1
|
Kong D, Zhang M, Mujumdar AS, Luo Z. Novel heterogeneous 3D printing process of protein-polysaccharide gel containing orange juice sacs: Optimization of material properties and printing parameters. Int J Biol Macromol 2025; 305:141277. [PMID: 39978505 DOI: 10.1016/j.ijbiomac.2025.141277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The rapid advancement of 3D food printing technology for heterogeneous systems has been driven by increasing consumer demand for personalized meals, enhanced nutrition, and overall wellness. By using κ-carrageenan (KC), konjac gum (KGM), and whey protein isolate (WPI), this study developed a thermoreversible composite gel (WPI-KC-KGM) for temperature-controlled extrusion, focusing on the effect of the KC to KGM ratio on the composite gel's rheological properties and printability. Rheological tests indicated that KGM reduced the thermal sensitivity of KC, with the K7M3 formulation being optimal for minimizing sensitivity while maintaining thermoreversibility. Printing accuracy analysis revealed that K5M5 samples achieved the best pore area (1.392 cm2) and fidelity (96.66 %), while K7M3 samples exhibited the highest support similarity (95.78 %). For the WPI-KC-KGM (K7M3) composite gel containing 3 wt% orange juice sacs, the recommended printing settings are a nozzle diameter of 2.5 mm, a speed of 20 mm/s, and a temperature of 40 °C, resulting in aesthetically pleasing and clearly defined planar and stereoscopic products.
Collapse
Affiliation(s)
- Demei Kong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Zhenjiang Luo
- R&D Center, Haitong Ninghai Foods Co., Ltd., Ninghai, Zhejiang, China
| |
Collapse
|
2
|
Russo Spena S, Pasquino R, Grizzuti N. K-Carrageenan/Locust Bean Gum Gels for Food Applications-A Critical Study on Potential Alternatives to Animal-Based Gelatin. Foods 2024; 13:2575. [PMID: 39200501 PMCID: PMC11353981 DOI: 10.3390/foods13162575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Among hydrocolloids used in the food industry, gelatin (an animal protein) is remarkably known for its unique gel forming ability. Creating a perfect, green substitute for animal gelatin is extremely difficult if not impossible, because this versatile hydrocolloid offers many special properties that are not easily imitated by other vegetable-based systems. The combination of more than one type of hydrocolloid is commonly used in food either to bridge the above-mentioned gap or to impart novel organoleptic characteristics (such as mouthfeel) to food products, to modify rheological characteristics, and to satisfy processing requirements in the industry. In this work, we study the rheology and the texture of water mixtures of κ-Carrageenan (κ-C) and Locust Bean Gum (LBG). By fixing different κ-C concentrations and varying the LBG/κ-C ratio, we explore a wide range of potentially useful textures. The results obtained for the green systems are also compared to those exhibited by animal gelatin formulations.
Collapse
Affiliation(s)
| | | | - Nino Grizzuti
- DICMaPI—Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Naples, Italy; (S.R.S.)
| |
Collapse
|
3
|
Song J, Li J, Zhong J, Guo Z, Xu J, Chen X, Qiu M, Lin J, Han L, Zhang D. An oral gel suitable for swallowing: The effect of micronization on the gel properties and microstructure of κ-carrageenan. Int J Biol Macromol 2024; 271:132708. [PMID: 38815948 DOI: 10.1016/j.ijbiomac.2024.132708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
κ-Carrageenan (κ-Car) is an important material for preparing food gels and hydrogels. However, κ-Car gel has issues with high hardness and low water-holding capacity. Modification strategy of micronization is proposed for the first time to explore its influence on texture properties and gelling process of κ-Car gel, and to investigate the feasibility of κ-Car as a food matrix with low strength. κ-Car undergoing 60 min of micronization, the d(0.9) decreased by 79.33 %, SBET and Vtotal increased by 89.23 % and 95.27 %. The swelling rate and degree of gelling process increased significantly, and the microstructure changed from loose large pores to dense small pores resembling a "honeycomb". Importantly, the hardness of gel-60, Milk-60 and PNS-60 decreased by 72.52 %, 49.25 % and 81.37 %. In addition, WHC of gel-60, Milk-60 and PNS-60 was improved. IDDSI tests showed that κ-Car gels, milk gels and PNS gels can be categorized as level 6 (soft and bite-sized), except for PNS-60, which belongs to level 5 (crumbly and moist). Furthermore, the texture and bitter masking effect of milk gels and PNS gels were improved. In conclusion, this study demonstrated that micronization can be a novel approach to improve the gel properties of κ-Car, laying the groundwork for developing dysphagia foods.
Collapse
Affiliation(s)
- Jiao Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jiaxin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jingping Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhiping Guo
- Sichuan HouDe Pharmaceutical Technology Co., Ltd., Chengdu 611730, PR China
| | - Jia Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xinglv Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Min Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China.
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Pengzhou 611900, PR China.
| |
Collapse
|
4
|
Qiu L, Zhang M, Ghazal AF, Chu Z, Luo Z. Development of 3D printed k-carrageenan-based gummy candies modified by fenugreek gum: Correlating 3D printing performance with sol-gel transition. Int J Biol Macromol 2024; 265:130865. [PMID: 38490387 DOI: 10.1016/j.ijbiomac.2024.130865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Temperature-responsive inks were formulated using k-carrageenan, fenugreek gum (FG), rose extracts, and sugar, of which the first two were used as the gelling agents. The interactions among components in these mixed ink formulations were investigated. Sol-gel transition and rheological properties of these inks were also correlated with extrusion, shape formation, and self (shape)-supporting aspects of 3D printing. Results indicated that incorporating FG increased inks' gelation temperature from 39.7 °C to 44.7-49.6 °C, affecting the selection of printing temperature (e.g., 0 % FG: 40 °C, 0.15 % FG: 45 °C, 0.3 % FG-0.6 % FG: 50 °C). Inks in solution states with lower viscosity (<5 Pa·s) were amenable to ensure their smooth extrusion through the tip of the printing nozzle. A shorter sol-gel transition time (approximately 100 s) during the shape formation stage facilitated the solidification of inks after extrusion. The addition of FG significantly (p<0.05) improved the mechanical properties (elastic modulus, hardness, etc.) of the printed models, which facilitated their self-supporting behavior. Low field nuclear magnetic resonance indicated that the inclusion of FG progressively restricted water mobility, consequently reducing the water syneresis rate of the mixed inks by 0.86 %-3.6 %. FG enhanced hydrogen bonding interactions among the components of these mixed inks, and helped to form a denser network.
Collapse
Affiliation(s)
- Liqing Qiu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Ahmed Fathy Ghazal
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Zhaoyang Chu
- Golden Monkey Food Co., 466300 Shenqiu County, Henan Province, China
| | - Zhenjiang Luo
- Haitong Foods Ninghai Co., Ltd., 315000 Ninghai, Zhejiang, China
| |
Collapse
|
5
|
Tarahi M, Tahmouzi S, Kianiani MR, Ezzati S, Hedayati S, Niakousari M. Current Innovations in the Development of Functional Gummy Candies. Foods 2023; 13:76. [PMID: 38201104 PMCID: PMC10778822 DOI: 10.3390/foods13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Nowadays, consumers are aware of the necessity of following a healthy diet and there is demand for natural and nutritious food products, especially for children. Consequently, new trends in the food industry are focused on the development of foods with low levels of sucrose and artificial additives (e.g., flavors and colorants), as well as high antioxidant, protein, and fiber content. On the other hand, some consumers demand vegan, halal, and kosher-certified food products. In this regard, conventional confectionary products such as gummy candies (GCs) are increasingly losing their popularity. Therefore, the development of plant-based and functional GCs has gained the attention of researchers and manufacturers. This review highlights recent innovations in the development of GCs with alternative gelling agents and sweeteners, natural flavors and colorants, and the incorporation of medicines, fiber, protein and antioxidants into GCs. Additionally, it summarizes their effects on the techno-functional, sensory, and nutritional properties of GCs.
Collapse
Affiliation(s)
- Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (M.T.); (M.N.)
| | - Sima Tahmouzi
- Department of Food Science and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd 8916978477, Iran;
| | - Mohammad Reza Kianiani
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad 9177948978, Iran;
| | - Shiva Ezzati
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran;
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | - Mehrdad Niakousari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (M.T.); (M.N.)
| |
Collapse
|
6
|
Stępień A, Tkaczewska J, Nowak N, Grzebieniarz W, Goik U, Żmudziński D, Jamróz E. Sugar-Free, Vegan, Furcellaran Gummy Jellies with Plant-Based Triple-Layer Films. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6443. [PMID: 37834583 PMCID: PMC10573701 DOI: 10.3390/ma16196443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Increasing consumer awareness of the impact of nutrition on health and the growing popularity of vegan diets are causing a need to look for new plant-based formulations of standard confectionery products with high energy density and low nutritional value, containing gelatin. Therefore, the aim of this study was to develop vegan and sugar-free gummy jellies based on an algae-derived polysaccharide-furcellaran (FUR). Until now, FUR has not been used as a gel-forming agent despite the fact that its structure-forming properties show high potential in the production of vegan confectionery. The basic formulation of gummy jellies included the addition of soy protein isolate and/or inulin. The final product was characterized regarding its rheological, antioxidant, mechanical and physicochemical properties. Eco-friendly packaging for the jellies composed of a three-layer polymer film has also been developed. It was observed that the highest values of textural parameters were obtained in jellies containing the addition of soy protein isolate, whose positive effect was also found on antioxidant activity. Before drying, all furcellaran-based gel systems showed G' and G" values characteristic of strong elastic hydrogels. Storing jellies for a week under refrigeration resulted in an increase in hardness, a decrease in moisture content and reduced water activity values. Overall, our study indicates the high potential of furcellaran both as a gelling agent in confectionery products and as a base polymer for their packaging.
Collapse
Affiliation(s)
- Anna Stępień
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland; (U.G.); (D.Ż.)
| | - Joanna Tkaczewska
- Department of Animal Products Processing, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland;
| | - Nikola Nowak
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland; (N.N.); (W.G.)
| | - Wiktoria Grzebieniarz
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland; (N.N.); (W.G.)
| | - Urszula Goik
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland; (U.G.); (D.Ż.)
| | - Daniel Żmudziński
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland; (U.G.); (D.Ż.)
| | - Ewelina Jamróz
- Department of Product Packaging, Cracow University of Economics, Rakowicka Street 27, PL-31-510 Cracow, Poland;
| |
Collapse
|
7
|
Kim S, Kim BS, Bai J, Chang Y. Antibacterial κ-carrageenan/konjac glucomannan-based edible hydrogel film containing Salmonella phage PBSE191 and its application in chicken meat. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
8
|
Joshi J, Homburg SV, Ehrmann A. Atomic Force Microscopy (AFM) on Biopolymers and Hydrogels for Biotechnological Applications-Possibilities and Limits. Polymers (Basel) 2022; 14:1267. [PMID: 35335597 PMCID: PMC8949482 DOI: 10.3390/polym14061267] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Atomic force microscopy (AFM) is one of the microscopic techniques with the highest lateral resolution. It can usually be applied in air or even in liquids, enabling the investigation of a broader range of samples than scanning electron microscopy (SEM), which is mostly performed in vacuum. Since it works by following the sample surface based on the force between the scanning tip and the sample, interactions have to be taken into account, making the AFM of irregular samples complicated, but on the other hand it allows measurements of more physical parameters than pure topography. This is especially important for biopolymers and hydrogels used in tissue engineering and other biotechnological applications, where elastic properties, surface charges and other parameters influence mammalian cell adhesion and growth as well as many other effects. This review gives an overview of AFM modes relevant for the investigations of biopolymers and hydrogels and shows several examples of recent applications, focusing on the polysaccharides chitosan, alginate, carrageenan and different hydrogels, but depicting also a broader spectrum of materials on which different AFM measurements are reported in the literature.
Collapse
Affiliation(s)
- Jnanada Joshi
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Sarah Vanessa Homburg
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|