1
|
Ferrão LFV, Azevedo C, Benevenuto J, Mengist MF, Luby C, Pottorff M, Casorzo GIP, Mackey T, Lila MA, Giongo L, Bassil N, Perkins-Veazie P, Iorizzo M, Munoz PR. Inference of the genetic basis of fruit texture in highbush blueberries using genome-wide association analyses. HORTICULTURE RESEARCH 2024; 11:uhae233. [PMID: 39431114 PMCID: PMC11489598 DOI: 10.1093/hr/uhae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/04/2024] [Indexed: 10/22/2024]
Abstract
The global production and consumption of blueberry (Vaccinium spp.), a specialty crop known for its abundant bioactive and antioxidant compounds, has more than doubled over the last decade. To hold this momentum, plant breeders have begun to use quantitative genetics and molecular breeding to guide their decisions and select new cultivars that are improved for fruit quality. In this study, we leveraged our inferences on the genetic basis of fruit texture and chemical components by surveying large breeding populations from northern highbush blueberries (NHBs) and southern highbush blueberries (SHBs), the two dominant cultivated blueberries. After evaluating 1065 NHB genotypes planted at the Oregon State University, and 992 SHB genotypes maintained at the University of Florida for 17 texture-related traits, evaluated over multiple years, our contributions consist of the following: (i) we drew attention to differences between NHB and SHB materials and showed that both blueberry types can be differentiated using texture traits; (ii) we computed genetic parameters and shed light on the genetic architecture of important texture attributes, indicating that most traits had a complex nature with low to moderate heritability; (iii) using molecular breeding, we emphasized that prediction could be performed across populations; and finally (iv) the genomic association analyses pinpointed some genomic regions harboring potential candidate genes for texture that could be used for further validation studies. Altogether, the methods and approaches used here can guide future breeding efforts focused on maximizing texture improvements in blueberries.
Collapse
Affiliation(s)
- Luis Felipe V Ferrão
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Camila Azevedo
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
- Statistic Department, Federal University of Vicosa, Vicosa, Brazil
| | - Juliana Benevenuto
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Molla Fentie Mengist
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Claire Luby
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Marti Pottorff
- USDA-ARS, Horticulture Crops Research Unit, Corvallis, OR 97333, USA
| | - Gonzalo I P Casorzo
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Ted Mackey
- USDA-ARS, Horticulture Crops Research Unit, Corvallis, OR 97333, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Lara Giongo
- Fondazione Edmund Mach - Research and Innovation Centre Italy
| | - Nahla Bassil
- USDA-ARS, Horticulture Crops Research Unit, Corvallis, OR 97333, USA
| | | | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Patricio R Munoz
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Zhao H, Zhang T, Meng X, Song J, Zhang C, Gao P. Genetic Mapping and QTL Analysis of Fruit Traits in Melon ( Cucumis melo L.). Curr Issues Mol Biol 2023; 45:3419-3433. [PMID: 37185748 PMCID: PMC10137213 DOI: 10.3390/cimb45040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Melon (Cucumis melo L.) is an important horticultural cash crop and its quality traits directly affect consumer choice and market price. These traits are controlled by genetic as well as environmental factors. In this study, a quantitative trait locus (QTL) mapping strategy was used to identify the potential genetic loci controlling quality traits of melons (i.e., exocarp and pericarp firmness and soluble solid content) based on newly derived whole-genome single nucleotide polymorphism-based cleaved amplified polymorphic sequence (SNP-CAPS) markers. Specifically, SNPs of two melon varieties, M4-5 and M1-15, as revealed by whole-genome sequencing, were converted to the CAPS markers, which were used to construct a genetic linkage map comprising 12 chromosomes with a total length of 1414.88 cM, in the F2 population of M4-5 and M1-15. The six identified QTLs included: SSC6.1 and SSC11.1 related to soluble solid content; EF12.1 associated with exocarp firmness; and EPF3.1, EPF3.2 and EPF7.1 related to edible pericarp firmness. These genes were located on five chromosomes (3, 6, 7, 11, and 12) in the flanking regions of the CAPS markers. Moreover, the newly developed CAPS markers will be useful in guiding genetic engineering and molecular breeding in melon.
Collapse
Affiliation(s)
- Haiyong Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Taifeng Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Xiaobing Meng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Jiayan Song
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Chen Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Peng Gao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
3
|
Amanullah S, Osae BA, Yang T, Abbas F, Liu S, Liu H, Wang X, Gao P, Luan F. Mapping of genetic loci controlling fruit linked morphological traits of melon using developed CAPS markers. Mol Biol Rep 2022; 49:5459-5472. [PMID: 35235158 DOI: 10.1007/s11033-022-07263-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Fruit morphology traits are important commercial traits that directly affect the market value. However, studying the genetic basis of these traits in un-explored botanical groups is a fundamental objective for crop genetic improvement through marker-assisted breeding. METHODS AND RESULTS In this study, a quantitative trait loci (QTLs) mapping strategy was used for dissecting the genomic regions of fruit linked morphological traits by single nucleotide polymorphism (SNP) based cleaved amplified polymorphism sequence (CAPS) molecular markers. Next-generation sequencing was done for the genomic sequencing of two contrasted melon lines (climacteric and non-climacteric), which revealed 97% and 96% of average coverage over the reference melon genome database, respectively. A total of 57.51% non-synonymous SNPs and 42.49% synonymous SNPs were found, which produced 149 sets of codominant markers with a 24% polymorphism rate. Total 138-F2 derived plant populations were genotyped for linkage mapping and composite interval mapping based QTL mapping exposed 6 genetic loci, positioned over distinct chromosomes (02, 04, 08, 09, and 12) between the flanking intervals of CAPS markers, which explained an unlinked polygenic architecture in genome. Three minor QTLs of fruit weight (FWt2.1, FWt4.1, FWt9.1), one major QTL of fruit firmness (FrFir8.1), one major QTL of fruit length (FL12.1), and one major QTL of fruit shape (FS12.1) were determined and collectively explained the phenotypic variance from 5.64 to 15.64%. Fruit phenotypic correlation exhibited the significant relationship and principal component analysis also identified the potential variability. Multiple sequence alignments also indicated the significant base-mutations in the detected genetic loci, respectively. CONCLUSION In short, our illustrated genetic loci are expected to provide the reference insights for fine QTL mapping and candidate gene(s) mining through molecular genetic breeding approaches aimed at developing the new varieties.
Collapse
Affiliation(s)
- Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin, 150030, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China
| | - Benjamin Agyei Osae
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin, 150030, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China
| | - Tiantian Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin, 150030, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China
| | - Farhat Abbas
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming, People's Republic of China
| | - Shi Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin, 150030, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China
| | - Hongyu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin, 150030, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China
| | - Xuezheng Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin, 150030, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China
| | - Peng Gao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin, 150030, People's Republic of China.
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China.
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin, 150030, People's Republic of China.
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China.
| |
Collapse
|
4
|
Pradeepkumara N, Sharma PK, Munshi AD, Behera TK, Bhatia R, Kumari K, Singh J, Jaiswal S, Iquebal MA, Arora A, Rai A, Kumar D, Bhattacharya RC, Dey SS. Fruit transcriptional profiling of the contrasting genotypes for shelf life reveals the key candidate genes and molecular pathways regulating post-harvest biology in cucumber. Genomics 2022; 114:110273. [PMID: 35092817 DOI: 10.1016/j.ygeno.2022.110273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Cucumber fruits are perishable in nature and become unfit for market within 2-3 days of harvesting. A natural variant, DC-48 with exceptionally high shelf life was developed and used to dissect the genetic architecture and molecular mechanism for extended shelf life through RNA-seq for first time. A total of 1364 DEGs were identified and cell wall degradation, chlorophyll and ethylene metabolism related genes played key role. Polygalacturunase (PG), Expansin (EXP) and xyloglucan were down regulated determining fruit firmness and retention of fresh green colour was mainly attributed to the low expression level of the chlorophyll catalytic enzymes (CCEs). Gene regulatory networks revealed the hub genes and cross-talk associated with wide variety of the biological processes. Large number of SSRs (21524), SNPs (545173) and InDels (126252) identified will be instrumental in cucumber improvement. A web genomic resource, CsExSLDb developed will provide a platform for future investigation on cucumber post-harvest biology.
Collapse
Affiliation(s)
- N Pradeepkumara
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parva Kumar Sharma
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - A D Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - T K Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Reeta Bhatia
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jogendra Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - R C Bhattacharya
- ICAR-National Institute of Plant Biotechnology, New Delhi, India
| | - S S Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|