avramoff A, Golomb G. Pharmacokinetics and pharmacodynamics of trans-endometrial administered peptides and macromolecules. Adv Drug Deliv Rev 1995. [DOI: 10.1016/0169-409x(95)00087-n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|