1
|
Cai W, Zhou W, Liu J, Wang J, Kuang D, Wang J, Long Q, Huang D. An Exploratory Study on the Rapid Detection of Volatile Organic Compounds in Gardenia Fruit Using the Heracles NEO Ultra-Fast Gas Phase Electronic Nose. Metabolites 2024; 14:445. [PMID: 39195541 DOI: 10.3390/metabo14080445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Gardenia fruit is a popular functional food and raw material for natural pigments. It comes from a wide range of sources, and different products sharing the same name are very common. Volatile organic compounds (VOCs) are important factors that affect the flavor and quality of gardenia fruit. This study used the Heracles NEO ultra-fast gas phase electronic nose with advanced odor analysis performance and high sensitivity to analyze six batches of gardenia fruit from different sources. This study analyzed the VOCs to find a way to quickly identify gardenia fruit. The results show that this method can accurately distinguish the odor characteristics of various gardenia fruit samples. The VOCs in gardenia fruit are mainly organic acid esters, ketones, and aldehyde compounds. By combining principal component analysis (PCA) and discriminant factor analysis (DFA), this study found that the hexanal content varied the most in different gardenia fruit samples. The VOCs allowed for the fruit samples to be grouped into two main categories. One fruit sample was quite different from the fruits of other origins. The results provide theoretical support for feasibility of rapid identification and quality control of gardenia fruit and related products in the future.
Collapse
Affiliation(s)
- Wenjing Cai
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Zhou
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiayao Liu
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jing Wang
- Hunan Gardenia Industrial Technology Research Center, Yueyang 414100, China
| | - Ding Kuang
- Hunan Gardenia Industrial Technology Research Center, Yueyang 414100, China
| | - Jian Wang
- Hunan Gardenia Industrial Technology Research Center, Yueyang 414100, China
| | - Qing Long
- Hunan Gardenia Industrial Technology Research Center, Yueyang 414100, China
| | - Dan Huang
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Gardenia Industrial Technology Research Center, Yueyang 414100, China
| |
Collapse
|
2
|
Zhou X, Shan B, Liu S, Gao W, Wang X, Wang H, Xu H, Sun L, Zhu B. Sensory omics combined with mathematical modeling for integrated analysis of retronasal Muscat flavor in table grapes. Food Chem X 2024; 21:101198. [PMID: 38370303 PMCID: PMC10869294 DOI: 10.1016/j.fochx.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/17/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024] Open
Abstract
This study focused on analyzing the aroma formation mechanism of retronasal muscat flavor in table grapes. The sensory characteristics and fragrance components of table grape juice with different intensities of Muscat were investigated using GC-Quadrupole-MS, quantitative descriptive analysis and three-alternate forced choice. Free monoterpenoids were the main contributors to the retronasal Muscat flavor. The contribution of Muscat compounds to this flavor was quantified by Stevens coefficient, the most and the least sensitive compounds to concentration changes were citronellol and linalool, respectively. To predict the Muscat flavor intensity by mathematical modeling, established a model between Muscat flavor intensity and monoterpenoids concentration, and an optimal partial least squares regression model with a linear relationship between natural logarithms was obtained. These findings provide reference for understanding the formation mechanism of specific aromas in fruits and provide a basis for the development and quality control of processed products such as Muscat flavor grape juice.
Collapse
Affiliation(s)
- Xiaomiao Zhou
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- State Key Laboratory of Tree Genetics and Breeding, Bejing Forestry University, Beijing 100083, China
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Bingqi Shan
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
- Heilongjiang Feihe Dairy Co., Ltd., Beijing 100015, China
| | - Songyu Liu
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
| | - Wenping Gao
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyue Wang
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, China
| | - Huiling Wang
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, China
| | - Haiying Xu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Lei Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Baoqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Bejing Forestry University, Beijing 100083, China
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Feng J, Zhang W, Wang W, Nieuwenhuizen NJ, Atkinson RG, Gao L, Hu H, Zhao W, Ma R, Zheng H, Tao J. Integrated Transcriptomic and Proteomic Analysis Identifies Novel Regulatory Genes Associated with Plant Growth Regulator-Induced Astringency in Grape Berries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4433-4447. [PMID: 38354220 DOI: 10.1021/acs.jafc.3c04408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Astringency influences the sensory characteristics and flavor quality of table grapes. We tested the astringency sensory attributes of berries and investigated the concentration of flavan-3-ols/proanthocyanidins (PAs) in skins after the application of the plant growth regulators CPPU and GA3 to the flowers and young berries of the "Summer Black" grape. Our results showed that CPPU and GA3 applications increase sensory astringency perception scores and flavan-3-ol/proanthocyanidin concentrations. Using integrated transcriptomic and proteomic analysis, differentially expressed transcripts and proteins associated with growth regulator treatment were identified, including those for flavonoid biosynthesis that contribute to the changes in sensory astringency levels. Transient overexpression of candidate astringency-related regulatory genes in grape leaves revealed that VvWRKY71, in combination with VvMYBPA1 and VvMYC1, could promote the biosynthesis of proanthocyanidins, while overexpression of VvNAC83 reduced the accumulation of proanthocyanidins. However, in transient promoter studies in Nicotiana benthamiana, VvWRKY71 repressed the promoter of VvMYBPA2, while VvNAC83 had no significant effect on the promoter activity of four PA-related genes, and VvMYBPA1 was shown to activate its own promoter. This study provides new insights into the molecular mechanisms of sensory astringency formation induced by plant growth regulators in grape berries.
Collapse
Affiliation(s)
- Jiao Feng
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Wen Zhang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi,Xinjiang 830001, China
| | - Wu Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 92169, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 92169, New Zealand
| | - Lei Gao
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Haipeng Hu
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Wanli Zhao
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Ruiyang Ma
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Huan Zheng
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Jianmin Tao
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi,Xinjiang 830001, China
| |
Collapse
|
4
|
Villavicencio JD, Tobar J, Zoffoli JP, O'Brien JA, Contreras C. Identification, characterization, and expression of lipoxygenase genes in sweet cherry (Prunus avium L.) cv. Regina and their relationship with the development of an herbaceous off-flavor during fruit ripening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108271. [PMID: 38141402 DOI: 10.1016/j.plaphy.2023.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023]
Abstract
Flavor is an essential characteristic of fruit quality and is significant for consumers. Off-flavors have been reported in several fruits, including sweet cherry. This fruit has been reported to show an herbaceous/grassy-like flavor. The herbaceous off-flavor in sweet cherries detected in cultivar Regina has been related to the differential development of aroma compounds such as short-chain aldehydes and esters. One of the main biosynthesis pathways for these compounds is the fatty acid oxidation mediated by lipoxygenases (LOX). In order to have a better understanding of the biological basis of the differences in the volatile profile, the LOX gene expression profile was characterized during fruit development with and without herbaceous off-flavor. A genome-wide analysis of LOX in sweet cherry was carried out and compared to other species such as Arabidopsis, tomato, apple, prunus and strawberry. The structural features of 9-LOX and 13-LOX genes, encoded protein domains and their synteny were examined. Moreover, we analyzed the LOX expression at four developmental stages along ripening by RT-qPCR. Thirteen LOX gene candidates (six 9-LOX and seven 13-LOX) were identified. The 13-LOXs, PaLOX10, PaLOX11, and PaLOX12 were differentially expressed in herbaceous sweet cherries. Furthermore, their expression profile positively correlated with key volatile compounds linked to the herbaceous off-flavor. Overall, this study involves the genome-wide characterization of the LOX family in Prunus avium cv. Regina and provides information that can aid in studying LOX-related fruit deterioration in sweet cherries and associated species.
Collapse
Affiliation(s)
- Juan David Villavicencio
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, 7820244, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile
| | - Jose Tobar
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile
| | - Juan Pablo Zoffoli
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, 7820244, Chile
| | - José Antonio O'Brien
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, 7820244, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile.
| | - Carolina Contreras
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Isla Teja S/N, Valdivia, 5110566, Chile.
| |
Collapse
|
5
|
Rodríguez-Lorenzo M, Mauri N, Royo C, Rambla JL, Diretto G, Demurtas O, Hilbert G, Renaud C, Tobar V, Huete J, Delrot S, Granell A, Martínez-Zapater JM, Carbonell-Bejerano P. The flavour of grape colour: anthocyanin content tunes aroma precursor composition by altering the berry microenvironment. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6369-6390. [PMID: 37294268 PMCID: PMC10627162 DOI: 10.1093/jxb/erad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/07/2023] [Indexed: 06/10/2023]
Abstract
Anthocyaninless (white) instead of black/red (coloured) fruits develop in grapevine cultivars without functional VviMYBA1 and VviMYBA2 genes, and this conditions the colour of wines that can be produced. To evaluate whether this genetic variation has additional consequences on fruit ripening and composition, we performed comparisons of microenvironment, transcriptomics, and metabolomics of developing grapes between near-isogenic white- and black-berried somatic variants of Garnacha and Tempranillo cultivars. Berry temperature was as much as 3.5 ºC lower in white- compared to black-berried Tempranillo. An RNA-seq study combined with targeted and untargeted metabolomics revealed that ripening fruits of white-berried variants were characterized by the up-regulation of photosynthesis-related and other light-responsive genes and by their higher accumulation of specific terpene aroma precursors, fatty acid-derived aldehyde volatiles, and phenylpropanoid precursor amino acids. MYBA1-MYBA2 function proved essential for flavonol trihydroxylation in black-berried somatic variants, which were also characterized by enhanced expression of pathogen defence genes in the berry skin and increased accumulation of C6-derived alcohol and ester volatiles and γ-aminobutyric acid. Collectively, our results indicate that anthocyanin depletion has side-effects on grape composition by altering the internal microenvironment of the berry and the partitioning of the phenylpropanoid pathway. Our findings show how fruit colour can condition other fruit features, such as flavour potential and stress homeostasis.
Collapse
Affiliation(s)
- Maite Rodríguez-Lorenzo
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - Nuria Mauri
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - Carolina Royo
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - José L Rambla
- Instituto de Biología Molecular y Celular de Plantas, IBMCP, CSIC - Universidad Politécnica de Valencia, 46011 Valencia, Spain
- Universitat Jaume I, Departamento de Biología, Bioquímica y Ciencias Naturales, 12071 Castellón de la Plana, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies Energy and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy
| | - Olivia Demurtas
- Italian National Agency for New Technologies Energy and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy
| | - Ghislaine Hilbert
- EGFV, Bordeaux Sciences Agro, INRA - Université de Bordeaux, ISVV, 33140 Villenave d’Ornon, France
| | - Christel Renaud
- EGFV, Bordeaux Sciences Agro, INRA - Université de Bordeaux, ISVV, 33140 Villenave d’Ornon, France
| | - Vanessa Tobar
- Servicio de Información Agroclimática de La Rioja (SIAR). Consejería de Agricultura, Ganadería y Medio Ambiente, Gobierno de La Rioja, 26007 Logroño, Spain
| | - Joaquín Huete
- Servicio de Información Agroclimática de La Rioja (SIAR). Consejería de Agricultura, Ganadería y Medio Ambiente, Gobierno de La Rioja, 26007 Logroño, Spain
| | - Serge Delrot
- EGFV, Bordeaux Sciences Agro, INRA - Université de Bordeaux, ISVV, 33140 Villenave d’Ornon, France
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, IBMCP, CSIC - Universidad Politécnica de Valencia, 46011 Valencia, Spain
| | - José Miguel Martínez-Zapater
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| |
Collapse
|
6
|
Wang WN, Qian YH, Liu RH, Liang T, Ding YT, Xu XL, Huang S, Fang YL, Ju YL. Effects of Table Grape Cultivars on Fruit Quality and Aroma Components. Foods 2023; 12:3371. [PMID: 37761080 PMCID: PMC10530201 DOI: 10.3390/foods12183371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The basic physical and chemical qualities, nutrition, aroma components, and sensory evaluation of 17 varieties of table grapes were studied. The quality evaluation system of different table grape varieties was preliminarily determined. Our results show that the soluble solid content in Ruby Seedless was 21.17%, which was higher than that of other varieties. The black varieties Aishenmeigui and Sweet Sapphire had the highest total phenol content. Aishenmeigui had high levels of tannin and vitamin C. In addition, the aroma contents in Meixiangbao, Ruby Seedless, and Shine-Muscat were higher than those in other varieties. Manicure Finger and Ruby Seedless had higher levels of C6 compounds. Moreover, the "Kyoho" series of grape Meixiangbao, Sunmmer Black, Jumeigui, Hutai 8 hao, and Black Beet were high in ester content, while Muscat varieties, including Zaoheibao, Aishenmeigui, Jumeigui, and Shine-Muscat were rich in terpene substances. Ruby Seedless, Shine-Muscat, and Heibaladuo had higher comprehensive scores in sensory evaluation. Hence, the comprehensive quality of Shine-Muscat, Ruby Seedless, and Aishenmeigui was better. These results may serve as references for determining the quality differences between table grape varieties.
Collapse
Affiliation(s)
- Wan-Ni Wang
- College of Enology, Northwest A&F University, Yangling 712100, China; (W.-N.W.); (Y.-H.Q.); (R.-H.L.); (T.L.); (Y.-T.D.); (X.-L.X.); (Y.-L.F.)
| | - Yun-Hui Qian
- College of Enology, Northwest A&F University, Yangling 712100, China; (W.-N.W.); (Y.-H.Q.); (R.-H.L.); (T.L.); (Y.-T.D.); (X.-L.X.); (Y.-L.F.)
| | - Ruo-Han Liu
- College of Enology, Northwest A&F University, Yangling 712100, China; (W.-N.W.); (Y.-H.Q.); (R.-H.L.); (T.L.); (Y.-T.D.); (X.-L.X.); (Y.-L.F.)
| | - Tao Liang
- College of Enology, Northwest A&F University, Yangling 712100, China; (W.-N.W.); (Y.-H.Q.); (R.-H.L.); (T.L.); (Y.-T.D.); (X.-L.X.); (Y.-L.F.)
| | - Yin-Ting Ding
- College of Enology, Northwest A&F University, Yangling 712100, China; (W.-N.W.); (Y.-H.Q.); (R.-H.L.); (T.L.); (Y.-T.D.); (X.-L.X.); (Y.-L.F.)
| | - Xue-Lei Xu
- College of Enology, Northwest A&F University, Yangling 712100, China; (W.-N.W.); (Y.-H.Q.); (R.-H.L.); (T.L.); (Y.-T.D.); (X.-L.X.); (Y.-L.F.)
| | - Shan Huang
- Yangling Rural Economic Management Service Station, Yangling 712100, China;
| | - Yu-Lin Fang
- College of Enology, Northwest A&F University, Yangling 712100, China; (W.-N.W.); (Y.-H.Q.); (R.-H.L.); (T.L.); (Y.-T.D.); (X.-L.X.); (Y.-L.F.)
- Heyang Viti-viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Yan-Lun Ju
- College of Enology, Northwest A&F University, Yangling 712100, China; (W.-N.W.); (Y.-H.Q.); (R.-H.L.); (T.L.); (Y.-T.D.); (X.-L.X.); (Y.-L.F.)
| |
Collapse
|
7
|
Yue X, Ju Y, Zhang H, Wang Z, Xu H, Zhang Z. Integrated transcriptomic and metabolomic analysis reveals the changes in monoterpene compounds during the development of Muscat Hamburg (Vitis vinifera L.) grape berries. Food Res Int 2022; 162:112065. [DOI: 10.1016/j.foodres.2022.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/29/2022]
|
8
|
Hua YJ, Xie F, Liu XY, Liu YK, Luo YY, Ding YJ. Comprehensive metabolomics analysis of key taste components in different varieties of table grapes. J Sep Sci 2022; 45:3700-3713. [PMID: 35933586 DOI: 10.1002/jssc.202200137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/06/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022]
Abstract
Grapes are one of the world's largest fruit crops, which are rich in nutrients and taste. Summer Black, Gui Fei, Kyoho Grape, Giant Rose, Shine Muscat, and Rosario Bianco are the six most popular table grapes in Wuxi city, Jiangsu province. Owing to the lack of comprehensive investigations of metabolites in table grapes, the metabolic causes of differences in their taste are unknown. In this study, metabolites of six table grapes were profiled using ultra-high-performance liquid chromatography-Q-Exactive Orbitrap tandem mass spectrometry combined with a multivariate analysis. Orthogonal partial least squares discriminant analysis clearly discriminated among the metabolites of these varieties. Metabolic pathway analysis revealed that carbohydrate and amino acid metabolisms was highly conserved among these varieties. Our results suggest that the taste differences in the six table grape varieties can be explained by variations in composition and abundance of carbohydrates, organic acids, amino acids, and polyphenols. This study provides comprehensive insights into the underlying metabolic causes of taste variation in table grapes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yu-Jiao Hua
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214000, China
| | - Fen Xie
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214000, China
| | - Xiao-Yuan Liu
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214000, China
| | - Yan-Kui Liu
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214000, China
| | - Yi-Yuan Luo
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, Zhejiang Province, 315000, China
| | - Yong-Juan Ding
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214000, China
| |
Collapse
|
9
|
Kaya O, Incesu M, Ates F, Keskin N, Verdugo-Vásquez N, Gutiérrez-Gamboa G. Study of Volatile Organic Compounds of Two Table Grapes (cv. Italia and Bronx Seedless) along Ripening in Vines Established in the Aegean Region (Turkey). PLANTS 2022; 11:plants11151935. [PMID: 35893640 PMCID: PMC9329889 DOI: 10.3390/plants11151935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
(1) Background: Italia is a seeded grape variety widely cultivated in the Aegean Region in Turkey, whereas Bronx Seedless is a seedless grape variety, preferred by consumers due to its pink berries and interesting flavor. The goal was to study the volatile compounds of these table grapes throughout berry ripeness. (2) Methods: The volatile compounds were analyzed by GC-MS in six different phenological stages (3) Results: Bronx Seedless grapes presented a higher content of seven terpenes, three aldehydes, one fatty acid, three alcohols, one C6 compound, total aldehydes and total alcohols, and a lower content of eleven terpenes, one fatty acid, four esters, one alcohol, four C6 compounds and its total content than Italia table grapes. The concentration of most of the volatile compounds analyzed increased from “begin of berry touch” to “berries ripe for harvest” stages. Terpenes content in both varieties at harvest was lower than 1.0 mg L−1. β-ionone presented the highest odor activity value (OAV) in both varieties. Bronx Seedless grapes presented higher OAV for (Z)-3-hexenal and cedrol, and lower hexanal to (E)-2-hexenal ratio than Italia grapes. (4) Conclusions: Both varieties could be classified as neutral aromatical varieties and it is probable that to achieve a better aromatic quality, Bronx Seedless should be harvested later than Italia.
Collapse
Affiliation(s)
- Ozkan Kaya
- Erzincan Horticultural Research Institute, Republic of Turkey Ministry of Agriculture and Forestry, Erzincan 24060, Turkey
- Correspondence: (O.K.); (G.G.-G.); Tel.: +90-553-4701308 (O.K.); +56-9-79942130 (G.G.-G.)
| | - Melek Incesu
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25100, Turkey;
| | - Fadime Ates
- Manisa Viticulture Research Institute, Republic of Turkey Ministry of Agriculture and Forestry, Manisa 45125, Turkey;
| | - Nurhan Keskin
- Faculty of Agriculture, Department of Horticulture, Van Yüzüncü Yıl University, Van 65090, Turkey;
| | - Nicolás Verdugo-Vásquez
- Centro de Investigación Intihuasi, Instituto de Investigaciones Agropecuarias INIA, Colina San Joaquín s/n, La Serena 1700000, Chile;
| | - Gastón Gutiérrez-Gamboa
- Escuela de Agronomía, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Temuco 4780000, Chile
- Correspondence: (O.K.); (G.G.-G.); Tel.: +90-553-4701308 (O.K.); +56-9-79942130 (G.G.-G.)
| |
Collapse
|
10
|
Comparison of Different Drying Methods on the Volatile Components of Ginger ( Zingiber officinale Roscoe) by HS-GC-MS Coupled with Fast GC E-Nose. Foods 2022; 11:foods11111611. [PMID: 35681361 PMCID: PMC9180836 DOI: 10.3390/foods11111611] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Ginger (Zingiber officinale Roscoe) is one of the most popular spices in the world, with its unique odor. Due to its health benefits, ginger is also widely used as a dietary supplement and herbal medicine. In this study, the main flavor components of gingers processed by different drying methods including hot air drying, vacuum drying, sun-drying, and vacuum-freeze drying, were identified on the basis of headspace-gas chromatography coupled with mass spectrometry (HS-GC-MS) and fast gas chromatography electronic-nose (fast GC e-nose) techniques. The results showed that the ginger dried by hot air drying exhibited high contents of volatile compounds and retained the richest odor in comparison with those dried by other methods, which indicated that hot air drying is more suitable for the production of dried ginger. Sensory description by fast GC e-nose exhibited that ginger flavor was mainly concentrated in the spicy, sweet, minty, fruity, and herbaceous odor. The relative content of the zingiberene was significantly higher in the hot air drying sample than those by other methods, suggesting that dried ginger by hot air drying can retain more unique spicy and pungent odorants. Furthermore, the results of chemometrics analyses showed that the main variance components among the samples by different drying methods were α-naginatene, (+)-cyclosativene, and sulcatone in HS-GC-MS analysis, and α-terpinen-7-al, dimethyl sulfide, and citronellal in fast GC e-nose analysis. For comparison of fresh and dried gingers, terpinolene, terpinen-4-ol, 2,4-decadienal, (E, Z)-, and linalool were considered the main variance components. This study generated a better understanding of the flavor characteristics of gingers by different drying methods and could provide a guide for drying and processing of ginger.
Collapse
|
11
|
Tyagi K, Maoz I, Kochanek B, Sela N, Lerno L, Ebeler SE, Lichter A. Cytokinin but not gibberellin application had major impact on the phenylpropanoid pathway in grape. HORTICULTURE RESEARCH 2021; 8:51. [PMID: 33642590 PMCID: PMC7917099 DOI: 10.1038/s41438-021-00488-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 05/27/2023]
Abstract
Cytokinin and gibberellic acid (GA) are growth regulators used to increase berry size in seedless grapes and it is of interest to understand their effects on the phenylpropanoid pathway and on ripening processes. GA3 and synthetic cytokinin forchlorfenuron (N-(2-chloro-4-pyridyl)-N'-phenylurea, CPPU) and their combination were applied to 6 mm diameter fruitlets of 'Sable Seedless', and berries were sampled 51 and 70 days (d) following application. All treatments increased berry size and delayed sugar accumulation and acid degradation with a stronger effect of CPPU. CPPU, but not GA, reduced berry color and the levels of anthocyanins. While CPPU reduced the levels of anthocyanins by more than 50%, the combined treatment of GA+CPPU reduced the levels by about 25% at 51 d. CPPU treatment had minor effects on flavonols content but increased the levels of monomeric flavan-3-ols by more than two-fold. Phloroglucinol analysis using HPLC showed that proanthocyanidin content was significantly increased by CPPU, whereas mean degree of polymerization was reduced from 26 to 19. Volatile analysis by GC-MS showed changes in composition with CPPU or GA treatment with potential impact on flavor. RNA-seq analysis showed that GA had a minor overall effect on the transcriptome whereas CPPU had pronounced effects on gene expression at both 51 and 70 d. Comparing the control and CPPU at similar Brix of ca. 19.7°, a reduced expression of stilbene synthases (STSs) including their regulators MYB14 and MYB15, and other phenylpropanoid-related genes was observed in CPPU-treated grapes. Overall, our study shows that CPPU had a major influence on the phenylpropanoid pathway and affected multiple ripening-related processes.
Collapse
Affiliation(s)
- Kamal Tyagi
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Itay Maoz
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Bettina Kochanek
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Noa Sela
- Department of Plant Pathology, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Larry Lerno
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
- Food Safety and Measurement Facility, University of California, Davis, CA, 95616, USA
| | - Susan E Ebeler
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Amnon Lichter
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
12
|
Wang W, Feng J, Wei L, Khalil-Ur-Rehman M, Nieuwenhuizen NJ, Yang L, Zheng H, Tao J. Transcriptomics Integrated with Free and Bound Terpenoid Aroma Profiling during "Shine Muscat" ( Vitis labrusca × V. vinifera) Grape Berry Development Reveals Coordinate Regulation of MEP Pathway and Terpene Synthase Gene Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1413-1429. [PMID: 33481572 DOI: 10.1021/acs.jafc.0c06591] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Terpenes and their derivatives are important biomarkers of grape quality as they contribute to the flavor and aroma of grapes. However, the molecular basis of terpene biosynthesis throughout the grapevine phenological developmental cycle remains elusive. Our current study investigates the free and bound terpene biosynthesis of berries at different phenological stages from preveraison to harvest. Detailed gene expression (transcriptomics) analysis, terpenoid volatile production by gas chromatography-mass spectrometry (GC-MS), and in planta transient expression were employed. Our results show that concentrations of most individual terpenes at different stages are distinctive and increase from preveraison to the veraison stage followed by a decrease from veraison to maturity. The combined transcriptomic analysis and terpene profiling revealed that 22 genes belonging to the MEP pathway and multiple classes of transcription factor family members including bHLH and several hormone biosynthesis- or signaling-related genes likely participate in the regulation of terpenoid biosynthesis according to their specific expression patterns in berries. Quantitative real-time polymerase chain expression analysis of 8 key differentially expressed genes in MEP pathways and further 12 randomly selected genes was performed during 8 sampling stages and validated the RNA-seq-derived expression profiles. To further confirm the function of a subset of the differentially expressed genes, we investigated the effects of combined overexpression of 1-deoxy-d-xylulose-5-phosphate synthase (VvDXS1-LOC100249323), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (VvDXR-LOC100248516), and terpene synthase (VvTPS56-LOC100266449) on the production of terpenes by transient overexpression in Nicotiana benthamiana leaves. The overall developmental patterns of total terpenes and gene expression profiles will help guide the functional analyses of further candidate genes important for terpene biosynthesis of grape as well as identifying the master transcriptional and hormonal regulators of this pathway in the future.
Collapse
Affiliation(s)
- Wu Wang
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jiao Feng
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Lingling Wei
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | | | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169 Auckland, New Zealand
| | - Lina Yang
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, 26506-6201 Morgantown, West Virginia, United States
| | - Huan Zheng
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jianmin Tao
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
13
|
Ripening and Storage Time Effects on the Aromatic Profile of New Table Grape Cultivars in Chile. Molecules 2020; 25:molecules25245790. [PMID: 33302548 PMCID: PMC7763542 DOI: 10.3390/molecules25245790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to determine the volatile profiles of new seedless table grape cultivars Timco™, Magenta™, Krissy™ and Arra15™ and compare them with the traditional table grape variety Crimson seedless. The volatile profiles were extracted employing solid-phase microextraction and analyzed with gas chromatography coupled with mass spectrometry. Terpenes were present in very different proportions, with the Magenta, Krissy, and Arra15 varieties showing much higher quantities than Crimson and Timco. β-Ionone and octanal, important indicators in the aromatic flavor quality of table grapes, were present in higher levels in Crimson and Arra15, and this might be responsible for driving consumer preference. These compounds significantly increased during ripening, except in Crimson, and gradually decreased from harvest to the end of the storage in all the cultivars. Evolution during ripening was different depending on the variety but the general tendency terpenes was to increase from veraison to harvest. A postharvest study revealed that Crimson could have a better conservation of the volatile components during postharvest storage compared with Timco and Krissy. These results could help in plant breeding programs and to make decisions for new planting according to needs for storing fresh table grapes given distances to consumer markets.
Collapse
|
14
|
Bianchi T, Guerrero L, Weesepoel Y, Argyris J, Koot A, Gratacós-Cubarsí M, Garcia-Mas J, van Ruth S, Hortós M. Linking sensory and proton transfer reaction–mass spectrometry analyses for the assessment of melon fruit (Cucumis melo L.) quality traits. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|