1
|
Lu CZ, Wang CY, Song C, Qin T, Lv T, Zeng C, Chen S, Xu Z, Xun Z, Liu B, Wang YL, Zhu MQ. A ratiometric fluorescent indicator-displacement assay for on-site determination and intracellular imaging of nitroxinil. Food Chem 2024; 435:137617. [PMID: 37806206 DOI: 10.1016/j.foodchem.2023.137617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Nitroxinil (NIT) is a widely using veterinary medicine to protect cattle and sheep yet may threaten human health when ingested through food chain. Developing fluorescent analytical methods in ratiometric manners was essential for the on-site detection and in-situ monitoring of NIT but still challenging. Here, we improved the indicator-displacement assay (IDA)-based method and designed the first ratiometric fluorescent probe for NIT by using an albumin host and an Aggregation-induced emission (AIE) guest. This probe exhibited fast response (10 s), high sensitivity (limit of detection: 4.6 ppb), good selectivity (over twelve medicines) and eye-discriminable fluorescent color change (green-red) upon responding to NIT. Based on these properties, this probe enabled quantitative determination of NIT in real food samples, on-site analysis via a paper-based test strip, and fluorescence imaging of NIT in living cells.
Collapse
Affiliation(s)
- Cui-Zhen Lu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou 570228, China.
| | - Cai-Yun Wang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou 570228, China.
| | - Chao Song
- College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Tianyi Qin
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou 570228, China.
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW 2006, Australia.
| | - Conghui Zeng
- College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Shihong Chen
- College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zhongyong Xu
- College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zhiqing Xun
- Guangzhou Quality Supervision and Testing Institute, 1-2 Zhujiang Rd, Guangzhou 511447, China.
| | - Bin Liu
- College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ya-Long Wang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou 570228, China.
| | - Ming-Qiang Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou 570228, China; Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
2
|
Zhou M, Song C, Qin T, Xun Z, Liu B. Fast and sensitive detection of nitroxynil using a chalcone-based supramolecular fluorescent sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:122974. [PMID: 37327726 DOI: 10.1016/j.saa.2023.122974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
Nitroxynil as a veterinary drug has been widely used for treatment of parasitic worms in food-producing sheep and cattle. However, the residual nitroxynil in edible animal products can lead to severe adverse effects on human health. Thus, development of an effective analytical tool for nitroxynil is of great significance. In the present study, we designed and synthesized a novel albumin-based fluorescent sensor, which was capable of detecting nitroxynil with the fast response (<10 s), high sensitivity (limit of detection ∼8.7 ppb), high selectivity, and excellent anti-interference property. The sensing mechanism was clarified by using the molecular docking technique and mass spectra. Moreover, this sensor showed the detection accuracy comparable to standard HPLC method, and meanwhile exhibited much shorter response time and higher sensitivity. All the results demonstrated that this novel fluorescent senor could serve as a practical analytical tool for determination of nitroxynil in real food samples.
Collapse
Affiliation(s)
- Mei Zhou
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chao Song
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tianyi Qin
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhiqing Xun
- Guangzhou Quality Supervision and Testing Institute, 1-2 Zhujiang Rd, Guangzhou 511447, China
| | - Bin Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Liang Q, Chen C, Xu W, Zhang N, Yang J, Song W, Cai H, Hou R, Li H, Zhang X. A Comparable icELISA and Lateral Flow Immunoassay for the Sensitive and Rapid Detection of 4,4'-Dinitrocarbanilide in Chicken. TOXICS 2023; 11:628. [PMID: 37505593 PMCID: PMC10385411 DOI: 10.3390/toxics11070628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
4,4'-dinitrocarbanilide (DNC) is a key component and marker residue of nicarbazin, which forms residues in edible tissue and then causes nephrotoxicity and hepatotoxicity in humans if used excessively. To simplify sample preparation and monitor the DNC rapidly and accurately, a comparable icELISA and lateral flow immunoassay (LFIA) was developed in this study. Briefly, the reaction parameters were explored for improving the sensitivity of icELISA and LFIA. Under the optimal conditions, methanol was selected as the extracting solvent for DNC in chicken, and 20- and 10-fold dilutions of sample extraction eliminated the matrix effect for icELISA and LFIA, separately. After sample pretreatment, the analysis properties of icELISA and LFIA were compared. The limit of detection of icELISA for DNC was 0.8 μg/kg, and the visual and quantitative limits of detection of LFIA were 8 and 2.5 μg/kg. Compared with icELISA, LFIA showed lower sensitivity but obvious advantages in terms of matrix tolerance and detection time (within 15 min). The sensitivity, specificity, and accuracy of the developed assays satisfied the detection requirement even if using simple sample pretreatment. This comparable icELISA and LFIA provided mutual verifiability methods for the accurate detection of DNC in chicken.
Collapse
Affiliation(s)
- Qianxin Liang
- Animal-Derived Food Safety Innovation Team, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chen Chen
- Animal-Derived Food Safety Innovation Team, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wenqing Xu
- Animal-Derived Food Safety Innovation Team, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ning Zhang
- Animal-Derived Food Safety Innovation Team, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jielin Yang
- Animal-Derived Food Safety Innovation Team, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wei Song
- Hefei Customs District Technical Center, Anhui Key Lab of Analysis and Detection for Food Safety, Hefei 230022, China
| | - Huimei Cai
- Animal-Derived Food Safety Innovation Team, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ruyan Hou
- Animal-Derived Food Safety Innovation Team, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hongfang Li
- Animal-Derived Food Safety Innovation Team, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiya Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
4
|
Xu Z, Song C, Chen Z, Zeng C, Lv T, Wang L, Liu B. A portable paper-based testing device for fast and on-site determination of nitroxynil in food. Anal Chim Acta 2023; 1260:341201. [PMID: 37121652 DOI: 10.1016/j.aca.2023.341201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023]
Abstract
Nitroxynil (NTX) is a common anthelmintic veterinary drug for the management of fascioliasis in food-producing sheep and cattle. Since excessive NTX residue in food can lead to several adverse side effects, such as allergic skin reaction and respiratory irritation, it is of great importance to develop an efficient analytical method for NTX determination. Herein, we report a simple fluorescent detection method based on a novel supramolecular probe capable of detecting NTX with a fast response (5 s), high sensitivity (107 nM), high selectivity, and acceptable anti-interference property. Moreover, the portable paper-based test strips were facilely prepared and successfully realized on-site determination of NTX in real edible animal products simply with the aid of a smartphone. To the best of our knowledge, this is the very first report on the portable detection of NTX. This study also provides a promising strategy for the fast and portable detection of analyte based on the host-guest system, which will lead to improved fluorescent probe design for food analysis.
Collapse
Affiliation(s)
- Zhongyong Xu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Chao Song
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Zihao Chen
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Conghui Zeng
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW, 2006, Australia
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Bin Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
5
|
Li G, Li Q, Wang X, Liu X, Zhang Y, Li R, Guo J, Zhang G. Lateral flow immunoassays for antigens, antibodies and haptens detection. Int J Biol Macromol 2023:125186. [PMID: 37268073 DOI: 10.1016/j.ijbiomac.2023.125186] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Lateral flow immunoassay (LFIA) is widely used as a rapid point-of-care testing (POCT) technique in food safety, veterinary and clinical detection on account of the accessible, fast and low-cost characteristics. After the outbreak of the coronavirus disease 2019 (COVID-19), different types of LFIAs have attracted considerable interest because of their ability of providing immediate diagnosis directly to users, thereby effectively controlling the outbreak. Based on the introduction of the principles and key components of LFIAs, this review focuses on the major detection formats of LFIAs for antigens, antibodies and haptens. With the rapid innovation of detection technologies, new trends of novel labels, multiplex and digital assays are increasingly integrated with LFIAs. Therefore, this review will also introduce the development of new trends of LFIAs as well as its future perspectives.
Collapse
Affiliation(s)
- Ge Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiao Liu
- Henan Medical College, Zhengzhou 451191, China
| | - Yuhang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Rui Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Junqing Guo
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China; Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
6
|
Highly sensitive immunochromatographic assay for simultaneous determination of azaperone and azaperol in pork. Food Chem X 2022; 17:100525. [DOI: 10.1016/j.fochx.2022.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
|
7
|
Voltammetric estimation of residual nitroxynil in food products using carbon paste electrode. Sci Rep 2022; 12:14289. [PMID: 35995815 PMCID: PMC9395526 DOI: 10.1038/s41598-022-18305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 11/11/2022] Open
Abstract
A simple and sensitive voltammetric method was developed and validated for the recognition of the veterinary drug nitroxynil (NTX). The method is based on studying its voltammetric behavior at a carbon paste electrode. Square wave voltammetry (SWV) was successfully applied in this study. The anodic peak current obtained was a linear function of NTX concentration in Britton Robinson buffer of pH 3 over the range of 3.9 × 10–6–1.0 × 10−4 M with lower detection and quantitation limits of 3.1 × 10–7 and 9.4 × 10–7 M, respectively. The proposed method was first applied to the assessment of the drug in commercial vials. The method was further used to monitor the residual amounts of the drug in bovine meat, kidney, fat, and milk samples. The results obtained were favourably compared with those given by reference method. The interference likely to be introduced by co-administered drugs was evaluated. The electrode reaction was elucidated, and electron transfer kinetics were studied.
Collapse
|
8
|
Chen L, Hu X, Sun Y, Xing Y, Zhang G. An ultrasensitive monoclonal antibody-based lateral flow immunoassay for the rapid detection of xylazine in milk. Food Chem 2022; 383:132293. [PMID: 35158128 DOI: 10.1016/j.foodchem.2022.132293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/04/2022]
Abstract
In this study, a novel hapten was designed and successfully synthesized to prepared the artificial immunogen against xylazine (XYL), then the monoclonal antibody 1H2-2C6 was obtained and applied to a lateral flow immunoassay (LFI) strip for rapid detection of XYL in milk. The visual detection limit (cutoff value) of the LFI strip was 5 ng/mL, the linear regression formula was Y = -0.521lg(X) + 0.382 (R2 = 0.995, n = 6), the linear detection range was 0.16-2.23 ng/mL and the detection limit (LOD) was 0.1 ng/mL. The recovery rates were in the range from 88.95% to 91.45%, the highest coefficient of variation was 8.89% (n = 3). The LFI strip was also validated by LC-MS/MS, as revealed, there were no significance differences between the two methods (the confidence interval was 95%). In brief, the LFI strip provides a reliable, sensitive and portable testing tool for screening of XYL on-site.
Collapse
Affiliation(s)
- Linlin Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaofei Hu
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yaning Sun
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yunrui Xing
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Gaiping Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| |
Collapse
|
9
|
Jiang H, Xu X, Song S, Wu A, Liu L, Kuang H, Xu C. A monoclonal antibody-based colloidal gold immunochromatographic strip for the analysis of novobiocin in beef and chicken. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1053-1064. [PMID: 35486679 DOI: 10.1080/19440049.2022.2048089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, a monoclonal antibody (mAb) 1G5 against novobiocin with high sensitivity and specificity was prepared from a newly-designed hapten. According to the results of an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA), the 50%-inhibitory concentration of the anti-novobiocin mAb was 6.9 ng/mL and the cross-reactivity was less than 0.1% to its analogues. Furthermore, a rapid colloidal gold immunochromatographic assay (ICA) was successfully developed for the determination of novobiocin in spiked samples. Two calibration curves were established respectively, for beef and chicken samples. The ICA results showed a visual colorimetric value of 50 ng/mL and a cut-off value of 300 ng/mL in beef samples. The ICA results of chicken samples were almost the same as that of beef. When quantitative detection was performed using a strip reader, the detection ranges for quantitative analysis in beef and chicken were 23.7-287.5 and 19.7-263.8 µg/kg respectively. Recoveries were between 82.7 and 95.3% for beef samples with the coefficient of variation (CV) ranging from 2.5 to 5.1%. Recoveries were in the range of 89.6-105.5% with the CV ranging from 2.9% to 6.3% for chicken samples. Importantly, these results from the ICA were highly consistent with the results obtained by LC-MS/MS. Therefore, this ICA could be used as an alternative means for the rapid determination of NOV in a large number of beef and chicken samples.
Collapse
Affiliation(s)
- Hongtao Jiang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Xinxin Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Aihong Wu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
10
|
Xu X, Wang Z, Guo L, Xu X, Wu A, Kuang H, Sun L, Song S, Xu C. Sensitive Lateral Flow Immunoassay for the Residues of Imidocarb in Milk and Beef Samples. ACS OMEGA 2021; 6:2559-2569. [PMID: 33553874 PMCID: PMC7859938 DOI: 10.1021/acsomega.0c04422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Based on the successful derivation of a hapten, we prepared and optimized a murine monoclonal antibody against imidocarb, with an IC50 of 2.22 ng/mL and a limit of detection (LOD) of 0.45 ng/mL. Cross-experiment results showed that the cross-over rate for 4,4'-dinitrocarbanilide was 18.12%, and the cross-reactivity with other analogues when using the ic ELISA was less than 0.1%. We used the developed ic-ELISA to detect the addition and recovery of imidocarb in milk and beef samples, and values were 86.0-93.5 and 84.5-101.2%, respectively. The preparation of an immunochromatographic test strip based on gold nanoparticles was used for the rapid identification of imidocarb in milk and beef samples. When assessed by the naked eye, the visual LOD for imidocarb in milk and beef samples was 5 and 10 ng/mL, and the cut-off values were 20 and 50 ng/mL, respectively. Because of its high sensitivity, specificity, and simplicity, the test strip can be used for on-site testing and rapid screening of imidocarb in food samples.
Collapse
Affiliation(s)
- Xiaoxin Xu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic
of China
- International
Joint Research Laboratory for Biointerface and Biodetection, and School
of Food Science and Technology, Jiangnan
University, Wuxi 214122, People’s Republic of China
| | - Zhongxing Wang
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic
of China
- International
Joint Research Laboratory for Biointerface and Biodetection, and School
of Food Science and Technology, Jiangnan
University, Wuxi 214122, People’s Republic of China
| | - Lingling Guo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic
of China
- International
Joint Research Laboratory for Biointerface and Biodetection, and School
of Food Science and Technology, Jiangnan
University, Wuxi 214122, People’s Republic of China
| | - Xinxin Xu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic
of China
- International
Joint Research Laboratory for Biointerface and Biodetection, and School
of Food Science and Technology, Jiangnan
University, Wuxi 214122, People’s Republic of China
| | - Aihong Wu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic
of China
- International
Joint Research Laboratory for Biointerface and Biodetection, and School
of Food Science and Technology, Jiangnan
University, Wuxi 214122, People’s Republic of China
| | - Hua Kuang
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic
of China
- International
Joint Research Laboratory for Biointerface and Biodetection, and School
of Food Science and Technology, Jiangnan
University, Wuxi 214122, People’s Republic of China
| | - Li Sun
- Chinese
Academy of Inspection and Quarantine, No. 11, Ronghua South Road, Yizhuang Economic and Technological Development
Zone, Beijing 100176, China
| | - Shanshan Song
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic
of China
- International
Joint Research Laboratory for Biointerface and Biodetection, and School
of Food Science and Technology, Jiangnan
University, Wuxi 214122, People’s Republic of China
| | - Chuanlai Xu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic
of China
- International
Joint Research Laboratory for Biointerface and Biodetection, and School
of Food Science and Technology, Jiangnan
University, Wuxi 214122, People’s Republic of China
| |
Collapse
|
11
|
Wang Z, Hu S, Bao H, Xing K, Liu J, Xia J, Lai W, Peng J. Immunochromatographic assay based on time-resolved fluorescent nanobeads for the rapid detection of sulfamethazine in egg, honey, and pork. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:684-692. [PMID: 32705699 DOI: 10.1002/jsfa.10681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sulfamethazine (SMZ), a veterinary drug widely used in animal husbandry, is harmful to human health when excess residues are present in food. In this study, a fast, reliable, and sensitive immunochromatographic assay (ICA) was developed on the basis of the competitive format by using time-resolved fluorescent nanobeads (TRFN) as label for the detection of SMZ in egg, honey, and pork samples. RESULTS Under optimized working conditions, this method had limits of detection of 0.016, 0.049, and 0.029 ng mL-1 and corresponding linear ranges of 0.05 to 1.00, 0.05 to 5.00, and 0.05 to 1.00 ng mL-1 in egg, honey, and pork samples, respectively. The recovery experiments showed that the average recoveries ranged from 90.5% to 113.9%, 82.4% to 112.0%, and 79.8% to 93.4% with corresponding coefficients of variation of 4.1% to 11.7%, 7.5% to 11.5%, and 4.8% to 8.7% for egg, honey, and pork samples, respectively. The developed TRFN-ICA was also systematically compared with high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) by analyzing 45 actual samples from egg, honey, and pork. CONCLUSION Overall, the developed TRFN-ICA had high reliability and excellent potential for the ultrasensitive detection of SMZ for food safety monitoring, also providing a universal platform for the on-site detection of other targets. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zexiang Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Song Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Huanhuan Bao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Keyu Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jintao Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jun Xia
- Jiangxi Institute of Veterinary Drug and Feedstuff Control, Nanchang, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Juan Peng
- School of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Na G, Hu X, Sun Y, Kwee S, Xing G, Xing Y, Zhang G. A highly sensitive monoclonal antibody-based paper sensor for simultaneously detecting valnemulin and tiamulin in porcine liver. J Food Sci 2020; 85:1681-1688. [PMID: 32418205 DOI: 10.1111/1750-3841.15136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 11/30/2022]
Abstract
Valnemulin (VAL) and tiamulin (TIA) are pleuromutilin antibiotics used primarily for treating bacterial infections in swine or other food animals. Furthermore, VAL and TIA are also employed as feed additives to promote animal growth. However, the illegal use of VAL and TIA could cause a series of hazards to consumers. Here, VAL was designed to be conjugated with bovine serum protein to prepare immunogen. A highly sensitive monoclonal antibody that recognized both VAL and TIA has been successfully produced. Moreover, an immunochromatographic strip assay for rapidly screening VAL and TIA in porcine liver was established with visual detection limits (cutoff values) of 50 and 25 ng/g, respectively. The IC50 values calculated from the equation of the standard curve were 6.06 and 3.45 ng/g and the limits of detection were 0.96 and 0.29 ng/g for VAL and TIA. According to the recovery experiment results, the test strip exhibited acceptable accuracy and precision. Generally, the proposed strip provided a practical tool for the detection of VAL and TIA. PRACTICAL APPLICATION: We produced a highly sensitive monoclonal antibody and developed an immunoassay strip for simultaneously monitoring TIA and VAL. Additionally it was preliminarily confirmed that the rapid detection tool was suitable for screening TIA and VAL in porcine liver.
Collapse
Affiliation(s)
- Guanqiong Na
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Xiaofei Hu
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yaning Sun
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Sharon Kwee
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, U.S.A
| | - Guangxu Xing
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yunrui Xing
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Gaiping Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
13
|
Na G, Hu X, Yang J, Sun Y, Kwee S, Tang L, Xing G, Xing Y, Zhang G. Colloidal gold-based immunochromatographic strip assay for the rapid detection of bacitracin zinc in milk. Food Chem 2020; 327:126879. [PMID: 32442848 DOI: 10.1016/j.foodchem.2020.126879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 01/13/2023]
Abstract
In this study, a murine monoclonal antibody (mAb) of 6D2-G10 against bacitracin zinc (BAC) was produced and applied to an immunochromatographic strip (ICS) for the initial detection of BAC in milk. The ICS with a cut-off value of 25 ng/mL could be perceived by the naked eye within 10 min. With the assist of the strip reader, the limit of detection (LOD) was measured as 0.82 ng/mL, the half-maximal inhibitory concentration (IC50) was recorded as 3.16 ng/mL, and the linear detection range was from 0.97 to 10.30 ng/mL. The recoveries ranged from 87.7% to 96.0% with the highest coefficient of variation (CV) of 9.1% in the intra-assay and from 84.3% to 90.2% with the highest CV of 10.7% in the inter-assay. In short, the established ICS provided a serviceable analytical tool for qualitatively and quantitatively monitoring BAC in milk.
Collapse
Affiliation(s)
- Guanqiong Na
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaofei Hu
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jifei Yang
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yaning Sun
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Sharon Kwee
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Liang Tang
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Guangxu Xing
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yunrui Xing
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Gaiping Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
14
|
Na G, Hu X, Sun Y, Xing G, Xing Y, Zhang G. A novel gold particle-based paper sensor for sensitively detecting carprofen in bovine muscle. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1740178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Guanqiong Na
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Xiaofei Hu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People’s Republic of China
| | - Yaning Sun
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People’s Republic of China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People’s Republic of China
| | - Yunrui Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People’s Republic of China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|