1
|
Fedorowicz J, Sączewski J. Advances in the Synthesis of Biologically Active Quaternary Ammonium Compounds. Int J Mol Sci 2024; 25:4649. [PMID: 38731869 PMCID: PMC11083083 DOI: 10.3390/ijms25094649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This review provides a comprehensive overview of recent advancements in the design and synthesis of biologically active quaternary ammonium compounds (QACs). The covered scope extends beyond commonly reviewed antimicrobial derivatives to include synthetic agents with antifungal, anticancer, and antiviral properties. Additionally, this review highlights examples of quaternary ammonium compounds exhibiting activity against protozoa and herbicidal effects, as well as analgesic and anesthetic derivatives. The article also embraces the quaternary-ammonium-containing cholinesterase inhibitors and muscle relaxants. QACs, marked by their inherent permanent charge, also find widespread usage across diverse domains such as fabric softeners, hair conditioners, detergents, and disinfectants. The effectiveness of QACs hinges greatly on finding the right equilibrium between hydrophilicity and lipophilicity. The ideal length of the alkyl chain varies according to the unique structure of each QAC and its biological settings. It is expected that this review will provide comprehensive data for medicinal and industrial chemists to design and develop novel QAC-based products.
Collapse
Affiliation(s)
- Joanna Fedorowicz
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Jarosław Sączewski
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| |
Collapse
|
2
|
Hu X, Ma Z. Reviving the Potential of Vermiculite-Based Adsorbents: Exceptional Ibuprofen Removal on Novel Amide-Containing Gemini Surfactants. ACS OMEGA 2024; 9:4841-4848. [PMID: 38313536 PMCID: PMC10831837 DOI: 10.1021/acsomega.3c08363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 02/06/2024]
Abstract
In this study, we introduce a novel series of gemini surfactants with amide groups (HDAB, HDAHD, and HDAPX) and use these surfactants to decorate sodium vermiculite (Na-Vt) for the adsorption of Ibuprofen (IBP) from wastewater. Exceptional IBP uptake on organo-vermiculites (organo-Vts) is obtained, with maximum adsorption capacities reaching 249.87, 342.21, and 460.15 mg/g for HDAB-Vt, HDAHD-Vt, and HDAPX-Vt (C0 = 500 mg/L, modifier dosage = 0.2 CEC), respectively. The adsorption of IBP is well fitted by pseudo-second-order, intraparticle diffusion, and Freundlich isotherm models, verifying chemical adsorption processes with multilayer arrangement of IBP in organo-Vts. Thermodynamically, the removal of IBP on HDAHD-Vt is exothermic, while the endothermic nature aptly describes the adsorption process of HDAB-Vt and HDAPX-Vt. Moreover, organo-Vts can be stably regenerated in three cycles. Outstanding adsorption performance of organo-Vts is attributed to synergistic effects of the partition process and functional interaction, which are influenced by the steric hindrance and chain configuration of the modifier. A combined evaluation of adsorption tests and fitting calculations is employed to reveal the adsorption mechanism: (i) the incorporation of amides into the alkyl chain significantly enhances the utilization of the interlayer space in organo-Vts. (ii) Smaller steric hindrance and higher rigidity of the modifier spacer contribute to improved adsorption performance. The findings in this study rekindle interest in Vt-based adsorbents, which demonstrate comparable potential to other emerging adsorbents that are yet to be fully explored.
Collapse
Affiliation(s)
- Xianqi Hu
- Department of Chemical Engineering, Hebei Petroleum University of Technology, Hebei 067000, P. R. China
| | - Zhuang Ma
- Department of Chemical Engineering, Hebei Petroleum University of Technology, Hebei 067000, P. R. China
| |
Collapse
|
3
|
Shen T, Ji Y, Mao S, Han T, Zhao Q, Wang H, Gao M. "Functional connector" strategy on tunable organo-vermiculites: The superb adsorption towards Congo Red. CHEMOSPHERE 2023; 339:139658. [PMID: 37506892 DOI: 10.1016/j.chemosphere.2023.139658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
With the increasingly worldwide concentration of environmental pollution, exploiting cost-effective adsorbents has been a research hotspot. Here we introduce novel "functional connector" amide-containing gemini surfactants (LDAB, LDAPP, LDAMP and LDABP) and apply to modify Na-vermiculite (Na-Vt) for Congo red (CR) removal. Chain amide as the functional connector in the modifier, increases 6.9 times of CR uptake than traditional organo-Vts, which is further enhanced by tunning the functional group of modifier spacers. Superb uptake of CR on organo-Vts reaches 1214.05, 1375.47 and 1449.80 mg/g, and the removal efficiencies achieve 80.94%, 91.70% and 96.65% on LDAB-Vt, LDAPP-Vt and LDAMP-Vt, respectively. Notably, the maximum experimental adsorption capacity of LDAPP-Vt is 1759.64 mg/g. These experimental values are among the highest reported CR adsorbents. A combination experimental and theoretical analysis is conducted to unveil the structure-adsorptivity relationship: (i) Adsorptivity enhancement of organo-Vts is more effectively by regulating functional chains than the functional spacer. (ii) para-substituted aromatic spacers own the best adsorptive configuration and strongest stability for π-π interaction. (iii) π-π interaction provided by isolated aromatic ring is stronger than biphenyl, whose steric hindrance depresses the adsorptivity. Results in this study not only explain a new "functional connector" strategy to Vt-based adsorbents, but also provide a practical designing strategy for organic adsorbents characterized with high uptake capacity.
Collapse
Affiliation(s)
- Tao Shen
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China; Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, PR China
| | - Yaxiong Ji
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, PR China
| | - Shanshan Mao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China; Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, PR China
| | - Tong Han
- PetroChina North East Chemical & Marketing Company, Shenyang, 110033, PR China
| | - Qing Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, PR China.
| | - Manglai Gao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China.
| |
Collapse
|
4
|
Liang Y, Li H, Ji J, Wang J, Ji Y. Self-Aggregation, Antimicrobial Activity and Cytotoxicity of Ester-Bonded Gemini Quaternary Ammonium Salts: The Role of the Spacer. Molecules 2023; 28:5469. [PMID: 37513340 PMCID: PMC10386392 DOI: 10.3390/molecules28145469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Five ester-bonded gemini quaternary ammonium surfactants C12-En-C12 (n = 2, 4, 6), with a flexible spacer group, and C12-Bm-C12 (m = 1, 2), with rigid benzene spacers, were synthesized via a two-step reaction and analyzed. Furthermore, the effects of the spacer structure, spacer length and polymerization degree on the self-aggregation, antimicrobial activity and cytotoxicity of C12-En-C12 and C12-Bm-C12 and their corresponding monomer N-dodecyl-N,N,N-trimethyl ammonium chloride DTAC were investigated. The results showed that C12-En-C12 and C12-Bm-C12 had markedly lower critical micellar concentration (CMC) values and lower surface tension than DTAC. Moreover, the CMC values of C12-En-C12 and C12-Bm-C12 decreased with increasing spacer length. In the case of equivalent chain length, the rigidity and steric hindrance of phenylene and 1,4-benzenediyl resulted in larger CMC values for C12-Bm-C12 than for C12-En-C12. The antibacterial ability of C12-En-C12 and C12-Bm-C12 was assessed using Escherichia coli (E. coli) and Staphylococcus albus (S. aureus) based on minimum inhibitory concentrations (MICs). Furthermore, C12-En-C12 and C12-Bm-C12 exhibited higher antimicrobial activity than DTAC and had stronger function toward S. aureus than E. coli. The antimicrobial activity was enhanced by increasing the spacer chain length and decreased with the increased rigidity of the spacers. The cytotoxic effects of C12-En-C12 and C12-Bm-C12 in cultured Hela cells were evaluated by the standard CCK8 method based on half-maximal inhibitory concentration (IC50). The cytotoxicity of C12-En-C12 and C12-Bm-C12 was significantly lower than alkanediyl-α,ω-bis(dimethyldodecylammonium) bromide surfactants and DTAC. The spacer structure and the spacer length could induce significant cytotoxic effects on Hela cells. These findings indicate that the five ester-bonded GQASs have stronger antibacterial activity and lower toxicity profile, and thus can be used in the pharmaceutical industry.
Collapse
Affiliation(s)
- Yaqin Liang
- Department of Chemistry, Changzhi University, Changzhi 046000, China
| | - Hui Li
- Department of Chemistry, Changzhi University, Changzhi 046000, China
| | - Jiahui Ji
- Department of Chemistry, Changzhi University, Changzhi 046000, China
| | - Jiayu Wang
- Department of Chemistry, Changzhi University, Changzhi 046000, China
| | - Yujie Ji
- Department of Chemistry, Changzhi University, Changzhi 046000, China
| |
Collapse
|
5
|
Akram M, Osama M, Hashmi MA, Kabir-Ud-Din. Molecular interaction of di-ester bonded cationic Gemini surfactants with pepsin: in vitro and in silico perspectives. J Biomol Struct Dyn 2023; 41:12276-12291. [PMID: 36695086 DOI: 10.1080/07391102.2023.2168759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/01/2023] [Indexed: 01/26/2023]
Abstract
The implications of surfactant-enzyme/protein interactions in a variety of fields, including biotechnology, cosmetics, paints and pharmaceuticals, have attracted a lot of attention in contemporary studies. Herein, we have employed several in vitro and in silico techniques such as excitation and absorption spectroscopies, circular dichroism and FT-IR spectroscopies, density functional and molecular dynamics simulations to understand the interaction behavior of oxy-diester-based green cationic Gemini surfactants, N1,N1,N14,N14-tetramethyl-2,13-dioxo-N1,N14-dialkyl-3,6,12-tetraoxateradecane-1,14-diaminiumdichloride (abbreviated as Cm-E2O2-Cm, where 'm' stands for alkyl chain length, m = 12 and 14) with one of the main digestive proteins, pepsin. The spectroscopic techniques confirm the static quenching effect of surfactants on pepsin. The calculated physical parameters (Ksv, Kb and ΔG) and their order reveal the distinguished implications for the surfactants' chain lengths. The spontaneity of interaction was also confirmed by negative Gibbs free energy change values. The extrinsic spectroscopic study with pyrene as fluorescence probe, FT-IR and CD techniques indicated a potential conformational change in pepsin induced by the Gemini surfactants. DFT, docking and MD simulations provided the theoretical understanding regarding the quantum mechanical environment, location of binding and stability of the protein-surfactant complexation in energy terms. We believe this study will be a humble addition to our existing knowledge in the field of protein-surfactant interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Akram
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Mohammad Osama
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Kabir-Ud-Din
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
6
|
Akram M, Osama M, Lal H, Salim M, Amiruddin Hashmi M, Din KU. Biophysical Investigation of the Interaction between NSAID Ibuprofen and Cationic Biodegradable Cm-E2O2-Cm Gemini Surfactants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Physico-chemical characterization of bovine serum albumin-cationic gemini surfactant interaction. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Deciphering the mechanism of interaction of an ester-functionalized cationic gemini surfactant with bovine serum albumin: A biophysical and molecular modeling study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Kuznetsova DA, Kuznetsov DM, Amerhanova SK, Buzmakova EV, Lyubina AP, Syakaev VV, Nizameev IR, Kadirov MK, Voloshina AD, Zakharova LY. Cationic Imidazolium Amphiphiles Bearing a Methoxyphenyl Fragment: Synthesis, Self-Assembly Behavior, and Antimicrobial Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4921-4934. [PMID: 35405069 DOI: 10.1021/acs.langmuir.2c00299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Novel cationic amphiphiles of the 3-alkyl-1-(4-methoxyphenyl)-1H-imidazol-3-ium bromide series bearing methoxyphenyl fragments (MPI-n) have been synthesized. Their aggregation properties in aqueous solutions, solubilization capacity, and hemolytic and antimicrobial activities have been investigated by a number of physicochemical methods. Using tensiometry, conductometry, and fluorescence spectroscopy, it was shown that the MPI-n have lower CMCs than their nonfunctionalized counterparts. The unusual alkyl-chain-length-dependent morphology of aggregates is testified for this homological series. Amphiphiles with 12, 14, and 16 alkyl tails are characterized by the formation of micellar aggregates, while a surfactant with a decyl tail is characterized by the formation of larger aggregates with lower surface curvature. The MPI-10 aggregate morphology was rationalized in terms of the packing parameter consideration and was supported by size measurements and the fluorescence probe techniques, which showed that vesicle-like aggregates in close-packing mode probably occur. MPI-n aggregates have exhibited a high solubilization capacity toward hydrophobic azo dye Orange OT. Importantly, amphiphiles studied showed (i) high bacteriostatic activity at the level of ciprofloxacin; (ii) high bactericidal action against all Gram-positive bacteria, including methicillin-resistant strains; (iii) bactericidal properties against Gram-negative bacteria; and (iv) low hemolytic activity.
Collapse
Affiliation(s)
- Darya A Kuznetsova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan 420088, Russia
| | - Denis M Kuznetsov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan 420088, Russia
| | - Syumbelya K Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan 420088, Russia
| | - Ekaterina V Buzmakova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan 420088, Russia
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan 420088, Russia
| | - Victor V Syakaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan 420088, Russia
| | - Irek R Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan 420088, Russia
| | - Marsil K Kadirov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan 420088, Russia
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan 420088, Russia
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan 420088, Russia
| |
Collapse
|
10
|
Cationic gemini surfactant properties, its potential as a promising bioapplication candidate, and strategies for improving its biocompatibility: A review. Adv Colloid Interface Sci 2022; 299:102581. [PMID: 34891074 DOI: 10.1016/j.cis.2021.102581] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
Gemini surfactants consist of two cationic monomers of a surfactant linked together with a spacer. The specific structure of a cationic gemini surfactant is the reason for both its high surface activity and its ability to decrease the surface tension of water. The high surface activity and unique structure of gemini surfactants result in outstanding properties, including antibacterial and antifungal activity, anticorrosion properties, unique aggregation behaviour, the ability to form various structures reversibly in response to environmental conditions, and interactions with biomacromolecules such as DNA and proteins. These properties can be tailored by selecting the optimal structure of a gemini surfactant in terms of the nature and length of its alkyl substituents, spacer, and head group. Additionally, regarding their properties, comparison with their monomeric counterparts demonstrates that gemini surfactants have higher performance efficacy at lower concentrations. Hence, less material is needed, and the toxicity is lower. However, there are some limitations regarding their biocompatibility that have led researchers to develop amino acid-based and sugar-based gemini surfactants. Owing to their remarkable properties, cationic gemini surfactants are promising candidates for bioapplications such as drug delivery systems, gene carriers, and biomaterial surface modification.
Collapse
|
11
|
Kaushal D, Lal H, Ansari SS, Naqvi S. Effect of local anesthetic drug procaine hydrochloride on the conformational stability of bovine hemoglobin: Multi-spectroscopic and computational approaches. J Biomol Struct Dyn 2021; 40:8938-8948. [PMID: 33970817 DOI: 10.1080/07391102.2021.1920465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The interaction between bovine hemoglobin (BHb) and local anesthetic drug procaine hydrochloride (PCH) was examined by spectroscopic and computational studies. Intrinsic fluorescence analysis explored the ground-state complex formation in the binding of PCH with BHb through static quenching mechanism. The binding constants (Kb) are 29.38 × 103, 22.54 × 103 and 17.99 × 103 M-1 at 288, 298 and 308 K, respectively, and the ratio of BHb:PCH was 1:1 in the interaction mechanism of PCH and BHb. The acquired thermodynamic parameters (ΔH0, ΔG0 and ΔS0) demonstrated that interaction mechanism is spontaneous and enthalpy driven. The van der Waals forces and hydrogen bonding have been played a predominant role in the binding mechanism. The UV-vis spectroscopy validates the ground-state complexation between PCH and BHb and the binding constant (Kb) has been evaluated utilizing Benesi-Hildebrand equation. Fluorescence resonance energy transfer (FRET) results have demonstrated that the distance between donor (BHb) and acceptor (PCH) is very short (2.34 nm) suggesting a significant probability to energy transfer from BHb to PCH. Synchronous fluorescence results revealed that the alteration in the micro-environment of Tyrosine (Tyr) is more than tryptophan (Trp) residues suggesting that PCH molecule is close to Tyr residue. The secondary structure alterations were confirmed by CD, 3-D fluorescence and FT-IR spectroscopic measurements. Moreover, computational analyses further corroborated that PCH molecules are closer to Tyr residues as compared to Trp residues of BHb during the interaction process. The BHb-PCH complexes may contribute to a deeper understanding of the metabolism of drug, blood circulation process and may help to illustrate the relationship between functions and structure of BHb.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deepak Kaushal
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Hira Lal
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | | | - Saeeda Naqvi
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|