1
|
Park H, Eo HJ, Kim CW, Stewart JE, Lee U, Lee J. Physiological disorders in cold-stored 'Autumn Sense' hardy kiwifruit depend on the storage temperature and the modulation of targeted metabolites. Food Chem 2024; 460:140730. [PMID: 39106810 DOI: 10.1016/j.foodchem.2024.140730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
This study aimed to elucidate the effects of storage temperature on various fruit quality attributes, physiological disorders, and associated metabolites in the 0.5, 3, or 10 °C stored hardy kiwifruit. Peel pitting, which was highest in the 0.5 °C stored fruit, was identified as a chilling injury symptom of hardy kiwifruit. Proline and branched-chain amino acid contents showed higher values at 0.5 °C stored fruit as chilling responses. On the other hand, fruit shriveling and decay were highest in the 10 °C after 5 weeks of storage. The 10 °C storage induced fruit ripening during 3 weeks, but fruit shriveling and decay were severe after 5 weeks of storage. Therefore, storing the 'Autumn Sense' hardy kiwifruit at proper temperatures would be more beneficial, as it alters targeted metabolites and helps reduce the incidence of physiological disorders during cold storage.
Collapse
Affiliation(s)
- Hyowon Park
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| | - Hyun Ji Eo
- Special Forest Resources Division, National Institute of Forest Science, Suwon 16631, Republic of Korea.
| | - Chul-Woo Kim
- Special Forest Resources Division, National Institute of Forest Science, Suwon 16631, Republic of Korea.
| | - Jane E Stewart
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Uk Lee
- Special Forest Resources Division, National Institute of Forest Science, Suwon 16631, Republic of Korea.
| | - Jinwook Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
2
|
Wan J, Wu Y, Tong Z, Su W, Lin H, Fan Z. Melatonin Treatment Alleviates Chilling Injury of Loquat Fruit via Modulating ROS Metabolism. Foods 2024; 13:3050. [PMID: 39410085 PMCID: PMC11476320 DOI: 10.3390/foods13193050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Cold storage is one of the most effective methods to maintain postharvest fruit quality. However, loquat fruits are prone to chilling injury (CI) during cold storage, appearing as symptoms such as browning and pitting, which leads to quality deterioration and economic losses. In this study, the effects of melatonin on CI alleviation and the potential role of reactive oxygen species (ROS) metabolism in loquat fruit were investigated. The results showed that 50 μM melatonin was the optimal concentration to inhibit the increase in CI index and cell membrane permeability. Moreover, compared to control fruits, 50 μM melatonin inhibited the malonaldehyde (MDA) content, O2-. production rate and H2O2 content (ROS accumulation) by 17.8%, 7.2% and 11.8%, respectively, during cold storage. Compared to non-treated loquats, 50 μM melatonin maintained higher levels of 1-diphenyl-2-picrylhydrazyl radical-scavenging ability and reducing power, as well as the contents of ascorbic acid (AsA) and glutathione (GSH). Additionally, 50 μM melatonin enhanced the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) by increasing relevant gene expressions. The activities of SOD, CAT and APX were increased by up to 1.1-, 1.1- and 1.1-times (16 d) by melatonin, as compared with the control fruits. These findings indicate that melatonin mitigation of CI is involved in maintaining cellular redox apphomeostasis in loquat fruit during cold storage.
Collapse
Affiliation(s)
- Jiahui Wan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou 350002, China
| | - Yanting Wu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou 350002, China
| | - Zhihong Tong
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Wenbing Su
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou 350002, China
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou 350002, China
| |
Collapse
|
3
|
Aghdam MS, Arnao MB. Phytomelatonin: From Intracellular Signaling to Global Horticulture Market. J Pineal Res 2024; 76:e12990. [PMID: 39030989 DOI: 10.1111/jpi.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a well-known mammalian hormone, has been having a great relevance in the Plant World in recent years. Many of its physiological actions in plants are leading to possible features of agronomic interest, especially those related to improvements in tolerance to stressors and in the postharvest life of fruits and vegetables. Thus, through the exogenous application of melatonin or by modifying the endogenous biosynthesis of phytomelatonin, some change can be made in the functional levels of melatonin in tissues and their responses. Also, acting in the respective phytomelatonin biosynthesis enzymes, regulating the expression of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), N-acetylserotonin O-methyltransferase (ASMT), and caffeic acid O-methyltransferase (COMT), and recently the possible action of deacetylases on some intermediates offers promising opportunities for improving fruits and vegetables in postharvest and its marketability. Other regulators/effectors such as different transcription factors, protein kinases, phosphatases, miRNAs, protein-protein interactions, and some gasotransmitters such as nitric oxide or hydrogen sulfide were also considered in an exhaustive vision. Other interesting aspects such as the role of phytomelatonin in autophagic responses, the posttranslational reprogramming by protein-phosphorylation, ubiquitylation, SUMOylation, PARylation, persulfidation, and nitrosylation described in the phytomelatonin-mediated responses were also discussed, including the relationship of phytomelatonin and several plant hormones, for chilling injury and fungal decay alleviating. The current data about the phytomelatonin receptor in plants (CAND2/PMTR1), the effect of UV-B light and cold storage on the postharvest damage are presented and discussed. All this on the focus of a possible new action in the preservation of the quality of fruits and vegetables.
Collapse
Affiliation(s)
| | - Marino B Arnao
- Phytohormones and Plant Development Laboratory, Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
4
|
Darré M, Zaro MJ, Guijarro-Fuertes M, Careri L, Concellón A. Melatonin Combined with Wax Treatment Enhances Tolerance to Chilling Injury in Red Bell Pepper. Metabolites 2024; 14:330. [PMID: 38921464 PMCID: PMC11205990 DOI: 10.3390/metabo14060330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Bell peppers (Capsicum annuum L.) are prone to chilling injury (CI) when stored at temperatures below 7 °C. Melatonin, a natural plant regulator, plays a critical role in defending against different pre- and post-harvest abiotic stresses, including those associated with cold storage. This study aimed to assess the effects of applying exogenous melatonin alone and in combination with a commercial wax on the CI tolerance, postharvest life, and potential biomarker search of red bell peppers. In the initial experiment, the effective melatonin concentration to reduce CI effects was determined. Peppers were sprayed with either distilled water (control) or a melatonin aqueous solution (M100 = 100 μM or M500 = 500 μM) and then stored for 33 d at 4 °C, followed by 2 d at 20 °C. The M500 treatment proved to be more effective in reducing fruit CI incidence (superficial scalds) and metabolic rate, while weight loss, softening, and color were comparable to the control. A second experiment assessed the potential synergistic effects of a combined melatonin and commercial wax treatment on pepper CI and quality. Fruits were sprayed with distilled water (control), melatonin (M500), commercial wax (Wax), or the combined treatment (Wax + M500) and stored for 28 d at 4 °C, followed by 2 d at 20 °C. The Wax + M500 was the most effective in significantly reducing the incidence of fruit CI symptoms and calyx fungal infection. Furthermore, this combined treatment enhanced fruit weight loss prevention compared with individual melatonin or wax treatment. Also, Wax + M500-treated peppers exhibited notable proline accumulation, indicative of a metabolic response counteracting the cold effects, resulting in better fruit stress acclimation. This treatment also preserved the peppers' color and antioxidant capacity. In summary, these findings highlight the suitability of applying a combined Wax + M500 treatment as a highly effective strategy to enhance the CI tolerance of peppers and extend their postharvest life.
Collapse
Affiliation(s)
| | | | | | | | - Analia Concellón
- CIDCA, Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CONICET-UNLP-CIC), Facultad de Ciencias Exactas, Calles 47 y 115, La Plata CP 1900, Argentina; (M.D.); (M.J.Z.); (M.G.-F.); (L.C.)
| |
Collapse
|
5
|
Pang X, Huang Y, Xiao N, Wang Q, Feng B, Ali Shad M. Effect of EVA film and chitosan coating on quality and physicochemical characteristics of mango fruit during postharvest storage. Food Chem X 2024; 21:101169. [PMID: 38357366 PMCID: PMC10864215 DOI: 10.1016/j.fochx.2024.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Mango (Mangifera indica L.) is a major tropical fruit, but a short postharvest life hampers marketing. The objective of this work is to assess the influence of a novel nanocomposite poly (ethylene-co-vinyl acetate) (EVA) film and Chitosan (CTS) affect on mango postharvest quality while stored at 20 °C. The results showed that the film coating treatment reduced the decay rate and weight loss of mangoes, maintaining good postharvest quality of mango fruit. The film coating treatment increased the antioxidant capacity of mangoes by inhibiting PPO activity and increasing the activity of antioxidant enzymes. ACS, ACO, and ethylene release were all suppressed, as well as the expression of the ethylene receptors genes ETR1, ETR2, and ERS2, thus delaying mango aging. After harvest, the EVA treatment was superior to the CTS treatment in mango preservation.
Collapse
Affiliation(s)
- Xi Pang
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yumi Huang
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Naiyu Xiao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qing Wang
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bihong Feng
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Munsif Ali Shad
- College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Venkatachalam K, Charoenphun N, Lekjing S, Noonim P. Investigation of Melatonin Incorporated CMC-Gelatin Based Edible Coating on the Alleviation of Chilling Injury Induced Pericarp Browning in Longkong. Foods 2023; 13:72. [PMID: 38201100 PMCID: PMC10778143 DOI: 10.3390/foods13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Longkong (Aglaia dookkoo Griff.) fruit is prone to rapid pericarp browning and shortened shelf life (<7 days) under prolonged low-temperature storage. This study investigates the effect of an edible coating, comprising carboxymethyl cellulose (CMC) and gelatin in a fixed 3:1 ratio, integrated with various concentrations of melatonin (MT) (0.4, 0.8, and 1.2 mM/L) to mitigate chilling injury in longkong fruit. Coated longkong fruits were stored at 13 °C with 90% relative humidity for 18 days and underwent physicochemical evaluations every three days. Samples coated with CMC-Gel without MT and uncoated fruits were served as controls. The findings indicated that the CMC-Gel-MT coating significantly mitigated pericarp browning, chilling injury, weight loss, and respiration rate increase under extended cold storage conditions. High concentrations of MT (≥0.8 mM/L) in the coating notably inhibited the activities of cellular degrading enzymes such as lipoxygenase and phospholipase D. This inhibition contributed to reduced membrane permeability, lower reactive oxygen species accumulation (H2O2, OH-, O2-), and decreased malondialdehyde levels in the longkong pericarp. Furthermore, the CMC-Gel-MT coating increased the activity of phenylalanine ammonia lyase, leading to an enhancement in phenolic content. Consequently, it improved the fruit's ability to scavenge DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,20-azino-di-3-ethylbenzthiazoline sulfonic acid) radicals. Control samples exhibited high levels of pericarp browning-related enzymes (polyphenol oxidase, peroxidase), whereas CMC-Gel-MT-coated fruits, particularly at higher MT concentrations, showed significant reductions in those enzyme activities. In conclusion, incorporating high concentrations of MT in a CMC-Gel-based edible coating is a promising alternative for mitigating chilling injury in longkong fruit.
Collapse
Affiliation(s)
- Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand; (K.V.); (S.L.)
| | - Narin Charoenphun
- Faculty of Science and Arts, Burapha University Chanthaburi Campus, Chanthaburi 22170, Thailand;
| | - Somwang Lekjing
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand; (K.V.); (S.L.)
| | - Paramee Noonim
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand; (K.V.); (S.L.)
| |
Collapse
|
7
|
Khaliq G, Ali S, Ejaz S, Abdi G, Faqir Y, Ma J, Siddiqui MW, Ali A. γ-Aminobutyric acid is involved in overlapping pathways against chilling injury by modulating glutamate decarboxylase and defense responses in papaya fruit. FRONTIERS IN PLANT SCIENCE 2023; 14:1233477. [PMID: 38034576 PMCID: PMC10687426 DOI: 10.3389/fpls.2023.1233477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/28/2023] [Indexed: 12/02/2023]
Abstract
The effect of γ-aminobutyric acid (GABA) treatment at two concentrations (1 mM or 5 mM) on papaya fruit stored at 4°C and 80%-90% relative humidity for 5 weeks was investigated. The application of GABA at 5 mM apparently inhibited chilling injury, internal browning, electrolyte leakage, malondialdehyde (MDA), hydrogen peroxide (H2O2), polyphenol oxidase (PPO), phospholipase D (PLD), and lipoxygenase (LOX) activities of papaya fruit. Fruit treated with 5 mM GABA enhanced the activities of ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), superoxide dismutase (SOD), glutamate decarboxylase (GAD), and phenylalanine ammonia-lyase (PAL). In addition, GABA treatment significantly displayed higher levels of proline, endogenous GABA accumulation, phenolic contents, and total antioxidant activity than the nontreated papaya. The results suggested that GABA treatment may be a useful approach to improving the chilling tolerance of papaya fruit by reducing oxidative stress and enhancing the defense system.
Collapse
Affiliation(s)
- Ghulam Khaliq
- Department of Horticulture, Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Sajid Ali
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Shaghef Ejaz
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Yahya Faqir
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang, China
| | - Jiahua Ma
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang, China
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Post-Harvest Technology, Bihar Agricultural University, Sabour, India
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
8
|
Li N, Zhai K, Yin Q, Gu Q, Zhang X, Melencion MG, Chen Z. Crosstalk between melatonin and reactive oxygen species in fruits and vegetables post-harvest preservation: An update. Front Nutr 2023; 10:1143511. [PMID: 36937352 PMCID: PMC10020600 DOI: 10.3389/fnut.2023.1143511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Fruits and vegetables contain numerous nutrients, such as vitamins, minerals, phenolic compounds, and dietary fibers. They reduce the incidence of cardiovascular diseases and the risk of certain chronic diseases, and improve the antioxidant and anti-inflammatory capacity. Moreover, melatonin was found in various fruits and vegetables species. Melatonin acts as a multifunctional compound to participate in various physiological processes. In recent years, many advances have been found that melatonin is also appraised as a key modulator on the fruits and vegetables post-harvest preservation. Fruits and vegetables post-harvest usually elicit reactive oxygen species (ROS) generation and accumulation. Excess ROS stimulate cell damage, protein structure destruction, and tissue aging, and thereby reducing their quality. Numerous studies find that exogenous application of melatonin modulates ROS homeostasis by regulating the antioxidant enzymes and non-enzymatic antioxidants systems. Further evidences reveal that melatonin often interacts with hormones and other signaling molecules, such as ROS, nitric oxide (NO), hydrogen sulfide (H2S), and etc. Among these 'new' molecules, crosstalks of melatonin and ROS, especially the H2O2 produced by RBOHs, are provided in fruits and vegetables post-harvest preservation in this review. It will provide reference for complicated integration of both melatonin and ROS as signal molecules in future study.
Collapse
Affiliation(s)
- Na Li
- Biology Department, Center for Biodiversity Research and Extension in Mindanao, Central Mindanao University, Musuan, Philippines
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Kefeng Zhai
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou, China
| | - Qin Yin
- Biology Department, Center for Biodiversity Research and Extension in Mindanao, Central Mindanao University, Musuan, Philippines
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Quan Gu
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Xingtao Zhang
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Merced G. Melencion
- Biology Department, Center for Biodiversity Research and Extension in Mindanao, Central Mindanao University, Musuan, Philippines
- *Correspondence: Merced G. Melencion, ; Ziping Chen,
| | - Ziping Chen
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei, China
- *Correspondence: Merced G. Melencion, ; Ziping Chen,
| |
Collapse
|
9
|
Lin D, Yan R, Xing M, Liao S, Chen J, Gan Z. Fucoidan treatment alleviates chilling injury in cucumber by regulating ROS homeostasis and energy metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:1107687. [PMID: 36618644 PMCID: PMC9816408 DOI: 10.3389/fpls.2022.1107687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Chilling injury is a major hindrance to cucumber fruit quality during cold storage. METHODS AND RESULTS In this study, we evaluated the effects of fucoidan on fruit quality, reactive oxygen species homeostasis, and energy metabolism in cucumbers during cold storage. The results showed that, compared with the control cucumber fruit, fucoidan-treated cucumber fruit exhibited a lower chilling injury index and less weight loss, as well as reduced electrolyte leakage and malondialdehyde content. The most pronounced effects were observed following treatment with fucoidan at 15 g/L, which resulted in increased 1,1-diphenyl-2-picrylhydrazyl and hydroxyl radical scavenging rates and reduced superoxide anion production rate and hydrogen peroxide content. The expression and activity levels of peroxidase, catalase, and superoxide dismutase were enhanced by fucoidan treatment. Further, fucoidan treatment maintained high levels of ascorbic acid and glutathione, and high ratios of ascorbic acid/dehydroascorbate and glutathione/oxidized glutathione. Moreover, fucoidan treatment increased the activities of ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase and their gene expression. Fucoidan treatment significantly delayed the decrease in ATP and ADP, while preventing an increase in AMP content. Finally, fucoidan treatment delayed the decrease of energy charge and the activities and gene expression of H+-ATPase, Ca2+-ATPase, cytochrome c oxidase, and succinate dehydrogenase in cucumber fruits. CONCLUSION Altogether, our findings indicate that fucoidan can effectively enhance antioxidant capacity and maintain energy metabolism, thereby improving cucumber cold resistance during cold storage.
Collapse
|
10
|
Yao L, Zhang T, Peng S, Xu D, Liu Z, Li H, Hu L, Mo H. Fe2+ protects postharvest pitaya (Hylocereus undulatus britt) from Aspergillus. flavus infection by directly binding its genomic DNA. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 5:100135. [PMID: 36177106 PMCID: PMC9513725 DOI: 10.1016/j.fochms.2022.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/30/2022] [Accepted: 09/17/2022] [Indexed: 12/02/2022]
Abstract
Light was shield on Fe2+ application as antifungal agent on pitaya postharvest. Fe2+ prevents A. flavus infection by directly binding to A. flavus DNA. This research will promote the research on the mechanism of fungal death. A new strategy was provided to combat fungal infection in fruit postharvest industry.
Aspergillus flavus (A. flavus) is a postharvest fungus, causing pitaya fruit decay and limiting pitaya value and shelf life. However, safer and more efficient methods for preventing A. flavus contamination for pitaya fruit remain to be investigated. In this study, we successfully proved exogenous Fe2+ could inhibit A. flavus colonization in pitaya fruit and extend pitaya’s shelf life after harvest. Moreover, gel electrophoresis, CD analysis and Raman spectrum tests revealed Fe2+ could more effectively and thoroughly promote conidial death by directly binding to A. flavus DNA. Increased expression of DNA damage repair-related genes after Fe2+ treatment was observed by transcription analysis, which might eventually lead to SOS response in A. flavus. These results indicated Fe2+ could prevent A. flavus infestation on pitaya in a novel, quickly responsive mechanism. Our results shed light on the potential application of Fe2+ in the food industry and provided a more universal antifungal agent against food pathogens.
Collapse
|
11
|
Wang Y, Chen J, Bian W, Yang X, Ye L, He S, Song X. Control Efficacy of Salicylic Acid Microcapsules against Postharvest Blue Mold in Apple Fruit. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228108. [PMID: 36432209 PMCID: PMC9698001 DOI: 10.3390/molecules27228108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Salicylic acid (SA) is a natural inducer of disease resistance in fruit, but its application in the food industry is limited due to low water solubility. Here, SA was encapsulated in β-cyclodextrin (β-CD) via the host-guest inclusion complexation method, and the efficacy of SA microcapsules (SAM) against blue mold caused by Penicillium expansum in postharvest apple fruit was elucidated. It was observed that SAM was the most effective in inhibiting the mycelial growth of P. expansum in vitro. SAM was also superior to SA for control of blue mold under in vivo conditions. Enzyme activity analysis revealed that both SA and SAM enhanced the activities of superoxide dismutase (SOD) and phenylalanine ammonia lyase (PAL) in apple fruit, whereas SAM led to higher SOD activities than SA. Total phenolic contents in the SAM group were higher than those in the SA group at the early stage of storage. SAM also improved fruit quality by retarding firmness loss and maintaining higher total soluble solids (TSS) contents. These findings indicate that microcapsules can serve as a promising formulation to load SA for increasing P. expansum inhibition activity and improving quality attributes in apple fruit.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Food Science and Technology, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jiahao Chen
- Department of Food Science and Technology, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wenyi Bian
- Department of Food Science and Technology, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaobo Yang
- Department of Food Science and Technology, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lin Ye
- Department of Food Science and Technology, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Shoukui He
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (S.H.); (X.S.)
| | - Xiaoqiu Song
- Department of Food Science and Technology, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
- Correspondence: (S.H.); (X.S.)
| |
Collapse
|
12
|
Postharvest melatonin treatment delays senescence and increases chilling tolerance in pineapple. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Feng BS, Kang DC, Sun J, Leng P, Liu LX, Wang L, Ma C, Liu YG. Research on melatonin in fruits and vegetables and the mechanism of exogenous melatonin on postharvest preservation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Sati H, Khandelwal A, Pareek S. Effect of exogenous melatonin in fruit postharvest, crosstalk with hormones, and defense mechanism for oxidative stress management. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Hansika Sati
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonipat India
| | - Aparna Khandelwal
- Department of Biochemistry Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences Rohtak Haryana India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonipat India
| |
Collapse
|
15
|
Exogenous Application of Melatonin to Green Horn Pepper Fruit Reduces Chilling Injury during Postharvest Cold Storage by Regulating Enzymatic Activities in the Antioxidant System. PLANTS 2022; 11:plants11182367. [PMID: 36145768 PMCID: PMC9505764 DOI: 10.3390/plants11182367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Chilling injury (CI) caused by exposure to low temperatures is a serious problem in the postharvest cold storage of pepper fruit. Melatonin (MT) has been reported to minimize CI in several plants. To evaluate the effectiveness of MT to minimize CI in green horn pepper and the possible mechanism involved, freshly picked green horn peppers were treated with MT solution at 100 μmol L−1 or water and then stored at 4 °C for 25 d. Results showed that MT treatment reduced CI in green horn pepper fruit, as evidenced by lower CI rate and CI index. MT treatment maintained lower postharvest metabolism rate and higher fruit quality of green horn peppers, as shown by reduced weight loss and respiratory rate, maintened fruit firmness and higher contents of chlorophyll, total phenols, flavonoids, total soluble solids and ATP. Additionally, the contents of hydrogen peroxide, superoxide radical, and malondialdehyde were kept low in the MT-treated fruit, and the activities of the enzymes peroxidase, superoxide dismutase, and catalase were significantly elevated. Similarly, the ascorbate–glutathione cycle was enhanced by elevating the activities of ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase, to increase the regeneration of ascorbic acid and glutathione. Our results show that MT treatment protected green horn pepper fruit from CI and maintained high fruit quality during cold storage by triggering the antioxidant system
Collapse
|
16
|
Madebo MP, Zheng Y, Jin P. Melatonin-mediated postharvest quality and antioxidant properties of fresh fruits: A comprehensive meta-analysis. Compr Rev Food Sci Food Saf 2022; 21:3205-3226. [PMID: 35621156 DOI: 10.1111/1541-4337.12961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
At postharvest, fruits have a short shelf life. Recently, there has been much literature on the effects of melatonin on the postharvest quality of horticultural crops. However, reports of various findings comprise mixed claims and product-specific conclusions. Therefore, a meta-analysis systematically dissects the comprehensive effect on several fruits. In this meta-analysis, standard mean difference (SMD) was adopted using a random-effect model. The study used 36 articles and isolated 24 indicator parameters of postharvest quality and antioxidant properties based on the inclusion criteria. As exhibited in the forest plot, melatonin reduced chilling injury, weight loss, respiration rate, and ethylene content (SMD -0.90, 95% CI [-1.14, -0.65]; I2 = 81%; p < .00001). Similarly, the application of melatonin significantly suppressed electrolyte leakage, malondialdehyde (MDA), hydrogen peroxide, superoxide anion, lipoxygenase, and polyphenol oxidase (SMD -0.89, 95% CI [-1.09, -0.69]; I2 = 70%; p < .00001). In addition, exogenous melatonin application induced endogenous melatonin content, phenolic content, and flavonoid and anthocyanin contents (SMD 1.15, 95% CI [0.91, 1.39]; I2 = 71%; p = .01). Moreover, melatonin treatment enhanced antioxidant activities (catalase, superoxide dismutase, peroxidase, ascorbate peroxidase, and phenylalanine ammonia-lyse) (SMD 1.37, 95% CI [1.03, 1.71]; I2 = 86%; p < .00001). Thus, in the whole study, the overall effect was significantly high in treated fruit (p < .0001), and the overall heterogeneity was above (I2 ) > 70%. In addition, the funnel plot showed symmetry in the most selected studies. To sum up, the result gives a further understanding of melatonin's capabilities in reducing postharvest losses and maintaining the quality of fresh fruits.
Collapse
Affiliation(s)
- Miilion Paulos Madebo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China.,College of Agriculture and Natural Resource, Dilla University, Dilla, Ethiopia
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
17
|
Qari SH, Hassan MU, Chattha MU, Mahmood A, Naqve M, Nawaz M, Barbanti L, Alahdal MA, Aljabri M. Melatonin Induced Cold Tolerance in Plants: Physiological and Molecular Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:843071. [PMID: 35371159 PMCID: PMC8967244 DOI: 10.3389/fpls.2022.843071] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 05/24/2023]
Abstract
Cold stress is one of the most limiting factors for plant growth and development. Cold stress adversely affects plant physiology, molecular and biochemical processes by determining oxidative stress, poor nutrient and water uptake, disorganization of cellular membranes and reduced photosynthetic efficiency. Therefore, to recover impaired plant functions under cold stress, the application of bio-stimulants can be considered a suitable approach. Melatonin (MT) is a critical bio-stimulant that has often shown to enhance plant performance under cold stress. Melatonin application improved plant growth and tolerance to cold stress by maintaining membrane integrity, plant water content, stomatal opening, photosynthetic efficiency, nutrient and water uptake, redox homeostasis, accumulation of osmolytes, hormones and secondary metabolites, and the scavenging of reactive oxygen species (ROS) through improved antioxidant activities and increase in expression of stress-responsive genes. Thus, it is essential to understand the mechanisms of MT induced cold tolerance and identify the diverse research gaps necessitating to be addressed in future research programs. This review discusses MT involvement in the control of various physiological and molecular responses for inducing cold tolerance. We also shed light on engineering MT biosynthesis for improving the cold tolerance in plants. Moreover, we highlighted areas where future research is needed to make MT a vital antioxidant conferring cold tolerance to plants.
Collapse
Affiliation(s)
- Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | | | - Athar Mahmood
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Maria Naqve
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Lorenzo Barbanti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Maryam A. Alahdal
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maha Aljabri
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Biology, Research Laboratories Centre, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
18
|
Optimization of Osmotic Dehydration of Sapodilla ( Achras zapota L.). Foods 2022; 11:foods11060794. [PMID: 35327217 PMCID: PMC8952435 DOI: 10.3390/foods11060794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 01/16/2023] Open
Abstract
Sapodilla (Achras zapota L.) is a fruit with a great nutritional potential; however, its perishable nature is a great obstacle for commercialization/exportation. Herein, osmotic dehydration was applied to sapodilla to reduce post-harvest losses and obtain a stable product with acceptable sensorial characteristics. Initially, a 2³ full-factorial design was performed to determine the effect of temperature (30−50 °C), sucrose concentration (40−60% °Brix) and immersion time (90−240 min) on the moisture loss (ML), solid gain (SG) and dehydration efficiency index (DEI). The samples with higher DEI values were subjected to sensory analysis, followed by physicochemical, microbiological and structural analyses. The temperature and the concentration of the osmotic solution had significant influence (p < 0.05) on ML and SG, whereas DEI was significantly influenced (p < 0.05) by the concentration of osmotic solution and the immersion time. The sample produced by osmotic dehydration using the optimized conditions (40 °C, 50 °Brix; 165 min) obtained higher scores on the sensorial attributes, greater compliance with microbiological standards and generated turgor reduction and ruptures of sapodilla cell walls.
Collapse
|
19
|
Shu P, Li Y, Li Z, Xiang L, Sheng J, Shen L. Ferulic acid enhances chilling tolerance in tomato fruit by up-regulating the gene expression of CBF transcriptional pathway in MAPK3-dependent manner. POSTHARVEST BIOLOGY AND TECHNOLOGY 2022; 185:111775. [PMID: 0 DOI: 10.1016/j.postharvbio.2021.111775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
20
|
A Melatonin Treatment Delays Postharvest Senescence, Maintains Quality, Reduces Chilling Injury, and Regulates Antioxidant Metabolism in Mango Fruit. J FOOD QUALITY 2022. [DOI: 10.1155/2022/2379556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The effects of an exogenous application of various concentrations and dipping duration of melatonin (MT) treatment on postharvest senescence, quality, chilling tolerance, and antioxidant metabolism of mango fruit cv. “Dashehari” were examined. Fruits were treated with three concentrations of MT (50, 100, or 150 µM), each applied for three times (60, 90, or 120 min), followed by storage at 5 ± 1°C. The MT concentration of 100 µM with a dipping duration of 120 min was efficient in reducing the chilling injury and maintaining the quality of mango fruit for 28 d. Effects of this treatment were due to its effectiveness in reducing metabolic activity, specifically, respiration rate and ethylene production, resulting in higher firmness, titratable acidity, and ascorbic acid content and lower weight loss, total soluble solids, pH, and total soluble solid : acidity ratio. Moreover, it maintained a higher concentration of total phenolics and total flavonoids, as well as antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl and cupric reducing antioxidant power assays), as compared to other treatments. This was further confirmed with higher activities of antioxidant enzymes superoxide dismutase and catalase and membrane stability (according to a lower malondialdehyde content and lipoxygenase activity). Thus, our data show that a 100 µM MT administered for 120 min appears to be the most appropriate treatment to maintain the quality of mango fruits stored at chilling temperatures.
Collapse
|
21
|
Melatonin Treatment Improves Postharvest Preservation and Resistance of Guava Fruit (Psidium guajava L.). Foods 2022; 11:foods11030262. [PMID: 35159414 PMCID: PMC8834009 DOI: 10.3390/foods11030262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/26/2022] Open
Abstract
Guava fruit has a short postharvest shelf life at room temperature. Melatonin is widely used for preservation of various postharvest fruit and vegetables. In this study, an optimal melatonin treatment (600 μmol·L−1, 2 h) was identified, which effectively delayed fruit softening and reduced the incidence of anthracnose on guava fruit. Melatonin effectively enhanced the antioxidant capacity and reduced the oxidative damage to the fruit by reducing the contents of superoxide anions, hydrogen peroxide and malondialdehyde; improving the overall antioxidant capacity and enhancing the enzymatic antioxidants and non-enzymatic antioxidants. Melatonin significantly enhanced the activities of catalase, superoxide dismutase, ascorbate peroxidase and glutathione reductase. The contents of total flavonoids and ascorbic acid were maintained by melatonin. This treatment also enhanced the defense-related enzymatic activities of chitinase and phenylpropanoid pathway enzymes, including phenylalanine ammonia lyase and 4-coumaric acid-CoA-ligase. The activities of lipase, lipoxygenase and phospholipase D related to lipid metabolism were repressed by melatonin. These results showed that exogenous melatonin can maintain the quality of guava fruit and enhance its resistance to disease by improving the antioxidant and defense systems of the fruit.
Collapse
|
22
|
Melatonin: A blooming biomolecule for postharvest management of perishable fruits and vegetables. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Ze Y, Gao H, Li T, Yang B, Jiang Y. Insights into the roles of melatonin in maintaining quality and extending shelf life of postharvest fruits. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Hu Y, Hao Y, Wei Z, Cui H, Zhan Y. Effect of 1‐MCP coupling with carbon dioxide treatment on antioxidant enzyme activities and quality of fresh‐cut Fuji apples. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yunfeng Hu
- College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Yicheng Hao
- College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Zengyu Wei
- College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Hanyuan Cui
- Tianjin Research Center of Agricultural Biotechnology Tianjin China
| | - Yuexiang Zhan
- College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| |
Collapse
|
25
|
Wang H, Kou X, Wu C, Fan G, Li T. Methyl jasmonate induces the resistance of postharvest blueberry to gray mold caused by Botrytis cinerea. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4272-4281. [PMID: 32378217 DOI: 10.1002/jsfa.10469] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The effects of postharvest methyl jasmonate (MeJA) treatment (50 μmol L-1 ) on the control of gray mold caused by Botrytis cinerea in blueberry fruit were evaluated by analyzing (i) the levels of disease resistance signals; (ii) the activity of enzymes involved in antioxidant system, disease resistance and phenylpropanoid pathway, and (iii) the secondary metabolite content. RESULTS The results indicated that MeJA treatment significantly restrained the development of gray mold decay in blueberries. The treatment induced a nitric oxide (NO) burst and increased the endogenous hydrogen peroxide (H2 O2 ) content in the earlier period of storage. The enhanced NO and H2 O2 generation by MeJA treatment might serve as a signal to induce resistance against B. cinerea infection. Furthermore, in inoculated fruit, MeJA treatment significantly promoted antioxidant enzymes and defense-related enzyme activity, which included superoxide dismutase, catalase, ascorbate peroxidase, chitinase, and β-1,3-glucanase, and the degree of membrane lipid peroxidation was reduced. The MeJA treatment enhanced the phenylpropanoid pathway by provoking phenylalanine ammonialyase, cinnamate 4-hydroxylase, and 4-coumarate CoA ligase activity, which was accompanied by elevated levels of phenolics and flavonoids in blueberry fruit. CONCLUSION These results suggested that MeJA could induce the disease resistance of blueberries against B. cinerea by regulating the antioxidant enzymes, defense-related enzymes, and the phenylpropanoid pathway through the activation of signaling molecules.
Collapse
Affiliation(s)
- Hanbo Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Caie Wu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, PR China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, PR China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, PR China
| | - Gongjian Fan
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, PR China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, PR China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, PR China
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, PR China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, PR China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, PR China
| |
Collapse
|