1
|
Jiang L, Shen S, Zuo A, Chi Y, Lu Y, He Q. Characterizing flavor development in low-salt Chinese horse bean-chili paste through integrated metabolomics and metagenomics. Food Chem 2025; 463:141076. [PMID: 39243610 DOI: 10.1016/j.foodchem.2024.141076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
This study utilized metabolomics and metagenomics to investigate the microbial composition and functions in low- and high-salt Chinese horse bean-chili pastes (CHCPs). The results showed that 25 key metabolites were identified to distinguish the flavor attributes between the two samples. Leuconostoc was identified as the dominant microbiota in low-salt CHCP, while Pantoea prevailed in the high-salt CHCP. Compared to traditional high-salt fermentation, low-salt and inoculated fermentation promoted the increase in the relative abundances of Companionlactobacillus, Levilactobacillus, Tetragenococcus, Zygosaccharomyces and Wickerhamiella as well as the enrichment of carbohydrate and amino acid metabolic pathways, which contributed to the enhancement of characteristic flavor compounds. Further metabolic pathway reconstruction elucidated 21 potential microbial genera associated with the formation of key metabolites, such as Leuconostoc, Levilactobacillus, Pantoea, and Pectobacterium. This study may provide insights for optimizing the fermentation process and improving the flavor quality of low-salt CHCP and similar fermentation products. KEYWORDS: Low-salt fermentation Hight-salt fermentation Chinese horse-bean chili paste Flavor formation Metabolomics Metagenomics.
Collapse
Affiliation(s)
- Li Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Siwei Shen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Aoteng Zuo
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yuanlong Chi
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yunhao Lu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Zhou RY, Chua JY, Liu SQ. Growth and metabolism of halophilic Candida versatilis and Tetragenococcus halophilus in simultaneous and sequential fermentation of salted soy whey. Food Microbiol 2025; 125:104627. [PMID: 39448145 DOI: 10.1016/j.fm.2024.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/24/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024]
Abstract
This study investigated various strategies: mono-, simultaneous and sequential fermentation of halophilic Candida versatilis and Tetragenococcus halophilus to valorize salted whey, a side stream of salted tofu (pressed beancurd) production, with an ultimate goal of creating a soy sauce-like condiment. Growth, glucose, organic acids were monitored throughout fermentation, while free amino acids and volatile compounds were analyzed on the final days. In monoculture fermentation, both C. versatilis and T. halophilus thrived in salted soy whey. However, in co-culture fermentation, an antagonistic relationship was observed, wherein C. versatilis growth was slightly suppressed and T. halophilus was significantly inhibited. In C. versatilis-involved fermentations, no significant (p > 0.05) differences in key volatile and non-volatile chemical components were found among various fermentation modes. Key soy sauce-like volatile compounds, such as 4-ethylguaiacol and 4-ethylphenol, were detected in all C. versatilis-fermented salted soy whey, while T. halophilus primarily functioned as a lactic and acetic acids producer. This study highlights the potential of mixed culture fermentation involving soy sauce yeast and lactic acid bacteria for eventually developing a soy sauce-like condiment from salted soy whey, with C. versatilis playing a crucial role in flavour development. The findings suggest that fermenting of a single culture of C. versatilis in lactic acid-adjusted salted soy whey could be a viable and efficient choice for future production of soy sauce-like condiment.
Collapse
Affiliation(s)
- Rebecca Yinglan Zhou
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore.
| | - Jian-Yong Chua
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore.
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu, 215213, China.
| |
Collapse
|
3
|
Huang P, Yang B, Zhao X, Wang L, Cui C. Enzymatic synthesis of N-succinyl-L-phenylalanine and exploration of its potential as a novel taste enhancer. Food Chem 2024; 460:140747. [PMID: 39121766 DOI: 10.1016/j.foodchem.2024.140747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
N-succinyl-L-phenylalanine (SP) has been identified as a taste-active contributor in an array of foods. Despite its recognized importance, the understanding of its synthesis and taste enhancement properties remains rudimentary. The study examined the enzymatic synthesis of SP with 45.58 ± 1.95% yield. This was achieved under optimized conditions: 0.3 mol/L L-phenylalanine, 0.9 mol/L succinic acid, 30,000 U/L of the AY 50C, pH 4 and 55 °C for 24 h. Sensory evaluation and electronic tongue revealed that the incorporation of a mere 1 mg/L SP substantially increased the kokumi, umami, and saltiness intensities, indicating the potential of SP as a potent taste enhancer. Moreover, time-intensity (TI) results demonstrated a significant increase of umami duration in samples containing 1 mg/L of SP (210.0 ± 0 s), a significant extension compared to the control group (150.0 ± 0 s). Notably, the intensity of umami and saltiness in the SP sample were consistently higher than that of control group. The sigmoid curve analysis further confirmed that SP exhibited a synergistic effect on umami and saltiness perceptions. Moreover, the study also illuminated interaction of SP with T1R1, T1R3, TMC4, TRPV1, and CaSR receptors, resulting in significant enhancement in umami, saltiness, and kokumi.
Collapse
Affiliation(s)
- Pimiao Huang
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, Guangdong, China
| | - Bing Yang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China
| | - Xu Zhao
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, Guangdong, China
| | - Lu Wang
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Huang P, Wang Z, Cheng Y, Gao W, Cui C. Integrated virtual screening coupled with sensory evaluation identifies N-succinyl-L-tryptophan as a novel compound with multiple taste enhancement properties. Food Chem 2024; 457:140131. [PMID: 38917565 DOI: 10.1016/j.foodchem.2024.140131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
N-Succinyl amino acids (N-Suc-AAs) are garnering attention for their potential as taste-active compounds. The intricate variety of N-Suc-AAs presented considerable challenges in identifying those with taste-active properties. Consequently, we employed structure-based virtual screening to pinpoint taste-active N-Suc-AAs, revealing N-succinyl-L-tryptophan (ST) as a compound with high affinity for different taste receptors. Following this discovery, ST was synthesized through an enzymatic process, achieving a yield of 40.2%, with its structure verified via NMR spectroscopy. Sensory evaluation alongside electronic tongue assessments indicated that ST at a concentration of 1 mg/L significantly enhances umami, kokumi, and saltiness intensities, while concurrently mitigating bitterness from various bitter compounds, whilst itself remaining tasteless. Additionally, time-intensity (TI) results elucidated a marked augmentation in umami duration and a notable diminution in bitterness duration for solutions imbued with 1 mg/L ST. Molecular docking study suggested ST interacted with diverse taste receptors as an agonist or antagonist, primarily through hydrogen bonds and hydrophobic interactions. This study marked the inaugural report on the enzymatic synthesis of ST and its efficacy in improving taste characteristics, underscoring the importance of ST in improving sensory qualities of food products and fostering innovation within the seasoning industry.
Collapse
Affiliation(s)
- Pimiao Huang
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Zhirong Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yuqing Cheng
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Wenxiang Gao
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Huang P, Liu Y, Cai L, Cui C. Investigation of the multiple taste enhancement properties of N-succinyl-amino acids and their relationship to chemical structure using dynamic sensory techniques. Food Chem 2024; 453:139661. [PMID: 38772310 DOI: 10.1016/j.foodchem.2024.139661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
The present study aimed to explore the similarity and difference in taste enhancement properties of N-succinyl-L-phenylalanine (N-Suc-Phe), N-succinyl-L-tryptophan (N-Suc-Trp), and N-succinyl-L-tyrosine (N-Suc-Tyr) using temporal dominance of sensations (TDS), temporal check-all-that-apply (TCATA), and time-intensity (TI) techniques. Meanwhile, leading taste enhancers in the market, such as N'-[(2,4-dimethoxyphenyl)methyl]-N-(2-pyridin-2-ylethyl) oxamide (DE) was chosen to conduct a comparative analysis with the aforementioned three compounds. Findings from TDS and TCATA revealed that all compounds under investigation notably enhanced umami and saltiness while reducing bitterness in a concentration-dependent fashion (0.25-1 mg/L). Additionally, the TI results indicated that the duration of umami was extended by 50-75%, and the duration of bitterness was decreased by 20-40% upon addition of DE, N-Suc-Phe, N-Suc-Trp, and N-Suc-Tyr (1 mg/L). Among these, N-Suc-Trp was identified as the most effective in augmenting umami and mitigating bitterness, whereas N-Suc-Tyr excelled in enhancing saltiness intensity. Partial least squares regression (PLSR) pinpointed the carbon‑carbon double bond as the important structure influencing the enhancement of umami and reduction of bitterness, whereas the phenolic hydroxyl group was identified as critical for enhancing saltiness. This investigation provided insights into the different characteristics of taste enhancement of N-Suc-AAs and the impact of chemical structure on such specificity.
Collapse
Affiliation(s)
- Pimiao Huang
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Ying Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lei Cai
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
He K, Peng X, Li Y, Zhao M, Feng Y. Revealing metabolite profiles in soy sauce and exploring their correlation with umami taste using UPLC-Orbitrap-MS/MS and GC-Tof-MS derivatization. Food Chem 2024; 463:141303. [PMID: 39426240 DOI: 10.1016/j.foodchem.2024.141303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Soy sauce has a rich base of non-volatile substances, but existing studies are insufficient. This study analyzed the metabolites of 19 Chinese commercial soy sauces by UPLC-Orbitrap-MS/MS and GC-Tof-MS derivatization, and detected 674 and 230 kinds of substances, respectively, that could be grouped into 12 different classes of compounds, such as peptides, amino acid derivatives, organic acids, sugars, sugar alcohols, amino acids and so on. For the first time, 215 dipeptides and 91 amino acid derivatives in soy sauce were analyzed in detail and systematically from the perspective of composition and amino acid structure. The flavor profile of soy sauce was obtained by electronic tongue analysis, and orthogonal projections to latent structures (OPLS), random forest (RF), correlation were used to screen potential compounds associated with umami. The intersection of the three methods yielded 9 substances, including 4 reported umami-taste compounds, i.e., Glu, Fru-Glu, Inosine 5'prime-monophosphate (IMP) and Arg-Ser, as well as 5 others that may potentially contribute to umami or be associated with umami-taste producing microorganisms, including His-Asn and Homoserine lactone. This study will advance the understanding of soy sauce metabolites, and provide an in-depth reference for dipeptides and amino acid derivatives in soy sauce.
Collapse
Affiliation(s)
- Kaili He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Xing Peng
- Metanotitia Inc., Shenzhen 518063, China
| | - Yan Li
- Metanotitia Inc., Shenzhen 518063, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| |
Collapse
|
7
|
Lim JY, Choi YJ, Choi JY, Yang JH, Chung YB, Park SH, Min SG, Lee MA. Microbial Dynamics and Metabolite Profiles in Different Types of Salted Seafood ( Jeotgal) During Fermentation. ACS OMEGA 2024; 9:35798-35808. [PMID: 39184488 PMCID: PMC11339811 DOI: 10.1021/acsomega.4c04410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
Salted and fermented seafood (jeotgal) is known for its long shelf life and unique flavor. Despite the existence of various types of salted seafood, the factors influencing this quality have yet to be identified. These factors are essential for improving the quality of salted seafood, optimizing the fermentation process, and advancing the industrialization of fermented foods. Therefore, in this study, we explored microbial dynamics and changes in quality characteristics in three salted seafood items - salted anchovies (MJ), salted cutlass offal (GJ), and salted croakers (HJ), over a 24-month fermentation period. Distinct microbial community profiles, dominated by Tetragenococcus halophilus, Halanaerobium fermentans, and Chromohalobacter canadensis in MJ, GJ, and HJ, respectively, affect the metabolic pathways and the corresponding flavor profiles. The pH of all samples ranged from 5.7-6.0. The titratable acidity was highest in MJ at 1.4% and lowest in HJ at approximately 0.7%. Salinity was below 25% in all samples but slightly lower in MJ. Significant differences were observed in the amino acid, nucleotide, and overall metabolite profiles. MJ exhibited the highest amino acid and nitrogen-related factor levels, such as glutamic acid and hypoxanthine, enhancing flavor complexity. Correlation analysis revealed significant associations among the types, metabolites, and microbial communities. Microbial survival mechanisms in high-salt environments result in the production of unique metabolites, including umami and aroma components as well as precursors of biogenic amines, which can affect the overall quality of the final product. These differences were primarily influenced by the fish type rather than the fermentation time. Our findings provide foundational insights for enhancing fermentation strategies, improving product consistency, and advancing the industrial application of microbial management in seafood fermentation. This study not only fills a significant gap in the current understanding of fermented seafood but also outlines practical approaches for industry applications for the optimization of product quality.
Collapse
Affiliation(s)
- Ju-Young Lim
- Practical
Technology Research Group, World Institute
of Kimchi, Kimchiro 86, Gwangju 61755, Republic of Korea
- Department
of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yun-Jeong Choi
- Practical
Technology Research Group, World Institute
of Kimchi, Kimchiro 86, Gwangju 61755, Republic of Korea
| | - Ji-Young Choi
- Practical
Technology Research Group, World Institute
of Kimchi, Kimchiro 86, Gwangju 61755, Republic of Korea
| | - Ji-Hee Yang
- Practical
Technology Research Group, World Institute
of Kimchi, Kimchiro 86, Gwangju 61755, Republic of Korea
| | - Young Bae Chung
- Practical
Technology Research Group, World Institute
of Kimchi, Kimchiro 86, Gwangju 61755, Republic of Korea
| | - Sung-Hee Park
- Practical
Technology Research Group, World Institute
of Kimchi, Kimchiro 86, Gwangju 61755, Republic of Korea
| | - Sung Gi Min
- Practical
Technology Research Group, World Institute
of Kimchi, Kimchiro 86, Gwangju 61755, Republic of Korea
| | - Mi-Ai Lee
- Practical
Technology Research Group, World Institute
of Kimchi, Kimchiro 86, Gwangju 61755, Republic of Korea
| |
Collapse
|
8
|
Zhao C, Zhang Y, Li S, Lin J, Lin W, Li W, Luo L. Impacts of Aspergillus oryzae 3.042 on the flavor formation pathway in Cantonese soy sauce koji. Food Chem 2024; 441:138396. [PMID: 38218154 DOI: 10.1016/j.foodchem.2024.138396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/09/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
To investigate the mechanism of flavor formation during the traditional preparation Cantonese soy sauce koji (TP), the changes of microorganisms, physicochemical properties, and flavor compounds in TP were comprehensively and dynamically monitored by absolute quantitative methods. Results demonstrated that inoculating Aspergillus oryzae 3.042 in TP was crucial role in enhancing enzyme activity properties. Absolute quantification of flavor combined with multivariate statistical analysis yielded 5 organic acids, 15 amino acids, and 2 volatiles as significantly different flavors of TP. Amplicon sequencing and RT-qPCR revealed that the dominant genera were Staphylococcus, Weissella, Enterobacter, Lactic streptococci, Lactobacillus, and Aspergillus, which exhibited a increasing trend in TP. Correlation analysis exhibited that Staphylococcus and Aspergillus were the pivotal genera contributing to the enzyme activities and flavor of TP. The flavor formation network involved lipid and protein degradation, carbohydrate metabolism and other pathways. Simultaneously, TP can appropriately increase the fermentation time to improve product quality.
Collapse
Affiliation(s)
- Chi Zhao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yuxiang Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Shuangshuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jiayi Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Weifeng Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Weixin Li
- Guangdong Heshan Donggu Flavoring Food Co. Ltd, Heshan 529700, PR China
| | - Lixin Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Yao S, Tu R, Jin Y, Zhou R, Wu C, Qin J. Improvement of the viability of Tetragenococcus halophilus under acidic stress by forming the biofilm cell structure based on RNA-Seq and iTRAQ analyses. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3559-3569. [PMID: 38147410 DOI: 10.1002/jsfa.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Tetragenococcus halophilus is a halophilic lactic acid bacterium (LAB) isolated from soya sauce moromi. During the production of these fermented foods, acid stress is an inevitable environmental stress. In our previous study, T. halophilus could form biofilms and the cells in the biofilms exhibited higher cell viability under multiple environmental stresses, including acid stress. RESULTS In this study, the effect of preformed T. halophilus biofilms on cell survival, cellular structure, intracellular environment, and the expression of genes and proteins under acid stress was investigated. The result showed that acid stress with pH 4.30 for 1.5 h reduced the live T. halophilus cell count and caused cellular structure damage. However, T. halophilus biofilm cells exhibited greater cell survival under acid stress than the planktonic cells, and biofilm formation reduced the damage of acid stress to the cell membrane and cell wall. The biofilm cells maintained a higher level of H+ -ATPase activity and intracellular ammonia concentration after acid stress. The RNA-Seq and iTRAQ technologies revealed that the genes and proteins associated with ATP production, the uptake of trehalose and N-acetylmuramic acid, the assembly of H+ -ATPase, amino acid biosynthesis and metabolism, ammonia production, fatty acid biosynthesis, CoA biosynthesis, thiamine production, and acetoin biosynthesis might be responsible for the stronger acid tolerance of T. halophilus biofilm cells together. CONCLUSION These findings further explained the mechanisms that allowed LAB biofilm cells to resist environmental stress. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Rongkun Tu
- Luzhou Lao Jiao Co., Ltd., Luzhou, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Nguyen PT, Nguyen-Thi TU, Nguyen HT, Pham MN, Nguyen TT. Halophilic lactic acid bacteria - Play a vital role in the fermented food industry. Folia Microbiol (Praha) 2024; 69:305-321. [PMID: 38372951 DOI: 10.1007/s12223-024-01149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Halophilic lactic acid bacteria have been widely found in various high-salt fermented foods. The distribution of these species in salt-fermented foods contributes significantly to the development of the product's flavor. Besides, these bacteria also have the ability to biosynthesize bioactive components which potentially apply to different areas. In this review, insights into the metabolic properties, salt stress responses, and potential applications of these bacteria have been have been elucidated. The purpose of this review highlights the important role of halophilic lactic acid bacteria in improving the quality and safety of salt-fermented products and explores the potential application of these bacteria.
Collapse
Affiliation(s)
- Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | | | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Minh-Nhut Pham
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
11
|
Li A, Feng X, Yang G, Peng X, Du M, Song J, Kan J. Impact of aroma-enhancing microorganisms on aroma attributes of industrial Douchi: An integrated analysis using E-nose, GC-IMS, GC-MS, and descriptive sensory evaluation. Food Res Int 2024; 182:114181. [PMID: 38519190 DOI: 10.1016/j.foodres.2024.114181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
In order to enhance the aromatic profile of industrial Douchi, a comprehensive investigation was undertaken to assess the impact of aroma-enhancing microorganisms on the sensory attributes of Douchi. This evaluation utilized a combination of analytical techniques, including electronic nose analysis, gas chromatography-ion mobility spectrometry (GC-IMS), gas chromatography-mass spectrometry (GC-MS), and descriptive sensory analysis (DA). Both GC-IMS and GC-MS revealed significant changes in the volatile composition of Douchi following the addition of aroma-enhancing microorganisms (p < 0.05). Partial least squares-discriminant analysis (PLS-DA) identified benzaldehyde, benzene acetaldehyde, 3-octanone, and ethyl 2-methylbutyrate as significant differentiating volatile compounds. Additionally, compared to the control group, the sensory attributes of sourness in Douchi were significantly reduced (p < 0.001), while the attributes of wine-like and sweetness were notably enhanced (p < 0.05) when the ratio of G. candidum to C. versatilis was 1:1 (GCC group). By calculating the odor-activity values (OAVs) of key volatiles, it can be hypothesized that this aroma improvement of Douchi may be attributed to an increase in the typical volatiles (3-methyl-1-butanol, 1-octen-3-ol, 3-octanol, and 3-octanone) and ethyl 2-methylbutanoate with high OAVs (2340849.64 ∼ 16695327.86), as well as to decreases in the musty acetophenone. In conclusion, the aroma profile of Douchi was significantly enhanced when G. candidum and C. versatilis were added at a ratio of 1:1. This study provides valuable insights into the development of aroma enhancers for improving the sensory profile of Douchi.
Collapse
Affiliation(s)
- Aijun Li
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Xiya Feng
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Gang Yang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Xiaowei Peng
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Muying Du
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jun Song
- Shu Xiang Douchi Food Research Institute Limited Company, Chongqing 402160, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
12
|
Zhang W, Xiao Z, Gu Z, Deng X, Liu J, Luo X, Song C, Jiang X. Fermentation-promoting effect of three salt-tolerant Staphylococcus and their co-fermentation flavor characteristics with Zygosaccharomyces rouxii in soy sauce brewing. Food Chem 2024; 432:137245. [PMID: 37657348 DOI: 10.1016/j.foodchem.2023.137245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Staphylococcus is the dominant genus in the fermentation process of soy sauce, but its effect on the flavor of soy sauce has not been clearly established. In order to investigate the role of this genus in soy sauce fermentation, individual fermentation with Staphylococcus spp. screened from the moromi and their co-fermentation with an ester-producing yeast of Zygosaccharomyces rouxii were designed. Through the analysis of physicochemical properties, organic acid composition, volatile flavor compounds (VFCs) and sensory characteristics during fermentation, Staphylococcus was confirmed as a contributor to the acidity, ester aroma and alcohol aroma of soy sauce. In their co-fermentation with yeast, the ester aroma of soy sauce was further enhanced. Moreover, pathway enrichment analysis and network construction of key VFCs also revealed potential metabolic networks for formation of characteristic flavor compounds in co-fermentation. This work will help optimize the fermentation functional microbiota to obtain better soy sauce flavor.
Collapse
Affiliation(s)
- Wei Zhang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhangchi Xiao
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zimeng Gu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Xiang Deng
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jun Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Centre for Condiment Fermentation, Changsha 410600, China
| | - Xiaoming Luo
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Centre for Condiment Fermentation, Changsha 410600, China
| | - Chunxiang Song
- Hunan Provincial Engineering Technology Research Centre for Condiment Fermentation, Changsha 410600, China
| | - Xuewei Jiang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Centre for Condiment Fermentation, Changsha 410600, China.
| |
Collapse
|
13
|
Liu H, Chen X, Lu J, Wu D. Evaluation of the differences between low-salt solid-state fermented soy sauce and high-salt diluted-state fermented soy sauce in China: from taste-active compounds and aroma-active compounds to sensory characteristics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:340-351. [PMID: 37574531 DOI: 10.1002/jsfa.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND The present study aimed to determine the components related to sensory properties in soy sauce and to characterize the differences between low-salt solid-state fermented soy sauce (LSFSS) and high-salt diluted-state fermented soy sauce (HDFSS). The taste and aroma active components of 18 commercially available soy sauces (eight types of LSFSS and 10 types of HDFSS) were characterized. The relationship between these compounds, soy sauce samples, and sensory properties was modeled by partial least squares regression. RESULTS The analysis showed that the 11 taste-active components, including glutamic acid, glycine, alanine, threonine, malic acid, citric acid, tartaric acid, acetic acid, lactic acid, reducing sugar and salt, contributed greatly to the taste of soy sauce. In addition, umami, saltiness and sweetness are the characteristic tastes of HDFSS, whereas sourness and bitterness were the characteristic tastes of LSFSS. At the same time, seven aroma-active compounds, namely 4-ethyl-2-methoxyphenol, ethanol, 3-methyl-1-butanol, ethyl acetate, 2-phenethyl alcohol, 3-methyl thiopropanol and 2-ethyl-4-hydroxy-5-methylfuran-3-one, played a decisive role in the flavor of soy sauce. In addition, HDFSS presented the aroma attributes of smoky, alcoholic, floral, fruity and caramel-like, whereas LSFSS mainly presented sour and malty aroma attributes. CONCLUSION The present study reveals new insight into the relationship between the chemical composition and sensory characteristics of soy sauce, which is of great significance for developing an objective measurement system and providing a theoretical basis to improve the sensory quality of soy sauce. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hua Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Food Biotechnology Research Institute of Jiangnan University (Rugao), Rugao, China
| | - Xingguang Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Food Biotechnology Research Institute of Jiangnan University (Rugao), Rugao, China
| | - Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Zheng S, Ye P, Zhao X, Li W, Hou L. Enhanced soy sauce stability and reduced precipitation by improving critical steps in the fermentation process. Food Res Int 2023; 174:113674. [PMID: 37981369 DOI: 10.1016/j.foodres.2023.113674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
Conventional high-salt dilute-state soy sauce is vulnerable to precipitation after processing, which will reduce the systemic stability and nutrition of soy sauce. This work aims to optimize key steps of the soy sauce fermentation process to improve its stability and reduce precipitation. The amino acid nitrogen (AAN) and the total nitrogen (TN) contents of the new soy sauce were 8.3 g/L and 18.7 g/L, which were significantly enhanced by 33.9% and 14.0%, respectively, compared to the control group. More flavor substances were detected in the new soy sauce, including furans and pyrazines, which contribute to the special flavor of soy sauce. The particle size distribution curve was significantly shifted to the left, and the absolute value of zeta-potential increased. The new fermentation process soy sauce had a higher raw material utilization rate, smaller average particle size of 15.56 μm, and significantly higher stability when combined with the rheological examination. Consequently, the quality and flavor of soy sauce can be improved by using the new fermentation process.
Collapse
Affiliation(s)
- Shuang Zheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological, Tianjin 300457, China
| | - Peng Ye
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological, Tianjin 300457, China
| | - Xiuli Zhao
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Wanning Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological, Tianjin 300457, China
| | - Lihua Hou
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological, Tianjin 300457, China.
| |
Collapse
|
15
|
Li X, Xu X, Wu C, Tong X, Ou S. Effect of Sequential Inoculation of Tetragenococcus halophilus and Wickerhamomyces anomalus on the Flavour Formation of Early-Stage Moromi Fermented at a Lower Temperature. Foods 2023; 12:3509. [PMID: 37761218 PMCID: PMC10530138 DOI: 10.3390/foods12183509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Microbial inoculation in moromi fermentation has a great influence on the physicochemical and flavour properties of soy sauces. This work investigated the effect of inoculating Tetragenococcus halophilus and Wickerhamomyces anomalus on the flavour formation of early-stage moromi (30 days) fermented at a lower temperature (22 °C) by determining their physicochemical and aroma changes. The results showed that single yeast or LAB inoculation increased the production of amino nitrogen, lactic acid and acetic acid, as well as free amino acids and key flavour components. Particularly, the sequential inoculation of T. halophilus and W. anomalus produced more free amino acids and aromatic compounds, and there might be synergistic effects between these two strains. More characteristic soy sauce flavour compounds, such as benzaldehyde, HEMF, guaiacol and methyl maltol were detected in the sequentially inoculated moromi, and this sample showed higher scores in savoury, roasted and caramel intensities. These results confirmed that sequential inoculation of T. halophilus and W. anomalus could be a choice for the future production of moromi with good flavour and quality under a lower temperature.
Collapse
Affiliation(s)
- Xinzhi Li
- Department of Food Science and Technology, Jinan University, Guangzhou 510632, China;
- Guangdong Haitian Innovation Technology Co., Ltd., Foshan 528000, China
- Key Laboratory of Advanced Technology Enterprise of Guangdong Seasoning Food Biofermentation, Foshan 528000, China
- Guangdong Provincial Research Centre of Brewing Microbiology Breeding and Fermentation Engineering Technology, Foshan 528000, China
| | - Xinyu Xu
- Guangdong Haitian Innovation Technology Co., Ltd., Foshan 528000, China
| | - Changzheng Wu
- Guangdong Haitian Innovation Technology Co., Ltd., Foshan 528000, China
- Key Laboratory of Advanced Technology Enterprise of Guangdong Seasoning Food Biofermentation, Foshan 528000, China
- Guangdong Provincial Research Centre of Brewing Microbiology Breeding and Fermentation Engineering Technology, Foshan 528000, China
| | - Xing Tong
- Guangdong Haitian Innovation Technology Co., Ltd., Foshan 528000, China
- Key Laboratory of Advanced Technology Enterprise of Guangdong Seasoning Food Biofermentation, Foshan 528000, China
- Guangdong Provincial Research Centre of Brewing Microbiology Breeding and Fermentation Engineering Technology, Foshan 528000, China
| | - Shiyi Ou
- Department of Food Science and Technology, Jinan University, Guangzhou 510632, China;
| |
Collapse
|
16
|
Wang Q, Cui R, Liu X, Zheng X, Yao Y, Zhao G. Examining the impact of Tetragenococcus halophilus, Zygosaccharomyces rouxii, and Starmerella etchellsii on the quality of soy sauce: a comprehensive review of microbial population dynamics in fermentation. Crit Rev Food Sci Nutr 2023; 64:10873-10884. [PMID: 37395610 DOI: 10.1080/10408398.2023.2230285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Soy sauce is a popular fermented seasoning due to its distinct flavor and rich umami taste. Its traditional production involves two stages: solid-state fermentation and moromi (brine fermentation). During moromi, the dominant microbial population in the soy sauce mash changes, which is called microbial succession and is essential for the formation of soy sauce flavor compounds. Research has identified the sequence of succession, starting with Tetragenococcus halophilus, then Zygosaccharomyces rouxii, and lastly, Starmerella etchellsii. Factors such as the environment, microbial diversity, and interspecies relationships drive this process. Salt and ethanol tolerance influence microbial survival, while nutrients in the soy sauce mash support the cells in resisting external stress. Different microbial strains have varying abilities to survive and respond to external factors during fermentation, which impacts soy sauce quality. In this review, we would examine the factors behind the succession of common microbial populations in the soy sauce mash and explore how microbial succession affects soy sauce quality. The insights gained can help better manage the dynamic changes in microbes during fermentation, leading to improved production efficiency.
Collapse
Affiliation(s)
- Qifeng Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Rongrong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xueli Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xuelian Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
17
|
An F, Wu J, Feng Y, Pan G, Ma Y, Jiang J, Yang X, Xue R, Wu R, Zhao M. A systematic review on the flavor of soy-based fermented foods: Core fermentation microbiome, multisensory flavor substances, key enzymes, and metabolic pathways. Compr Rev Food Sci Food Saf 2023; 22:2773-2801. [PMID: 37082778 DOI: 10.1111/1541-4337.13162] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
The characteristic flavor of fermented foods has an important impact on the purchasing decisions of consumers, and its production mechanisms are a concern for scientists worldwide. The perception of food flavor is a complex process involving olfaction, taste, vision, and oral touch, with various senses contributing to specific properties of the flavor. Soy-based fermented products are popular because of their unique flavors, especially in Asian countries, where they occupy an important place in the dietary structure. Microorganisms, known as the souls of fermented foods, can influence the sensory properties of soy-based fermented foods through various metabolic pathways, and are closely related to the formation of multisensory properties. Therefore, this review systematically summarizes the core microbiome and its interactions that play an active role in representative soy-based fermented foods, such as fermented soymilk, soy sauce, soybean paste, sufu, and douchi. The mechanism of action of the core microbial community on multisensory flavor quality is revealed here. Revealing the fermentation core microbiome and related enzymes provides important guidance for the development of flavor-enhancement strategies and related genetically engineered bacteria.
Collapse
Affiliation(s)
- Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Guoyang Pan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Ma
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jinhui Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xuemeng Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Ruixia Xue
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
18
|
Jiang L, Lu Y, Ma Y, Liu Z, He Q. Comprehensive investigation on volatile and non-volatile metabolites in low-salt doubanjiang with different fermentation methods. Food Chem 2023; 413:135588. [PMID: 36758388 DOI: 10.1016/j.foodchem.2023.135588] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/18/2022] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Doubanjiang is a well-known fermented condiment in China, but the high-salt concentration in its traditional manufacture process greatly lengthens the fermentation time, and leads to potential health risks. Here, the effects of salt reduction and co-inoculated starters (Tetragenococcus halophilus and Zygosaccharomyces rouxii) on the volatile metabolites (VMs) and non-volatile metabolites (NVMs) of doubanjiang were investigated using metabolomics technology and chemometrics analysis. Results showed that 75 VMs were identified, and 12 of them had significant aroma contribution (ROVAs ≥ 1). In addition, 106 NVMs were defined as significantly different metabolites (p < 0.05; VIP ≥ 1). Salt reduction could significantly increase the concentrations of VMs, but this strategy also promoted some undesirable odors like 2-phetylfuran and hexanoic acid, which could be totally suppressed by inoculation of starter. Moreover, the two starters improved amino acid, ester, and acid metabolites. This study provides a deeper insight into the development of low-salt fermented foods.
Collapse
Affiliation(s)
- Li Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yunhao Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Yi Ma
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Zishan Liu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Qiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
19
|
Huang Z, Feng Y, Zeng J, Zhao M. Six categories of amino acid derivatives with potential taste contributions: a review of studies on soy sauce. Crit Rev Food Sci Nutr 2023; 64:7981-7992. [PMID: 37009850 DOI: 10.1080/10408398.2023.2194422] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
During the fermentation of soy sauce, the metabolism of microorganisms and the Maillard reaction produce a wide variety of metabolites that contribute to the unique and rich flavor characteristics of soy sauce, such as amino acids, organic acids and peptides. Amino acid derivatives, a relatively new taste compounds, formed by the reaction of enzymes or non-enzymes from sugars, amino acids, and organic acids released through metabolism by microorganisms during soy sauce fermentation, have begun to gain more and more attention in recent years. This review focused on our existing knowledge of the sources, taste characteristics and synthesis methods of the 6 categories of amino acid derivatives, including Amadori compounds, γ-glutamyl peptides, pyroglutamyl amino acids, N-lactoyl amino acids, N-acetyl amino acids and N-succinyl amino acids. Sixty-four amino acid derivatives were detected in soy sauce, of which 47 were confirmed to have potential contribution to the taste of soy sauce, especially umami and kokumi, and some of them also have the effect of reducing bitterness. Furthermore, some amino acid derivatives, like γ-glutamyl peptides and N-lactoyl amino acids, were found to be synthesized enzymatically in vitro, which laid the foundation for further study on their formation pathways in the future.
Collapse
Affiliation(s)
- Zikun Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Jing Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| |
Collapse
|
20
|
Li Y, Leng W, Xue J, Yuan L, Liu H, Gao R. A multi-omics-based investigation into the flavor formation mechanisms during the fermentation of traditional Chinese shrimp paste. Food Res Int 2023; 166:112585. [PMID: 36914317 DOI: 10.1016/j.foodres.2023.112585] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
The fermentation process of traditional shrimp paste is closely associated with the production of flavor substances, but the formation mechanism of key aroma components is still unclear. In this study, a comprehensively flavor profile analysis of traditional fermented shrimp paste was carried out by E-nose and SPME-GC-MS. A total of 17 key volatile aroma components with OAV > 1 contributed greatly to the overall flavor formation of shrimp paste. In addition, high-throughput sequencing (HTS) analysis revealed that Tetragenococcus was the dominant genera in the whole fermentation process. Moreover, metabolomics analysis showed that the oxidation and degradation of lipids, protein, organic acids and amino acids produced a large number of flavor substances and intermediates, which laid the foundation for the Maillard reaction in term of generating the distinct aroma of the traditional shrimp paste. This work will provide theoretical support for the realization of flavor regulation and quality control in traditional fermented foods.
Collapse
Affiliation(s)
- Ying Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weijun Leng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiani Xue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongying Liu
- Ocean College, Hebei Agriculture University, Qinhuangdao 066000, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
21
|
Ma J, Nie Y, Zhang L, Xu Y. Ratio of Histamine-Producing/Non-Histamine-Producing Subgroups of Tetragenococcus halophilus Determines the Histamine Accumulation during Spontaneous Fermentation of Soy Sauce. Appl Environ Microbiol 2023; 89:e0188422. [PMID: 36802225 PMCID: PMC10056960 DOI: 10.1128/aem.01884-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 02/23/2023] Open
Abstract
Strain specificity (within-species variation) of microorganisms occurs widely in nature. It might affect microbiome construction and function in a complex microbial environment. Tetragenococcus halophilus, a halophilic bacterium that generally is used in high salt food fermentation, consists of two histamine-producing and non-histamine-producing subgroups. It is unclear whether and how the strain specificity of histamine-producing capacity influences the microbial community function during food fermentation. Here, based on systematic bioinformatic analysis, histamine production dynamic analysis, clone library construction analysis, and cultivation-based identification, we identified that T. halophilus is the focal histamine-producing microorganism during soy sauce fermentation. Furthermore, we discovered that a larger number and ratio of histamine-producing subgroups of T. halophilus significantly contributed more histamine production. We were able to artificially decrease the ratio of histamine-producing to non-histamine-producing subgroups of T. halophilus in complex soy sauce microbiota and realized the reduction of histamine by 34%. This study emphasizes the significance of strain specificity in regulating microbiome function. This study investigated how strain specificity influenced microbial community function and developed an efficient technique for histamine control. IMPORTANCE Inhibiting the production of microbiological hazards under the assumption of stable and high-quality fermentation is a critical and time-consuming task for the food fermentation industry. For spontaneously fermented food, it can be realized theoretically by finding and controlling the focal hazard-producing microorganism in complex microbiota. This work used histamine control in soy sauce as a model and developed a system-level approach to identify and regulate the focal hazard-producing microorganism. We discovered that the strain specificity of focal hazard-producing microorganisms had an important impact on hazard accumulation. Microorganisms frequently exhibit strain specificity. Strain specificity is receiving increasing interest since it determines not only microbial robustness but also microbial community assembly and microbiome function. This study creatively explored how the strain specificity of microorganisms influenced microbiome function. In addition, we believe that this work provides an excellent model for microbiological hazard control which can promote future work in other systems.
Collapse
Affiliation(s)
- Jinjin Ma
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lijie Zhang
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
22
|
Glucoregulatory Properties of Fermented Soybean Products. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease, characterized by persistent hyperglycemia, the prevalence of which is on the rise worldwide. Fermented soybean products (FSP) are rich in diverse functional ingredients which have been shown to exhibit therapeutic properties in alleviating hyperglycemia. This review summarizes the hypoglycemic actions of FSP from the perspective of different target-related molecular signaling mechanisms in vitro, in vivo and clinical trials. FSP can ameliorate glucose metabolism disorder by functioning as carbohydrate digestive enzyme inhibitors, facilitating glucose transporter 4 translocation, accelerating muscular glucose utilization, inhibiting hepatic gluconeogenesis, ameliorating pancreatic dysfunction, relieving adipose tissue inflammation, and improving gut microbiota disorder. Sufficiently recognizing and exploiting the hypoglycemic activity of traditional fermented soybean foods could provide a new strategy in the development of the food fermentation industry.
Collapse
|
23
|
Zhang L, Kang L, Xu Y. Phenotypic, Genomic, and Transcriptomic Comparison of Industrial Aspergillus oryzae Used in Chinese and Japanese Soy Sauce: Analysis of Key Proteolytic Enzymes Produced by Koji Molds. Microbiol Spectr 2023; 11:e0083622. [PMID: 36744888 PMCID: PMC10100866 DOI: 10.1128/spectrum.00836-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 01/11/2023] [Indexed: 02/07/2023] Open
Abstract
Aspergillus oryzae, which generates numerous enzymes for the breakdown of raw materials, is an essential koji mold in soy sauce production. For better soy sauce productivity and flavor quality, China and Japan have developed their own industrial A. oryzae strains at distinct evolutionary branches for use in soy sauce production for decades. However, systematic comparison between the two national industrial strains has been poorly conducted, and thus we have not been able to generate adequate knowledge, especially regarding what are the key hydrolytic enzymes produced by A. oryzae during koji production. This study sequenced and assembled three high-quality genome sequences of industrial A. oryzae originating from China and Japan. Based on the genome sequences, a phylogenetic tree analysis was performed and revealed the evolutional distances between the two national industrial koji molds. Meanwhile, a comparative phenotypic analysis revealed that the two national industrial strains differed in growth and catalytic characteristics, particularly in proteolytic enzyme activities. To investigate the molecular mechanism underlying the phenotypic difference, we conducted systematic comparative genome and transcriptome investigations. We found minor differences in the quantity and diversity of proteolytic enzyme genes between Chinese and Japanese koji molds, while the protease secretion ratio and transcriptional level were dissimilar. We identified 58 potential important enzymes associated with high protein breakdown efficiency during industrial koji fermentation by combining comparative phenotypic and transcriptome data. More research is required to confirm the function of these putative key hydrolytic enzymes. IMPORTANCE Aspergillus oryzae is widely used as an industrial koji mold for soy sauce brewing due to its powerful raw material decomposition capability. Although various proteases in A. oryzae have been identified, it remains a challenge to find essential enzymes involved in soy sauce production. Generally, the industrial A. oryzae used in soy sauce brewing has excellent proteolytic activity. Based on this, we analyzed key proteolytic enzymes according to a comparison of the genome and transcriptome between three industrial strains. This study found little difference in gene numbers and mutations of proteolytic enzymes between three industrial A. oryzae strains. However, variations in protease secretion ratio and transcriptome were discovered between industrial strains. Based on that, we generated 58 candidate key proteolytic enzymes. This work comprehensively analyzed three industrial koji molds, revealing genome development under separate artificial domestication and helping in the study of key proteolytic enzymes during soy sauce production.
Collapse
Affiliation(s)
- Lijie Zhang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Le Kang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
24
|
Systematic analysis of key fermentation parameters influencing biogenic amines production in spontaneous fermentation of soy sauce. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
25
|
Wu W, Chen T, Zhao M, Feng Y. Effect of co-inoculation of different halophilic bacteria and yeast on the flavor of fermented soy sauce. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Que Z, Jin Y, Huang J, Zhou R, Wu C. Flavor compounds of traditional fermented bean condiments: Classes, synthesis, and factors involved in flavor formation. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Mao J, Zhou Z, Yang H. Microbial succession and its effect on the formation of umami peptides during sufu fermentation. Front Microbiol 2023; 14:1181588. [PMID: 37138594 PMCID: PMC10149673 DOI: 10.3389/fmicb.2023.1181588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Sufu, a traditional Chinese fermented food, is famous for its unique flavor, especially umami. However, the formation mechanism of its umami peptides is still unclear. Here, we investigated the dynamic change of both umami peptides and microbial communities during sufu production. Based on peptidomic analysis, 9081 key differential peptides were identified, which mainly involved in amino acid transport and metabolism, peptidase activity and hydrolase activity. Twenty-six high-quality umami peptides with ascending trend were recognized by machine learning methods and Fuzzy c-means clustering. Then, through correlation analysis, five bacterial species (Enterococcus italicus, Leuconostoc citreum, L. mesenteroides, L. pseudomesenteroides, Tetragenococcus halophilus) and two fungi species (Cladosporium colombiae, Hannaella oryzae) were identified to be the core functional microorganisms for umami peptides formation. Functional annotation of five lactic acid bacteria indicated their important functions to be carbohydrate metabolism, amino acid metabolism and nucleotide metabolism, which proved their umami peptides production ability. Overall, our results enhanced the understanding of microbial communities and the formation mechanism of umami peptides in sufu, providing novel insights for quality control and flavor improvement of tofu products.
Collapse
Affiliation(s)
- Jieqi Mao
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongshun Yang
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, China
- *Correspondence: Hongshun Yang,
| |
Collapse
|
28
|
Li H, Lu ZM, Deng WQ, Zhang QS, Chen G, Li Q, Xu ZH, Ma YH. The differences between broad bean koji fermented in laboratory and factory conditions by an efficient Aspergillus oryzae. Front Microbiol 2023; 14:1139406. [PMID: 37032872 PMCID: PMC10074850 DOI: 10.3389/fmicb.2023.1139406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 04/11/2023] Open
Abstract
Broad bean paste-meju was fermented by a mixture of broad bean koji and saline; koji fermentation is an essential process for the production of broad bean paste-meju. Aspergillus oryzae was the most widely used in sauce fermentation. The purpose of this study was to research the factory adaptability of the highly efficient A. oryzae PNM003 and further evaluate the effect of fermentation conditions and fermentation strains on koji. A. oryzae PNM003 was compared with the widely used strain HN 3.042 not only in the laboratory but also in factory conditions (large scale). Results showed that the koji made with the same starter in the factory had a greater amount of fungi than that in the laboratory. Bacteria and yeast levels in HN_L koji were higher than in PN_L koji. As for fungi constitution, almost only Aspergillus survived in the end through the microorganism self-purification process during koji fermentation. As for the bacterial constitution, koji was grouped by fermentation conditions instead of fermentation starter. PN koji had higher protease activity and a higher content of total acids, amino acid nitrogen, amino acids, and organic acids in the laboratory conditions. Nevertheless, in factory conditions, PN koji and HN koji had similar indexes. As for volatile flavor compounds, koji made with the two starters in the same condition was grouped together. As for the same starter, there were more flavor compounds metabolized in the factory condition than in the laboratory condition, especially esters and alcohols. The results showed PN was a highly efficient strain to ferment koji, but the advantages were expressed more remarkably in laboratory conditions. In brief, the fermented condition had a greater influence than the fermentation starter for broad bean koji.
Collapse
Affiliation(s)
- Heng Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd., Chengdu, China
| | - Zhen-Ming Lu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Wei-Qin Deng
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd., Chengdu, China
| | - Qi-Sheng Zhang
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd., Chengdu, China
| | - Gong Chen
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd., Chengdu, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- *Correspondence: Zheng-Hong Xu
| | - Yan-He Ma
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Yan-He Ma
| |
Collapse
|
29
|
Formation of biofilm changed the responses of Tetragenococcus halophilus to ethanol stress revealed by transcriptomic and proteomic analyses. Food Res Int 2022; 161:111817. [DOI: 10.1016/j.foodres.2022.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022]
|
30
|
Novel insight into the formation mechanism of umami peptides based on microbial metabolism in Chouguiyu, a traditional Chinese fermented fish. Food Res Int 2022; 157:111211. [DOI: 10.1016/j.foodres.2022.111211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/23/2022]
|
31
|
Kim DH, Kim SA, Jo YM, Seo H, Kim GY, Cheon SW, Yang SH, Jeon CO, Han NS. Probiotic potential of Tetragenococcus halophilus EFEL7002 isolated from Korean soy Meju. BMC Microbiol 2022; 22:149. [PMID: 35668352 PMCID: PMC9169274 DOI: 10.1186/s12866-022-02561-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Probiotic starters can improve the flavor profile, texture, and health-promoting properties of fermented foods. Tetragenococcus halophilus is a halophilic lactic acid bacterium that is a candidate starter for high-salt fermented foods. However, the species is known to produce biogenic amines, which are associated with neurotoxicity. Here, we report a probiotic starter strain of T. halophilus, EFEL7002, that is suitable for use in high-salt fermentation. RESULTS EFEL7002 was isolated from Korean meju (fermented soybean) and identified as T. halophilus, with 99.85% similarity. The strain is safe for use in food as it is a non-hemolytic and non-biogenic amine producer. EFEL7002 is tolerant to gastrointestinal conditions and can adhere to Caco-2 cells. This strain showed antioxidant, anti-inflammatory, and protective effects against the human gut epithelial barrier. EFEL7002 grew well in media containing 0-18% NaCl showing maximum cell densities in 6% or 12% NaCl. CONCLUSIONS T. halophilus EFEL7002 can be used as a health-promoting probiotic starter culture for various salty fermented foods.
Collapse
Affiliation(s)
- Da Hye Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seul-Ah Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yu Mi Jo
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hee Seo
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Ga Yun Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seong Won Cheon
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Su Hwi Yang
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
32
|
Li C, Li W, Li L, Chen S, Wu Y, Qi B. Microbial community changes induced by a newly isolated salt-tolerant Tetragenococcus muriaticus improve the volatile flavor formation in low-salt fish sauce. Food Res Int 2022; 156:111153. [DOI: 10.1016/j.foodres.2022.111153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
|
33
|
Exploring the feasibility of biotransforming salted soy whey into a soy sauce-like condiment using wine yeast Torulaspora delbrueckii and soy sauce yeasts Zygosaccharomyces rouxii and Candida versatilis as single starter cultures. Food Res Int 2022; 156:111350. [DOI: 10.1016/j.foodres.2022.111350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
|
34
|
Zhao S, Niu C, Xing X, Fan L, Zheng F, Liu C, Wang J, Li Q. Revealing the changes of microbiota structure and function in broad bean paste mediated by sunlight and ventilation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
Rodríguez J, González-Guerra A, Vázquez L, Fernández-López R, Flórez AB, de la Cruz F, Mayo B. Isolation and phenotypic and genomic characterization of Tetragenococcus spp. from two Spanish traditional blue-veined cheeses made of raw milk. Int J Food Microbiol 2022; 371:109670. [DOI: 10.1016/j.ijfoodmicro.2022.109670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
|
36
|
Wang J, Zhao M, Xie N, Huang M, Feng Y. Community structure of yeast in fermented soy sauce and screening of functional yeast with potential to enhance the soy sauce flavor. Int J Food Microbiol 2022; 370:109652. [PMID: 35390573 DOI: 10.1016/j.ijfoodmicro.2022.109652] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/22/2022] [Accepted: 03/25/2022] [Indexed: 01/26/2023]
Abstract
Yeast plays an important role in the formation of desirable aroma during soy sauce fermentation. In this study, the structure and diversity of yeast communities in seven different soy sauce residues were investigated by ITS sequencing analysis, and then the aroma characteristics of selected yeast species were examined by a combination of gas chromatography-mass spectrometry (GC-MS), headspace solid-phase microextraction (SPME) and liquid-liquid extraction (LLE). A total of 18 yeast genera were identified in seven soy sauce residues. Among them, Candid and Zygosaccharomyces were detected in all samples, followed by Millerozyma, Wickerhamiella, Meyerozyma, Trichosporon and Wickerhamomyces, which were found in more than two-thirds of the samples. Subsequently, eight representative species, isolated from soy sauce residues, were subjected to environmental stress tolerance tests and aroma production tests. Among them, three isolated species were regarded as potential aroma-enhancing microbes in soy sauce. Wickerhamiella versatilis could increase the contents of ethyl ester compounds and alcohols, thereby improving the fruity and alcoholic aroma of soy sauce. Candida sorbosivorans enhanced sweet and caramel-like aroma of soy sauce by producing 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) and 3-hydroxy-2-methyl-4h-pyran-4-one (maltol). Starmerella etchellsii could enhance the contents of 2,6-dimethylpyrazine, methyl pyrazine and benzeneacetaldehyde. This study is of great significance for the development and application of flavor functional yeasts in soy sauce fermentation.
Collapse
Affiliation(s)
- Jingwen Wang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing & Nutrition Regulation Technology, Guangzhou 510650, Guangdong, China
| | - Mouming Zhao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing & Nutrition Regulation Technology, Guangzhou 510650, Guangdong, China
| | - Nuoyi Xie
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mingtao Huang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yunzi Feng
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing & Nutrition Regulation Technology, Guangzhou 510650, Guangdong, China.
| |
Collapse
|
37
|
Zhang X, Liu Z, Kang B, Huang Y, Fu C, Li W, Wu Q, Liu Z, Li D, Wang C, Xu N. Effect of
Lactobacillus plantarum
or
Enterococcus faecalis
as co‐inoculants with
Aspergillus oryzae
in koji making on the physicochemical properties of soy sauce. J Food Sci 2022; 87:714-727. [DOI: 10.1111/1750-3841.16035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaolong Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Zeping Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Bo Kang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Yao Huang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Caixia Fu
- Hubei Research Center of Food Fermentation Engineering and Technology Hubei University of Technology Wuhan China
| | - Wei Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Dongsheng Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Chao Wang
- Research Center of Fermentation Flavouring Engineering and Technology of Hubei Hubei Tulaohan Flavouring and Food Co., Ltd. Yichang China
| | - Ning Xu
- Research Center of Fermentation Flavouring Engineering and Technology of Hubei Hubei Tulaohan Flavouring and Food Co., Ltd. Yichang China
| |
Collapse
|
38
|
|
39
|
Zhang L, Huang J, Zhou R, Qi Q, Yang M, Peng C, Wu C, Jin Y. The effects of different coculture patterns with salt-tolerant yeast strains on the microbial community and metabolites of soy sauce moromi. Food Res Int 2021; 150:110747. [PMID: 34865765 DOI: 10.1016/j.foodres.2021.110747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/18/2021] [Accepted: 10/06/2021] [Indexed: 01/19/2023]
Abstract
In this study, the contributions of three strains and different coculture patterns to microbial community diversity and metabolites in the high-salt liquid-state fermentation (HLF) soy sauce moromi were investigated. A comparison of two strains of Zygosaccharomyces rouxii showed that strain QH-25 had a stronger ability to contribute metabolites, including both nonvolatile and volatile types, to the moromi than strain QH-1, except for volatile acids and ketones. Of the various fortification patterns tested, the content of metabolites was significantly increased by inoculating Z. rouxii QH-25 prior to C. versatilis, especially the content of volatiles, including ketones, esters, phenols, and alcohols, which increased 1.61-fold compared with those in the control sample; the contents of these components were increased 3.07-, 1.91-, 1.36-, and 1.22-fold, respectively. In particular, characteristic components such as ethyl octanoate, 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF), 4-ethyl-2-methoxy-phenol (4-EG), and 3-methyl-1-butanol were increased 3.99-, 3.29-, 1.63-, and 0.70-fold, respectively. Redundancy analysis (RDA) showed that Staphylococcus, Zygosaccharomyces, and Candida were positively correlated with the unique components described above. In addition, the nodes of the interaction network between Zygosaccharomyces and Candida were increased, and the positive correlation of Zygosaccharomyces with Staphylococcus was enhanced by inoculating Z. rouxii prior to C. versatilis. These results suggested that the unique flavor of soy sauce was closely related to the metabolic characteristics of strains affiliated with Z. rouxii, whether cultured singly or cocultured with C. versatilis. This study also provided a reference method for determining the differences in community structure and metabolites between traditional techniques and modern processes for soy sauce fermentation.
Collapse
Affiliation(s)
- Lin Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| | - Qi Qi
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Menglu Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Can Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
40
|
Liu X, Bai W, Zhao W, Qian M, Dong H. Correlation analysis of microbial communities and precursor substances of ethyl carbamate (EC) during soy sauce fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Xu D, Wang W, Wang P, Zhang X, Zhang J, Xu C, Wang F. Soy whey as a promising substrate in the fermentation of soy sauce: a study of microbial community and volatile compounds. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Dandan Xu
- Beijing Academy of Food Sciences Beijing 100068 China
| | - Wenping Wang
- Beijing Academy of Food Sciences Beijing 100068 China
| | - Peng Wang
- Beijing Academy of Food Sciences Beijing 100068 China
| | - Xin Zhang
- Beijing Academy of Food Sciences Beijing 100068 China
| | - Jian Zhang
- Beijing Academy of Food Sciences Beijing 100068 China
| | - Chunyan Xu
- Beijing Academy of Food Sciences Beijing 100068 China
| | - Fenghuan Wang
- Beijing Laboratory of Food Quality and Safety Beijing Technology and Business University Beijing 100050 China
| |
Collapse
|
42
|
Li YC, Rao JW, Meng FB, Wang ZW, Liu DY, Yu H. Combination of mutagenesis and adaptive evolution to engineer salt-tolerant and aroma-producing yeast for soy sauce fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4288-4297. [PMID: 33417246 DOI: 10.1002/jsfa.11068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/13/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The moromi fermentation of high-salt liquid-state fermentation (HLF) soy sauce is usually performed in high-brine solution (17-20%, w/w), which decreases the metabolic activity of aroma-producing yeast. To enhance the soy sauce flavors, increasing the salt tolerance of aroma-producing yeasts is very important for HLF soy sauce fermentation. RESULTS In the present study, atmospheric and room-temperature plasma (ARTP) was first used to mutate the aroma-producing yeast Wickerhamomyces anomalus, and the salt tolerant strains were obtained by selection of synthetic medium with a sodium chloride concentration of 18% (w/w). Furthermore, adaptive laboratory evolution (ALE) was used to improve the salt tolerance of the mutant strains. The results obtained indicated that the combination use of ARTP and ALE markedly increased the NaCl tolerance of the yeast by increasing the cellular accumulation of K+ and removal of cytosolic Na+ , in addition to promoting the production of glycerin and strengthening the integrity of the cell membrane and cell wall. In soy sauce fermentation, the engineered strains improved the physicochemical parameters of HLF soy sauce compared to those produced by the wild-type strain, and the engineered strains also increased the alcohol, acid and aldehyde production, and enriched the types of esters in the soy sauce. CONCLUSION The results of the present study indicated that the combination of ARTP mutagenesis and ALE significantly improved the salt tolerance of the aroma-producing yeast, and also enhanced the production of volatiles of HLF soy sauce. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun-Cheng Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jia-Wei Rao
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Fan-Bing Meng
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zhong-Wei Wang
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Da-Yu Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hua Yu
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
43
|
Sassi S, Wan‐Mohtar WAAQI, Jamaludin NS, Ilham Z. Recent progress and advances in soy sauce production technologies: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Soumaya Sassi
- Functional Omics and Bioprocess Development Laboratory Institute of Biological Sciences Faculty of Science Universiti Malaya Kuala Lumpur Malaysia
- Biomass Energy Laboratory Faculty of Science Universiti Malaya Kuala Lumpur Malaysia
| | - Wan Abd Al Qadr Imad Wan‐Mohtar
- Functional Omics and Bioprocess Development Laboratory Institute of Biological Sciences Faculty of Science Universiti Malaya Kuala Lumpur Malaysia
- Bioresources and Bioprocessing Research Group Faculty of Science Universiti Malaya Kuala Lumpur Malaysia
| | | | - Zul Ilham
- Biomass Energy Laboratory Faculty of Science Universiti Malaya Kuala Lumpur Malaysia
- Bioresources and Bioprocessing Research Group Faculty of Science Universiti Malaya Kuala Lumpur Malaysia
| |
Collapse
|
44
|
Liu B, Li Y, Cao Z, Wang C. Effect of Tetragenococcus halophilus, Zygosaccharomyces rouxii, and Torulopsis versatilis addition sequence on soy sauce fermentation. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Mannaa M, Seo YS, Park I. Addition of Coriander during Fermentation of Korean Soy Sauce (Gangjang) Causes Significant Shift in Microbial Composition and Reduction in Biogenic Amine Levels. Foods 2020; 9:foods9101346. [PMID: 32977610 PMCID: PMC7598154 DOI: 10.3390/foods9101346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
The microflora of Korean soy sauce (gangjang) play an important role in maintaining its quality and safety. Hence, it is important to study the microflora and the possible approaches to improve their composition. In this study, the effect of adding coriander during soy sauce fermentation on the microflora and biogenic amines was evaluated using metagenomics and 1H NMR analyses, respectively. The β-diversity showed a clear distinction between the microbiota of the coriander and control groups. Microbial composition analysis revealed noticeable shifts, as Firmicutes abundance was significantly higher in the coriander group (91.77%) than that in the control (38.78%). The dominant bacterial family in the coriander group was the Bacillaceae (57.94%), while Halomonadaceae was dominant in the control group (49.77%). At the species level, Chromohalobacter beijerinckii dominated the microbial community in the control group (49.54%), but not (4.43%) in the coriander group. Moreover, there was a negative correlation between the Bacillaceae and several other bacterial families, including Halomonadaceae, which indicated a possible antagonism and partly explained the reduction in Chromohalobacter abundance in the coriander group. The levels of the biogenic amines histamine, putrescine, and tyramine, which are considered potential health risk factors, were significantly lower in the coriander soy sauce than those in the control sauce. The results of this study suggest that the addition of coriander during Korean soy sauce fermentation is beneficial, as coriander significantly reduces the levels of biogenic amines and the bacteria that produce them.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
- Department of Plant Pathology, Cairo University, Giza 12613, Egypt
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
- Correspondence: (Y.-S.S.); (I.P.); Tel.: +82-51-510-2267 (Y.-S.S.); +82-51-540-7236 (I.P.)
| | - Inmyoung Park
- Department of Oriental Food and Culinary Arts, Youngsan University, Busan 48015, Korea
- Correspondence: (Y.-S.S.); (I.P.); Tel.: +82-51-510-2267 (Y.-S.S.); +82-51-540-7236 (I.P.)
| |
Collapse
|