1
|
Wu Z, Ma L, Su D, Xiagedeer B. The disrupting effect of chlormequat chloride on growth hormone is associated with pregnancy. Toxicol Lett 2024; 395:17-25. [PMID: 38552810 DOI: 10.1016/j.toxlet.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/01/2024]
Abstract
Since chlormequat chloride is widely applied as a plant growth regulator in agriculture and horticulture, its exposure through food consumption is common. We demonstrated previously that chlormequat chloride exposure during pregnancy led to embryos with bigger sizes associated with higher levels of growth hormone (GH) on gestation day 11 (GD11). However, the dose-effect relationship of chlormequat chloride at a lower dose range was not established, and the underlying mechanisms of its promoting effects on embryonic growth and development were not fully elucidated. To address these, pregnant rats were orally exposed to chlormequat chloride at 0, 0.05, 0.5 and 5 mg/kg.bw from GD0 to 11 and the embryonic growth and growth related hormones were evaluated on GD11. We found that the growth and development of the embryos was significantly promoted in a dose dependent manner by chlormequat chloride. Chlormequat chloride also increased embryonic GH, GH releasing hormone (GHRH), and somatostatin (SRIF), and inhibited the embryonic cAMP dependent protein kinase A (PKA) signaling pathway. Chlormequat chloride increased GH synthesis modulated by GHRH/SRIF-PKA-Pituitary specific transcription factor 1 (Pit-1) in the maternal rats. Intriguingly, chlormequat chloride did not show any effects on GH and PKA signaling pathways in the non-pregnant female rats. These findings together suggest that the disrupting effect of chlormequat chloride on GH is associated with pregnancy.
Collapse
Affiliation(s)
- Zongzhen Wu
- Key Laboratory of Special Environment and Health Research in Xinjiang, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830017, PR China
| | - Long Ma
- Key Laboratory of Special Environment and Health Research in Xinjiang, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830017, PR China
| | - Deqi Su
- Key Laboratory of Special Environment and Health Research in Xinjiang, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830017, PR China
| | - Bayindala Xiagedeer
- Key Laboratory of Special Environment and Health Research in Xinjiang, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830017, PR China.
| |
Collapse
|
2
|
Zhang DX, Wang MY, Lin WB, Qu S, Ji L, Xu C, Kan H, Dong K. Recent advances in emerging application of functional materials in sample pretreatment methods for liquid chromatography-mass spectrometry analysis of plant growth regulators: A mini-review. J Chromatogr A 2023; 1704:464130. [PMID: 37302252 DOI: 10.1016/j.chroma.2023.464130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/04/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
Plant growth regulators (PGRs) are a class of small molecular compounds, which can remarkably affect the physiological process of plants. The complex plant matrix along with a wide polarity range and unstable chemical properties of PGRs hinder their trace analysis. In order to obtain a reliable and accurate result, a sample pretreatment process must be carried out, including eliminating the interference of the matrix effect and pre-concentrating the analytes. In recent years, the research of functional materials in sample pretreatment has experienced rapid growth. This review comprehensively overviews recent development in functional materials covering one-dimensional materials, two-dimensional materials, and three-dimensional materials applied in the pretreatment of PGRs before liquid chromatography-mass spectrometry (LC-MS) analysis. Besides, the advantages and limitations of the above functionalized enrichment materials are discussed, and their future trends have been prospected. The work could be helpful to bring new insights for researchers engaged in functional materials in sample pretreatment of PGRs based on LC-MS.
Collapse
Affiliation(s)
- Dong-Xue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Ming-Yue Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Wen-Bo Lin
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Shuai Qu
- Biology Institute of Jilin province, 1244 Qianjin Street, Changchun 130012, Jilin, China
| | - Li Ji
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Chen Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Hong Kan
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Kai Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| |
Collapse
|
3
|
Hu Q, Lan L, Li W, Zhou H, Pan H, Yuan J, Ji S, Miao S. Low-Temperature Cleanup Followed by Dispersive Solid-Phase Extraction for Determination of Nine Polar Plant Growth Regulators in Herbal Matrices Using Liquid Chromatography-Tandem Mass Spectrometry. Chromatographia 2023; 86:483-495. [PMID: 37255950 PMCID: PMC10097522 DOI: 10.1007/s10337-023-04254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Polar plant growth regulators, used alone or doped in fertilizers, are most effective and widely utilized plant growth regulators (PGRs) in agriculture, which play important roles in mediating the yield and quality of crops and foodstuffs. The application scope has been extended to herbal medicines in the past 2 decades and relevant study is inadequate. The aim of this study is to establish a QuPPe-based extraction method containing low-temperature and d-SPE cleanup procedure followed by the detection on a selective multiresidue ultrahigh-performance liquid chromatography - triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS) in three herbal matrices. This simple, accurate, versatile and robust method was verified according to the validation criteria of the SANTE/12682/2019 guideline document. The analytical range was from 2.5 to 200 μg/L, and the average recoveries were in the range of 64.6-117.8% (n = 6). The optimized method was applied to 135 herbal medicines thereof. Result showed that the detection frequency of chlormequat was the highest in the investigated PGRs, with the positive rate of 15.6%. Improvement of the detection method for polar PGRs will enrich the coverage of PGRs, which is conducive to safeguard public health and ensure drug safety. Supplementary Information The online version contains supplementary material available at 10.1007/s10337-023-04254-3.
Collapse
Affiliation(s)
- Qing Hu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203 People’s Republic of China
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Lan Lan
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Wenting Li
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Heng Zhou
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Huiqin Pan
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Jiajia Yuan
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Shen Ji
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203 People’s Republic of China
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Shui Miao
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| |
Collapse
|
4
|
Díaz AB, Durán-Guerrero E, Lasanta C, Castro R. From the Raw Materials to the Bottled Product: Influence of the Entire Production Process on the Organoleptic Profile of Industrial Beers. Foods 2022; 11:3215. [PMID: 37430968 PMCID: PMC9601789 DOI: 10.3390/foods11203215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
In the past few years, there has been a growing demand by consumers for more complex beers with distinctive organoleptic profiles. The yeast, raw material (barley or other cereals), hops, and water used add to the major processing stages involved in the brewing process, including malting, mashing, boiling, fermentation, and aging, to significantly determine the sensory profile of the final product. Recent literature on this subject has paid special attention to the impact attributable to the processing conditions and to the fermentation yeast strains used on the aromatic compounds that are found in consumer-ready beers. However, no review papers are available on the specific influence of each of the factors that may affect beer organoleptic characteristics. This review, therefore, focuses on the effect that raw material, as well as the rest of the processes other than alcoholic fermentation, have on the organoleptic profile of beers. Such effect may alter beer aromatic compounds, foaming head, taste, or mouthfeel, among other things. Moreover, the presence of spoilage microorganisms that might lead to consumers' rejection because of their impact on the beers' sensory properties has also been investigated.
Collapse
Affiliation(s)
- Ana Belén Díaz
- Chemical Engineering and Food Technology Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510 Puerto Real, Cadiz, Spain
| | - Enrique Durán-Guerrero
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510 Puerto Real, Cadiz, Spain
| | - Cristina Lasanta
- Chemical Engineering and Food Technology Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510 Puerto Real, Cadiz, Spain
| | - Remedios Castro
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
5
|
Pandey P, Pandey SS, Awasthi A, Tripathi A, Singh HP, Singh AK, Tandon S, Kalra A. Calliterpenone, a natural plant growth promoter from a medicinal plant Callicarpa macrophylla, sustainably enhances the yield and productivity of crops. FRONTIERS IN PLANT SCIENCE 2022; 13:960717. [PMID: 36226284 PMCID: PMC9549104 DOI: 10.3389/fpls.2022.960717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The global population is rising at an alarming rate, which is threatening food and nutritional security. Although chemical fertilizers and pesticides are important for achieving food security, their excessive usage critically affects soil health and adds up residues in the food chain. There is an increasing interest in identifying eco-friendly farm inputs that can improve crop productivity through sustainable agricultural practices. One of the most common approaches to reducing chemical inputs in agriculture is the use of plant growth regulators (PGRs). Here, we demonstrate the benefits of a natural and novel plant growth enhancer "calliterpenone," isolated from Callicarpa macrophylla, a medicinal plant, for increasing crop productivity in six crops, viz., rice, wheat, potato, tomato, chickpea, and onion. Results revealed that the application of calliterpenone (foliar spraying or seed soaking) enhanced the yield of rice (28.89%), onion (20.63%), potato (37.17%), tomato (28.36%), and chickpea (26.08%) at 0.001 mM and of wheat (27.23%) at 0.01 mM concentrations in comparison to control. This enhancement in yield was reflected through improvements in its growth attributes, viz., spike length, tillers plant-1, seeds spike-1, plant height, and biomass. Furthermore, the exogenous application of calliterpenone could increase the endogenous level of indole-3-acetic acid (IAA) in all tested crops and decrease the content of abscisic acid (ABA) in a few. Trials conducted at farmers' fields showed an overall ~12% increase in rice yield (mean of 11 farmers' fields ranging from 3.48 to 19.63%) and ~10% increase in wheat yield (ranging from 3.91 to 17.51%). The 0.001 mM of calliterpenone was the best effective dose for most crops except wheat, where a concentration of 0.01 mM was found to be the most optimal. This study indicates that calliterpenone is a natural plant growth promoter that can be used in boosting the yields of multiple crops and would be an important input component of organic farming.
Collapse
Affiliation(s)
- Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Shiv Shanker Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ashutosh Awasthi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Hemendra Pratap Singh
- Biostatistics Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Anil Kumar Singh
- Herbal and Medicinal Products Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Sudeep Tandon
- Process Chemistry and Chemical Engineering, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Alok Kalra
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
6
|
Integrated Analysis of Transcriptome and Metabolome Reveals the Regulation of Chitooligosaccharide on Drought Tolerance in Sugarcane ( Saccharum spp. Hybrid) under Drought Stress. Int J Mol Sci 2022; 23:ijms23179737. [PMID: 36077135 PMCID: PMC9456405 DOI: 10.3390/ijms23179737] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Sugarcane (Saccharum spp. hybrid) is an important crop for sugar and biofuels, and often suffers from water shortages during growth. Currently, there is limited knowledge concerning the molecular mechanism involved in sugarcane response to drought stress (DS) and whether chitooligosaccharide could alleviate DS. Here, we carried out a combined transcriptome and metabolome of sugarcane in three different treatment groups: control group (CG), DS group, and DS + chitooligosaccharide group (COS). A total of 12,275 (6404 up-regulated and 5871 down-regulated) differentially expressed genes (DEGs) were identified when comparing the CG and DS transcriptomes (T_CG/DS), and 2525 (1261 up-regulated and 1264 down-regulated) DEGs were identified in comparing the DS and COS transcriptomes (T_DS/COS). GO and KEGG analysis showed that DEGs associated with photosynthesis were significantly enriched and had down-regulated expression. For T_DS/COS, photosynthesis DEGs were also significantly enriched but had up-regulated expression. Together, these results indicate that DS of sugarcane has a significantly negative influence on photosynthesis, and that COS can alleviate these negative effects. In metabolome analysis, lipids, others, amino acids and derivatives and alkaloids were the main significantly different metabolites (SDMs) observed in sugarcane response to DS, and COS treatment reduced the content of these metabolites. KEGG analysis of the metabolome showed that 2-oxocarboxylic acid metabolism, ABC transporters, biosynthesis of amino acids, glucosinolate biosynthesis and valine, leucine and isoleucine biosynthesis were the top-5 KEGG enriched pathways when comparing the CG and DS metabolome (M_CG/DS). Comparing DS with COS (M_DS/COS) showed that purine metabolism and phenylalanine metabolism were enriched. Combined transcriptome and metabolome analysis revealed that pyruvate and phenylalanine metabolism were KEGG-enriched pathways for CG/DS and DS/COS, respectively. For pyruvate metabolism, 87 DEGs (47 up-regulated and 40 down-regulated) and five SDMs (1 up-regulated and 4 down-regulated) were enriched. Pyruvate was closely related with 14 DEGs (|r| > 0.99) after Pearson’s correlation analysis, and only 1 DEG (Sspon.02G0043670-1B) was positively correlated. For phenylalanine metabolism, 13 DEGs (7 up-regulated and 6 down-regulated) and 6 SDMs (1 up-regulated and 5 down-regulated) were identified. Five PAL genes were closely related with 6 SDMs through Pearson’s correlation analysis, and the novel.31257 gene had significantly up-regulated expression. Collectively, our results showed that DS has significant adverse effects on the physiology, transcriptome, and metabolome of sugarcane, particularly genes involved in photosynthesis. We further show that COS treatment can alleviate these negative effects.
Collapse
|
7
|
Liu Y, Chen W, Fan L. Effects of different drying methods on the storage stability of barley grass powder. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1076-1084. [PMID: 34312852 DOI: 10.1002/jsfa.11443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 07/01/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Barley grass (BG) powder has gradually attracted researchers' attention for its abundant nutritional components and functional activity. Yet, the effect of different drying methods on storage stability is still unclear. In this study, BG was subjected to hot-air drying (HAD), steam blanching prior to hot-air drying (SHAD), vacuum freeze drying (VFD), and far-infrared drying (FID). Effects of different drying methods on BG powder during storage were evaluated. RESULTS Moisture content of dried samples during storage decreased at 50 °C, but at 37 °C increased first and then remained stable. The a* value of SHAD BG powder before storage was the highest (-6.51), followed by FID, HAD and VFD. Moreover, the a* value increased during the storage process. Contents of l-ascorbic acid and total chlorophyll in samples dried by VFD were 28.29 and 7.8 g kg-1 , respectively. The degradation of chlorophyll a and b followed a first-order kinetics model and was modeled by the Arrhenius equation. The activation energies for chlorophyll a were 83.68, 83.21, 62.29 and 76.64 kJ mol-1 in BG powder dried by SHAD, FID, VFD and HAD, respectively. The activation energies for chlorophyll b were 66.76, 48.03, 61.02 and 58.01 kJ mol-1 in SHAD, FID, VFD and HAD BG powder, respectively. CONCLUSION VFD had the highest preservation of color, l-ascorbic acid and chlorophyll compared to HAD, SHAD and FID. SHAD shortened the drying time and delayed the degradation of l-ascorbic acid and chlorophyll during storage. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Weifeng Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Application of Exogenous Phytohormones at Silking Stage Improve Grain Quality under Post-Silking Drought Stress in Waxy Maize. PLANTS 2020; 10:plants10010048. [PMID: 33379348 PMCID: PMC7824184 DOI: 10.3390/plants10010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/16/2022]
Abstract
The application of exogenous plant growth regulator can improve plant resistance to drought stress. The effects of application of exogenous cytokinin (CTK), brassinolide (BR), or gibberellic acid (GA) at the silking time on the grain quality of two waxy maize hybrids under drought stress at grain formation stage were studied. Grain weight of both hybrids was unaffected by exogenous phytohormones under control conditions but increased under drought conditions with the application of BR. The grain starch content in response to drought varied with hybrid and phytohormone. Starch granule size and protein content in grains were increased by drought under all conditions, but various phytohormones exerted different forms of influence. The starch λmax in Yunuo7 was unaffected by single or interaction of phytohormones and water deficit, λmax in Jingkenuo2000 with BR was unaffected but with CTK or GA increased by drought. Relative crystallinity was reduced by drought without the application of phytohormone, but with phytohormones in response to drought it was different. Flour peak viscosity was reduced by drought. The value was increased with BR spraying under control and drought conditions. Retrogradation percentage under drought conditions was unaffected by exogenous phytohormones in Jingkenuo2000. In Yunuo7, retrogradation percentage was unaffected by BR but reduced by CTK and GA. In conclusion, spraying phytohormones at the silking stage can affect grain weight and starch quality, grains with a sticky taste can be improved by applying BR, and grains with low retrograde tendency can be produced by applying CTK.
Collapse
|