1
|
Thakur M, Andola HC, Silva AS. Unveiling techniques and exploring the potential of Myconutraceticals: Analyzing current applications and future prospects. Food Chem 2025; 466:142162. [PMID: 39615350 DOI: 10.1016/j.foodchem.2024.142162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
The escalating demand for natural, nutritionally rich food products underscores the significance of exploring the fungal kingdom, comprising yeast, lichens, molds, and mushrooms, as an abundant reservoir of nutritionalcompounds, secondary metabolites and bioactive components. This paper delves into the nutritional profiles of lichen, yeast, and mushrooms, emphasizing their role as prominent sources of myco-nutraceuticals and functional foods. The growing popularity of eco-friendly extraction techniques for mycochemicals is noted, alongside the exploration of established methods for qualitative and quantitative mycochemical analysis. Notably, studies have affirmed that the incorporation of mushroom and yeast extracts, and their derived compounds, enhances the nutritional profile of meals without compromising desirable dietary attributes. The biological health-promoting properties inherent in extracts and chemicals are also discussed. Anticipated trends the incorporation of myconutrients into functional foods and dietary supplements are highlighted. Finally, challenges hindering the optimal utilization of myconutraceuticals are scrutinized.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida, India.
| | - Harish Chandra Andola
- School of Environment and Natural Resources (SENR), Doon University, Uttrakhand, India
| | - Ana Sanches Silva
- University of Coimbra, Faculty of Pharmacy, Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centre for Study in Animal Science (CECA), ICETA, University of Porto, Porto, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
2
|
Bai JW, Li DD, Abulaiti R, Wang M, Wu X, Feng Z, Zhu Y, Cai J. Cold Plasma as a Novel Pretreatment to Improve the Drying Kinetics and Quality of Green Peas. Foods 2025; 14:84. [PMID: 39796374 PMCID: PMC11719577 DOI: 10.3390/foods14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/22/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Green peas, with their high moisture content, require effective drying techniques to extend shelf life while preserving quality. Traditional drying methods face challenges due to the dense structure of the seed coat and wax layer, which limits moisture migration. This study investigates cold plasma (CP) pretreatment as a novel approach to enhance drying kinetics and maintain the quality attributes of green peas. The results showed that CP treatment significantly improves drying efficiency by modifying the pea epidermis microstructure, reducing drying time by up to 18.18%. The moisture effective diffusivity coefficients (Deff) for untreated and CP-pretreated green peas were calculated to range from 5.9629 to 9.9172 × 10-10 m2·s-1, with CP pretreatment increasing Deff by up to 66.31% compared to the untreated group. Optimal CP parameters (90 s, 750 Hz frequency, 70% duty cycle) were found to improve the rehydration ratio, preserve color, and increase total phenolic content (TPC) by 24.06%, while enhancing antioxidant activity by 29.64%. Microstructural changes, including pore formation and increased surface roughness, as observed through scanning electron microscopy (SEM), partially explain the enhanced moisture diffusion, improved rehydration, and alterations in nutrient content. These findings underscore the potential of CP technology as a non-thermal, eco-friendly pretreatment for drying agricultural products, with broad applications in food preservation and quality enhancement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.-W.B.); (D.-D.L.); (R.A.); (M.W.); (X.W.); (Z.F.); (Y.Z.)
| |
Collapse
|
3
|
Yue D, Lin L, Li R, Zhang Z, Lu J, Jiang S. Effect of cold plasma and ultrasonic pretreatment on drying characteristics and nutritional quality of vacuum freeze-dried kiwifruit crisps. ULTRASONICS SONOCHEMISTRY 2025; 112:107212. [PMID: 39740335 DOI: 10.1016/j.ultsonch.2024.107212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
The effect of ultrasound and plasma pretreatment on freeze-dried kiwifruit crisps was investigated in this study. Using unpretreated kiwifruit as a control group (CG), the effects of ultrasound (US), plasma-activated water (PAW), ultrasound combined with plasma-activated water (UPAW), plasma-jet (PJ), and ultrasound combined with plasma-jet (UPJ) on the quality of vacuum freeze-dried kiwifruit were investigated. The results showed that all the pretreatments could change the microstructure of the crisps. The microstructure of dried kiwifruit after pretreatment showed more porous structures with different number and size compared to the CG group. The largest pore structure was observed in the UPAW group which had the highest crispness. The activity of water (Aw) of all pretreatment samples was significantly lower than the CG group (P < 0.05). In addition, the UPAW group had the lowest moisture content (4.85 %) and the highest rehydration ratio (288.03 %), indicating the better drying characteristics. Furthermore, the UPAW pretreatment sample showed good appearance with the highest brightness and the lowest color difference (ΔE). The total sugars and total phenolics of the UPAW pretreatment sample were mostly retained, and its flavor was the closest to the CG group. The combination of US and PAW promoted the formation of a larger cavity structure and improved the drying characteristics and physicochemical properties of dried kiwifruit crips. However, all the pretreatments resulted in a decrease in antioxidant capacity, with the least decreasing of the US group and the most decreasing of the UPAW group. Correlation analysis showed that the chlorophyll and vitamin C were the major antioxidants in dried kiwifruit crips. The mechanism of decrease in antioxidant activity of pretreatment, especially UPAW, should be discussed and the effective measure to reduce the change in chlorophyll and vitamin C should be taken in future research.
Collapse
Affiliation(s)
- Danhua Yue
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Lin Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China; Key Laboratory for Agriculture Products Processing of Anhui Province, Hefei, Anhui, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei, Anhui, China.
| | - Rongxing Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Zhongjun Zhang
- Anhui DongfangGuoyuan Biotechnology Co., Ltd, Suzhou, Anhui, China
| | - Jianfeng Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China; Key Laboratory for Agriculture Products Processing of Anhui Province, Hefei, Anhui, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei, Anhui, China
| | - Shaotong Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China; Key Laboratory for Agriculture Products Processing of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
4
|
Zarkar S, Kalaivendan RGT, Eazhumalai G, Annapure US. Atmospheric pin-to-plate cold plasma modification of amaranth starch & its application as a stabilizer in low-fat mayonnaise. Int J Biol Macromol 2024; 283:137803. [PMID: 39566773 DOI: 10.1016/j.ijbiomac.2024.137803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
This study investigates the changes in physicochemical, functional, rheological, and structural characteristics of the amaranth seed starch upon atmospheric cold plasma exposure with the generation/input voltages of 170, 200, and 230 V for 5-15 min and its potential as a fat replacer in a model emulsion system (mayonnaise). The surface modification by cold plasma is expected to enhance the native amaranth starch characteristics. Plasma treatment reduced the amylose content to a minimum of 9.00 % (230 V-15 min) resulting in a rise in relative crystallinity (74 %) and % syneresis (48.42 %). The hydratability remarkably elevated to a maximum rise of ~158 %, ~37 %, and ~41 % in solubility, absorption index, and swelling power respectively. Increased hydration, reduced the turbidity from 5.10 % (untreated) to a minimum of 3.42 % (230 V-15 min) of the pastes due to the cracked granular surface seen in electron micrographs. The rheological attributes improved up to 200 V-15 min with the peak viscosity of 5690 cP as the starch molecules tend to crosslink/aggregate which was confirmed by the increase in the COC stretching band area in FTIR spectra. On 30 % fat substitution with the plasma-treated amaranth starch (200 V-15 min), the mayonnaise viscosity increased significantly (p < 0.05) from ~7.60 Pa·s (control) to ~15.82 Pa·s (200 V-15 min) resulting in better emulsion stability (~82 %) and lightness. This proves the potential of cold plasma technology to modify under-utilized starches for sustainable food applications.
Collapse
Affiliation(s)
- Swapnil Zarkar
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | | | - Gunaseelan Eazhumalai
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Uday S Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India; Institute of Chemical Technology, Jalna, India.
| |
Collapse
|
5
|
Li H, Tan P, Lei W, Yang S, Fan L, Yang X, Liang J, Long F, Zhao X, Gao Z. Effect of microwave-puffed on Auricularia auricula polysaccharide and probiotic fermentation on its biotransformation and quality characteristics during storage period. Int J Biol Macromol 2024; 281:136448. [PMID: 39389488 DOI: 10.1016/j.ijbiomac.2024.136448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
In this study, probiotics with superior fermentation performance were screened, and the mixed-bacteria fermentation was carried out with Auricularia auricula treated with microwave-puffed process as fermentation substrate, and the changes in nutritional quality under different storage conditions were investigated. The results showed that the acid and bile salt resistance of Lactiplantibacillus plantarum 21,801 and 21,805 reached 95 % and 75 % respectively, and the intestinal adhesion was superior; microwave puffing treatment had the highest retention rate of A. auricula polysaccharides and the lowest loss of polyphenols, and no effect on soluble protein. Mixed bacterial fermentation significantly increased the total polyphenols and total flavonoids of A. auricula (p < 0.05), and the DPPH and ABTS radical scavenging reached 48.31 % and 73.21 % respectively. Furthermore, the viable counts, DPPH radical scavenging, color, and sensory quality of fermented A. auricula remained stable when stored at 4 °C. In contrast, when stored at 25 °C for 7 days, the taste was unfavorable, undesirable odor and spoilage occurred; by 21 days, DPPH clearance rate dropped below 40 % and color changed significantly (△E > 2). In conclusion, the probiotic mixed fermentation and storage conditions had a significant effect on the biometabolic transformation of macromolecules and other substances in A. auricula.
Collapse
Affiliation(s)
- Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Pei Tan
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Wenzhi Lei
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Siqi Yang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Lingjia Fan
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Xue Yang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China.
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Seelarat W, Sangwanna S, Chaiwon T, Panklai T, Chaosuan N, Bootchanont A, Wattanawikkam C, Porjai P, Khuangsatung W, Boonyawan D. Impact of pretreatment with dielectric barrier discharge plasma on the drying characteristics and bioactive compounds of jackfruit slices. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3654-3664. [PMID: 38158730 DOI: 10.1002/jsfa.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Hot-air drying is a popular method for preserving the production of jackfruit, but heat treatment damages its nutritional qualities. Cold plasma is one of the pretreatment methods used to preserve quality attributes of fruits before drying. In the present work, we studied the effect of dielectric barrier discharge (DBD) plasma on the drying characteristics, microstructure, and bioactive compounds of jackfruit slices with different pretreatment times (15, 30, 45, and 60 s), followed by hot-air drying at 50, 60, and 70 °C. A homemade DBD device was operated via three neon transformers. RESULTS Optical emission spectrophotometry revealed the emitted spectra of the reactive species in DBD plasma, including the N2 second positive system, N2 first negative system, nitrogen ion, and hydroxyl radical. The results showed that the DBD plasma promoted moisture transfer and enhanced the drying rate, related to the changes in the surface microstructure of samples damaged by DBD plasma. The modified Overhults model was recommended for describing the drying characteristics of jackfruit slices. The contents of ascorbic acid, total phenolics, total flavonoids, total polysaccharides, and antioxidant activity in pretreated jackfruit slices were improved by 9.64%, 42.59%, 25.77%, 27.00%, and 23.13%, respectively. However, the levels of color and carotenoids were reduced. CONCLUSION Thus, the bioactive compounds in dried jackfruit slices can be improved using the DBD plasma technique as a potential pretreatment method for the drying process. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weerasak Seelarat
- Food and Beverage Innovation for Health, Faculty of Science and Technology, Valaya Alongkorn Rajabhat University under the Royal Patronage Pathum Thani Province, Pathum Thani, Thailand
| | - Sujarinee Sangwanna
- Nutrition and Dietetics, Faculty of Science and Technology, Valaya Alongkorn Rajabhat University under the Royal Patronage Pathum Thani Province, Pathum Thani, Thailand
| | - Tawan Chaiwon
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Teerapap Panklai
- Food and nutrition, Faculty of Home Economics Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Natthaphon Chaosuan
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Atipong Bootchanont
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
- Smart Materials Research Unit, Rajamagala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Chakkaphan Wattanawikkam
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
- Smart Materials Research Unit, Rajamagala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Porramain Porjai
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
- Smart Materials Research Unit, Rajamagala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Wongvisarut Khuangsatung
- Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Dheerawan Boonyawan
- Plasma and Beam Physics Research Facility, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Malahlela HK, Belay ZA, Mphahlele RR, Sigge GO, Caleb OJ. Recent advances in activated water systems for the postharvest management of quality and safety of fresh fruits and vegetables. Compr Rev Food Sci Food Saf 2024; 23:e13317. [PMID: 38477217 DOI: 10.1111/1541-4337.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/28/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
Over the last three decades, decontamination management of fresh fruits and vegetables (FFVs) in the packhouses and along the supply chains has been heavily dependent on chemical-based wash. This has resulted in the emergence of resistant foodborne pathogens and often the deposition of disinfectant byproducts on FFVs, rendering them unacceptable to consumers. The management of foodborne pathogens, microbial contaminants, and quality of FFVs are a major concern for the horticultural industries and public health. Activated water systems (AWS), such as electrolyzed water, plasma-activated water, and micro-nano bubbles, have gained significant attention from researchers over the last decade due to their nonthermal and nontoxic mode of action for microbial inactivation and preservation of FFVs quality. The aim of this review is to provide a comprehensive summary of recent progress on the application of AWS and their effects on quality attributes and microbial safety of FFVs. An overview of the different types of AWS and their properties is provided. Furthermore, the review highlights the chemistry behind generation of reactive species and the impact of AWS on the quality attributes of FFVs and on the inactivation/reduction of spoilage and pathogenic microbes (in vivo or in vitro). The mechanisms of action of microorganism inactivation are discussed. Finally, this work highlights challenges and limitations for commercialization and safety and regulation issues of AWS. The synergistic prospect on combining AWS for maximum microorganism inactivation effectiveness is also considered. AWS offers a potential alternative as nonchemical interventions to maintain quality attributes, inactivate spoilage and pathogenic microorganisms, and extend the shelf-life for FFVs.
Collapse
Affiliation(s)
- Harold K Malahlela
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Zinash A Belay
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | | | - Gunnar O Sigge
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Oluwafemi J Caleb
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
8
|
Zheng C, Li J, Liu H, Wang Y. Review of postharvest processing of edible wild-grown mushrooms. Food Res Int 2023; 173:113223. [PMID: 37803541 DOI: 10.1016/j.foodres.2023.113223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
Edible wild-grown mushrooms, plentiful in resources, have excellent organoleptic properties, flavor, nutrition, and bioactive substances. However, fresh mushrooms, which have high water and enzymatic activity, are not protected by cuticles and are easily attacked by microorganisms. And wild-grown mushroom harvesting is seasonal the harvest of edible wild-grown mushrooms is subject to seasonality, so their market availability is challenging. Many processing methods have been used for postharvest mushroom processing, including sun drying, freezing, packaging, electron beam radiation, edible coating, ozone, and cooking, whose effects on the parameters and composition of the mushrooms are not entirely positive. This paper reviews the effect of processing methods on the quality of wild and some cultivated edible mushrooms. Drying and cooking, as thermal processes, reduce hardness, texture, and color browning, with the parallel that drying reduces the content of proteins, polysaccharides, and phenolics while cooking increases the chemical composition. Freezing, which allows mushrooms to retain better hardness, color, and higher chemical content, is a better processing method. Water washing and ozone help maintain color by inhibiting enzymatic browning. Edible coating facilitates the maintenance of hardness and total sugar content. Electrolytic water (EW) maintains total phenol levels and soluble protein content. Pulsed electric field and ultrasound (US) inhibit microbial growth. Frying maintains carbohydrates, lipids, phenolics, and proteins. And the mushrooms processed by these methods are safe. They are the focus of future research that combines different methods or develops new processing methods, molecular mechanisms of chemical composition changes, and exploring the application areas of wild mushrooms.
Collapse
Affiliation(s)
- Chuanmao Zheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Jieqing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Honggao Liu
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong 657000, Yunnan, China.
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| |
Collapse
|
9
|
Bao T, Karim N, Mo J, Chen W. Ultrasound-assisted ascorbic acid solution pretreated hot-air drying improves drying characteristics and quality of jujube slices. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4803-4812. [PMID: 36905110 DOI: 10.1002/jsfa.12548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND The effective hot-air drying of foods such as jujube requires an effective green pretreatment alternative to chemical pretreatments. Jujube slices were pretreated using 5 and 10 mg mL-1 ultrasound-assisted vitamin C (UVC) for 10, 20, and 30 min, followed by hot-air drying. RESULTS Ultrasound-assisted vitamin C pretreatment for 10, 20, and 30 min modulated the characteristics of fresh jujube slices such as water loss (from -28.25% to -25.52% after 30 min of UVC pretreatment), solid gain (from -31.68% to -26.82% after 30 min of UVC pretreatment), loss of total and reducing sugars (from 200.25 mg and 34.88 mg to 287.14 mg and 4.71 mg, respectively, after 30 min of UVC pretreatment), total soluble solids (from 76.32 o Brix to 82.08 o Brix), and water diffusivity (from 9.01 × 10-10 m2 s-1 to 6.71 × 10-10 m2 s-1 ). These characteristics were associated with altered surface morphology and improved drying characteristics. The UVC pretreatment preserved an acceptable reddish-yellow or orange-like color during hot-air drying and reduced the browning index from 26.3 optical density (OD)/g DM to 23.25 OD/g dry mass basis (DM), which was connected with reduced 5-hydroxymethylfurfural (HMF) content. On the other hand, the proportions of bioactive components such as vitamin C increased from 1.05 mg g-1 DM to 9.02 mg g-1 DM, phenolics increased from 12.8 mg gallic acid equivalent (GAE)/g DM to 17.5 mg GAE/g DM, flavonoids increased from 4.0 mg rutin equivalent (RE)/g DM to 4.4 mg RE/g DM, and procyanidin content increased from 2.0 mg catechin equivalents (CE)/g DM to 2.9 mg CE/g DM in UVC pretreated jujube slices, which had a positive association with increased antioxidant activity - for example, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) increased from IC50 22.5 mg DM/mL to 8.0 mg DM/mL, 2,2-diphenyl-1-picrylhydrazyl (DPPH) changed from IC50 36.5 mg DM/mL to 9.5 mg DM/mL, and ferric reducing antioxidant power (FRAP) increased from 2.0 mg vitamin C equivalent (VCE)/g DM to 11.9 mg VCE/g DM). CONCLUSION The data indicated that UVC can be used as a promising pretreatment method for improving the hot-air drying characteristics and the quality of jujube slices. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tao Bao
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Naymul Karim
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Khumsupan D, Lin SP, Hsieh CW, Santoso SP, Chou YJ, Hsieh KC, Lin HW, Ting Y, Cheng KC. Current and Potential Applications of Atmospheric Cold Plasma in the Food Industry. Molecules 2023; 28:4903. [PMID: 37446565 DOI: 10.3390/molecules28134903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The cost-effectiveness and high efficiency of atmospheric cold plasma (ACP) incentivise researchers to explore its potentials within the food industry. Presently, the destructive nature of this nonthermal technology can be utilised to inactivate foodborne pathogens, enzymatic ripening, food allergens, and pesticides. However, by adjusting its parameters, ACP can also be employed in other novel applications including food modification, drying pre-treatment, nutrient extraction, active packaging, and food waste processing. Relevant studies were conducted to investigate the impacts of ACP and posit that reactive oxygen and nitrogen species (RONS) play the principal roles in achieving the set objectives. In this review article, operations of ACP to achieve desired results are discussed. Moreover, the recent progress of ACP in food processing and safety within the past decade is summarised while current challenges as well as its future outlook are proposed.
Collapse
Affiliation(s)
- Darin Khumsupan
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, Taipei City 110, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402, Taiwan
| | | | - Yu-Jou Chou
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Kuan-Chen Hsieh
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung City 41354, Taiwan
| | - Yuwen Ting
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
- Department of Optometry, Asia University, Taichung City 41354, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404327, Taiwan
| |
Collapse
|
11
|
Tripathy S, Srivastav PP. Effect of dielectric barrier discharge (DBD) cold plasma-activated water pre-treatment on the drying properties, kinetic parameters, and physicochemical and functional properties of Centella asiatica leaves. CHEMOSPHERE 2023; 332:138901. [PMID: 37169095 DOI: 10.1016/j.chemosphere.2023.138901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Centella asiatica L. (CA) is a medicinal plant that gained significant commercial and research interest because of its bioactive compounds, which have functional properties such as antioxidant activity. However, it must be dried before use to improve its shelf life and prepare it for food and pharmaceutical applications. Therefore, in this investigation CA leaves were pre-treated with blanching and cold plasma activated water (CPAW), followed by recirculatory hot air and vacuum drying at 40, 50, and 60 °C. Vacuum-drying took 150-720 min, while hot-air drying took 60-180 min to dry. Page and Logarithmic models best fit for leaf drying kinetics, according to AIC, with R2 between 0.966 and 0.999 and RMSE between 0.001 and 0.069. CPAW pre-treatment increased leaf quality more than blanching in vacuum drying. Drying leaves at 40 °C boosted antioxidants (4021.462 μg TE (g dw)-1 and 3.356 mg GAEAC (g dw)-1), TPC (35.049 mg GAE (g dw)-1), and TFC (311.274 mg QE (g dw)-1) and is recommended. Vacuum-drying with CPAW pre-treatment preserved leaf microstructure better than hot-air drying. This study illuminates CA leaf drying behaviour and allow mass production without damaging bioactive components. These results could be used as a roadmap for future technological advances that will make it possible to use the bioactive components of CA in food formulation.
Collapse
Affiliation(s)
- Soubhagya Tripathy
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
12
|
Huo J, Zhang M, Wang D, S Mujumdar A, Bhandari B, Zhang L. New preservation and detection technologies for edible mushrooms: A review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3230-3248. [PMID: 36700618 DOI: 10.1002/jsfa.12472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 01/26/2023] [Indexed: 06/17/2023]
Abstract
Edible mushrooms are nutritious, tasty, and have medicinal value, which makes them very popular. Fresh mushrooms have a high water content and a crisp texture. They demonstrate strong metabolic activity after harvesting. However, they are prone to textural changes, microbial infestation, and nutritional and flavor loss, and they therefore require appropriate post-harvest processing and preservation. Important factors affecting safety and quality during their processing and storage include their quality, source, microbial contamination, physical damage, and chemical residues. Thus, these aspects should be tested carefully to ensure safety. In recent years, many new techniques have been used to preserve mushrooms, including electrofluidic drying and cold plasma treatment, as well as new packaging and coating technologies. In terms of detection, many new detection techniques, such as nuclear magnetic resonance (NMR), imaging technology, and spectroscopy can be used as rapid and effective means of detection. This paper reviews the new technological methods for processing and detecting the quality of mainstream edible mushrooms. It mainly introduces their working principles and application, and highlights the future direction of preservation, processing, and quality detection technologies for edible mushrooms. Adopting appropriate post-harvest processing and preservation techniques can maintain the organoleptic properties, nutrition, and flavor of mushrooms effectively. The use of rapid, accurate, and non-destructive testing methods can provide a strong assurance of food safety. At present, these new processing, preservation and testing methods have achieved good results but at the same time there are certain shortcomings. So it is recommended that they also be continuously researched and improved, for example through the use of new technologies and combinations of different technologies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingyi Huo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Dayuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Quebec, Canada
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
| | - Lujun Zhang
- R&D Center, Shandong Qihe Biotechnology Co., Ltd, Zibo, China
| |
Collapse
|
13
|
Effects of pretreatments using plasma functionalized water, osmodehydration and their combination on hot air drying efficiency and quality of tomato (Solanum lycopersicum L.) slices. Food Chem 2023; 406:134995. [PMID: 36521321 DOI: 10.1016/j.foodchem.2022.134995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
The effects of pretreatments using plasma functionalized water (PW), osmodehydration (OD), and combined plasma functionalized water and osmodehydration (PO) on the drying characteristics, physicochemical and bioactive components of tomato slices during hot air drying at an air temperature of 55 °C and velocity of 1.5 m/s were evaluated. Results revealed that PW pretreatment led to an increase in lycopene compared to fresh samples, and shortened drying time, improved ascorbic acids, TPC, TFC, acidity, rehydration, porosity and hue, but reduced TSS, compared to dried control samples, while OD resulted in lycopene degradation during pretreatment, and prolonged drying time, increased TSS, but lowered acidity, rehydration, porosity and hue, compared to dried control samples. On the other hand, PO was found to overcome the shortcomings of OD with enhancement in the lycopene during pretreatment, and showed accelerated moisture transfer, improved bioactive, acidity, porosity, rehydration, hue and texture, but decreased TSS, when compared to dried control samples. Overall, the results showed the promising potential of PW and PO pretreatments for enhancing drying efficiency and product quality for the food industry.
Collapse
|
14
|
Boateng ID. Thermal and Nonthermal Assisted Drying of Fruits and Vegetables. Underlying Principles and Role in Physicochemical Properties and Product Quality. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Boateng ID. Recent processing of fruits and vegetables using emerging thermal and non-thermal technologies. A critical review of their potentialities and limitations on bioactives, structure, and drying performance. Crit Rev Food Sci Nutr 2022; 64:4240-4274. [PMID: 36315036 DOI: 10.1080/10408398.2022.2140121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruits and vegetables have rich bioactive compounds and antioxidants that are vital for the human body and prevent the cell from disease-causing free radicals. Therefore, there is a growing demand for high-quality fruits and vegetables. Nevertheless, fruits and vegetables deteriorate due to their high moisture content, resulting in a 40-50% loss. Drying is a common food preservation technique in the food industry to increase fruits and vegetables' shelf-life. However, drying causes chemical modifications, changes in microstructure, and bioactives, thus, lowering the final product's quality as a considerable amount of bioactives compounds and antioxidants are lost. Conventional pretreatments such as hot water blanching, and osmotic pretreatment have improved fruit and vegetable drying performance. However, these conventional pretreatments affect fruits' bioactive compounds retention and microstructure. Hence, emerging thermal (infrared blanching, microwave blanching, and high-humidity hot-air impingement blanching) and non-thermal pretreatments (cold plasma, ultrasound, pulsed electric field, and edible films and coatings) have been researched. So the question is; (1) what are the mechanisms behind emerging non-thermal and thermal technologies' ability to improve fruits and vegetables' microstructure, texture, and drying performance? (2) how do emerging thermal and non-thermal technologies affect fruits and vegetables' bioactive compounds and antioxidant activity? and (3) what are preventing the large-scale commercialization of these emerging thermal and non-thermal technologies' for fruits and vegetables, and what are the future recommendations? Hence, this article reviewed emerging thermal blanching and non-thermal pretreatment technologies, emphasizing their efficacy in improving dried fruits and vegetables' bioactive compounds, structural properties, and drying performance. The fundamental mechanisms in emerging thermal and non-thermal blanching pretreatment methods on the fruits and vegetables' microstructure and drying performance were delved in, as well as what are preventing the large-scale commercialization of these emerging thermal and non-thermal blanching for fruits and vegetables, and the future recommendations. Emerging pretreatment approaches not only improve the drying performance but further significantly improve the retention of bioactive compounds and antioxidants and enhance the microstructure of the dried fruits and vegetables.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
16
|
Sun Z, Cong Y, Li T, Meng X, Zhang F. Enhancement of nutritional, sensory and storage stability by lactic fermentation of Auricularia auricula. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5172-5180. [PMID: 35289935 DOI: 10.1002/jsfa.11869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Auricularia auricula is of important nutritional value, although its utilization or consumption are mainly under the original form with no further processing. Indeed, its liquid or other fermented products contribute to improved digestion and absorption of nutrients. RESULTS The present study used Lactiplantibacillus plantarum to ferment A. auricula juice after an initial processing comprising superfine grinding and high-pressure homogenization. The content of probiotic bacteria in the juice of A. auricula reached 8.48 log colony-forming units mL-1 after 24 h of fermentation under 37 °C, with the addition of 3% carbon and 0.3% nitrogen source. Meanwhile, the antioxidant activity was increased approximately two-fold, as well as the enriched volatile flavors, both effectively cover up the unwelcoming earthy smell of A. auricula. Furthermore, the storage stability was also strengthened up to 28 days. CONCLUSION In summary, the introduced fermentation process not only realized the purpose of improving the nutritional value of A. auricula, but also effectively upgraded the sensory evaluation of A. auricula products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengchen Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Tianyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
17
|
Du Y, Yang F, Yu H, Xie Y, Yao W. Improving food drying performance by cold plasma pretreatment: A systematic review. Compr Rev Food Sci Food Saf 2022; 21:4402-4421. [PMID: 36037152 DOI: 10.1111/1541-4337.13027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
Drying is an important and influential process to prolong the shelf-life of food in the food industry. Recent studies have shown that cold plasma (CP) as an emerging drying pretreatment technology can improve drying performance, reduce drying energy consumption, and improve dried food quality. This paper comprehensively reviewed the mechanism of CP improving drying performance, related equipment, energy consumption, influencing factors, and impact on drying quality. This review also discusses the advantages and disadvantages and proposes possible challenges and suggestions for future research. Most studies indicated that CP pretreatment could improve the drying rate and quality and reduce the drying energy consumption. CP can promote moisture diffusion and improve drying efficiency by etching the surface and affecting the internal microstructure. In addition, CP can enhance the quality of dried products by reducing drying time and enzyme activity. Further research is needed to explore the drying mechanisms and equipment innovations to promote the application of CP in the food drying industry.
Collapse
Affiliation(s)
- Yuhang Du
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
18
|
Effect of Electrohydrodynamic (EHD) on Drying Kinetics and Quality Characteristics of Shiitake Mushroom. Foods 2022; 11:foods11091303. [PMID: 35564026 PMCID: PMC9101094 DOI: 10.3390/foods11091303] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
The effect of an electrohydrodynamic (EHD) drying system on the drying kinetics, microstructure and nutritional composition of shiitake mushrooms was studied. Shiitake mushroom slices were dried at 0, 18, 22, 26, 30 and 34 kV. The results showed that the drying rate, effective moisture diffusion coefficient and shrinkage of the EHD treatment group were significantly higher than those of the control group. The 34 kV treatment group had the highest drying rate (0.24 g W/g DM × h) and the highest effective moisture diffusion coefficient (1.45 × 10−6 m2/s), which were 6.75 and 7.41 times higher than those of the control group, respectively. The control group had the highest rehydration ratio (7.72) and showed unsatisfactory color performance. The scanning electron microscopy (SEM) results showed that compared with the control group, the surface of samples dried by EHD exhibited different degrees of encrustation, and the area of encrustation increased with increasing voltage. After analysis by Fourier transform infrared (FTIR) spectroscopy, it was found that the samples of both the EHD-treated and control groups had similar absorption peak positions, but the intensity of the absorption peak of the EHD-dried samples was greater. Compared with the control group, the shiitake mushroom slices dried by EHD had a higher protein content and polysaccharide content. The polysaccharide content in 22 kV treatment group was the highest (4.67 g/100 g), and the protein content in 26 kV and 34 kV treatment groups was the highest (17.0 g/100 g). This study provides an experimental and theoretical basis for an in-depth study of the drying kinetics of shiitake mushrooms and provides theoretical guidance and clues for the wider application of EHD drying technology.
Collapse
|
19
|
Khudyakov D, Sosnin M, Shorstkii I, Okpala COR. Cold filamentary microplasma pretreatment combined with infrared dryer: Effects on drying efficiency and quality attributes of apple slices. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Atmospheric cold plasma effect on quality attributes of banana slices: Its potential use in blanching process. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Corona Discharge Power of Plasma Treatment Influence on the Physicochemical and Microbial Quality of Enoki Mushroom (Flammulina velutipes). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma treatment was widely known as an effective technology applied for contact-surface decontamination. Enoki (Flammulina velutipes) was an edible-medicinal mushroom with different phytochemicals and bioactive components beneficial for human health. Enoki mushroom had high respiration rate therefore it was highly perishable after harvesting. Moreover, it was greatly susceptible to microbial contamination but it was not feasible to be decontaminated by normal water washing. It’s urgent to extend shelf-life and control microbial criteria on this mushroom in dry manner without aqueous treatment. Corona discharge plasma was among 4 kinds of diverse cold atmospheric pressure plasma sources widely applied in food industry. This study demonstrated the influence of corona discharge plasma power values (control, 120, 150, 180, 210 W) on the physicochemical and microbial characteristics of Enoki mushroom during 10 days of storage at ambient temperature. Results showed that Enoki mushroom should be treated at 150 W of corona discharge plasma power to retain weight loss, total soluble solid, vitamin C in acceptable values while reducing total Aerobic count, Coliform, Enterobacteriaceae as much as possible. At the 10th day of storage, the weight loss, total soluble solid, vitamin C, total Aerobic count, Coliform, Enterobacteriaceae were recorded at 3.35±0.07%, 6.98±0.03 oBrix, 14.81±0.04 mg/100 g, 4.71±0.05 log CFU/g, 3.17±0.02 log CFU/g, 2.13±0.01 CFU/g, respectively. Findings of this research proved that corona discharge plasma pretreatment would be appropriate to maintain physicochemical properties and retard microbial loads on Enoki mushroom during preservation.
Collapse
|