1
|
Chen L, Huang J, Yuan C, Zhan S, Qiao M, Yi Y, Luo C, Ma R. Volatile and non-volatile compound analysis of ginkgo chicken soup during cooking using a combi oven. Food Chem X 2025; 26:102276. [PMID: 40034978 PMCID: PMC11875183 DOI: 10.1016/j.fochx.2025.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
This study employed a range of analytical techniques to evaluate the changes in both volatile and non-volatile compounds during different cooking times (30, 60, 90, 120, and 150 min) of ginkgo chicken soup prepared using a multifunctional combi oven, and comparedthese results with those obtained from the traditional ceramic pot method.The techniques included electronic nose (e-nose), electronic tongue (e-tongue), gas chromatography-ion mobility spectrometry (GC-IMS), high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and automated amino acid analysis. A total of 64 volatile compounds, primarily aldehydes, ketones, esters, and alcohols, were detected, with 23 key aroma components identified. Principal component analysis (PCA) demonstrated similar aroma and taste profiles between the two cooking methods. Additionally, 22 amino acids, 6 nucleotides enhancing umami, and 18 fatty acids were categorized into saturated, monounsaturated, and polyunsaturated groups. Pearson correlation revealed significant relationships among key amino acids, 5'-nucleotides, and volatile compounds, providing insights into industrial-scale applications of multifunctional ovens in ginkgo chicken soup production.
Collapse
Affiliation(s)
- Lilan Chen
- Sichuan Tourism University, Chengdu 610100, China
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Jiale Huang
- Sichuan Tourism University, Chengdu 610100, China
| | - Can Yuan
- Sichuan Tourism University, Chengdu 610100, China
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, China
| | | | - Mingfeng Qiao
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, China
| | - Yuwen Yi
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, China
| | - Chunyou Luo
- Sichuan Tourism University, Chengdu 610100, China
| | - Ruixue Ma
- Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|
2
|
Miyazawa T, Higuchi O, Sogame R, Miyazawa T. Determination of Plasmalogen Molecular Species in Hen Eggs. Molecules 2024; 29:4795. [PMID: 39459164 PMCID: PMC11510340 DOI: 10.3390/molecules29204795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: Plasmalogens are vinyl ether-type glycerophospholipids that are characteristically distributed in neural tissues and are significantly reduced in the brains of individuals with dementia compared to those in healthy subjects, suggesting a link between plasmalogen deficiency and cognitive decline. Hen eggs are expected to be a potential source of dietary plasmalogens, but the details remain unclear. (2) Methods: We evaluated the fresh weight, dry weight, total lipid, neutral lipids, glycolipids, and phospholipids in the egg yolk and egg white of hen egg. Then, the molecular species of plasmalogens were quantified using HPLC-ESI-MS/MS. (3) Results: In egg yolk, the total plasmalogen content was 1292.1 µg/100 g fresh weight and predominantly ethanolamine plasmalogens (PE-Pls), specifically 18:0/22:6-PE-Pls, which made up 75.6 wt% of the total plasmalogen. In egg white, the plasmalogen content was 31.4 µg/100 g fresh weight and predominantly PE-Pls, specifically 18:0/20:4-PE-Pls, which made up 49.6 wt% of the total plasmalogen. (4) Conclusions: Plasmalogens were found to be more enriched in egg yolk than in egg white. It was found that humans are likely to ingest almost 0.3 mg of total plasmalogens from one hen egg. These findings highlight the importance of plasmalogens in the daily diet, and it is recommended to explore the impact of long-term dietary plasmalogen intake to assess its effect on human health. This provides a viewpoint for the development of new food products.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Miyagi, Japan; (O.H.); (R.S.)
| | - Ohki Higuchi
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Miyagi, Japan; (O.H.); (R.S.)
- Biodynamic Plant Institute Co., Ltd., Sapporo Techno Park, Sapporo 004-0015, Hokkaido, Japan
| | - Ryosuke Sogame
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Miyagi, Japan; (O.H.); (R.S.)
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Miyagi, Japan; (O.H.); (R.S.)
| |
Collapse
|
3
|
Tang T, Gao X, Li J, Chang C, Gu L, Su Y, Yang Y. Effects of cholesterol removal treatment on the flavor and physicochemical properties of hot gel egg yolk. Food Chem 2024; 433:137220. [PMID: 37690132 DOI: 10.1016/j.foodchem.2023.137220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
The aim of this study was to investigate effects of cholesterol removal treatment (CRT) on the flavor, taste, texture, color, and nutritional value of hot gel egg yolk (EY). The off-odor, volatile components and taste of EY treated with CRT were studied by electronic nose (E-nose), gas chromatography-mass spectrometry (GC-MS) and electronic tongue (E-tongue). The effect of CRT on the nutritional value of EY was studied by amino acid and fatty acid analysis. The CRT significantly reduced the content of hexanal, 2-amyl-furan, 1-octene-3-ol, styrene and heptanal in EY1-EY4, also decreased its bitter taste without affecting other taste and elasticity. In addition, the CRT did not affect the essential amino acids (EAA) content and L*, a* and b* values of EY1-EY4, but it led to the reduction in polyunsaturated fatty acids (PUFA) content. In general, the CRT is an effective way to reduce the off-odor of EY without affecting consumer acceptance.
Collapse
Affiliation(s)
- Tingting Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuejing Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Zhang B, Li K, Cheng H, Hu J, Qi X, Guo X. Effect of thermal treatments on volatile profiles and fatty acid composition in sweet corn ( Zea mays L.). Food Chem X 2023; 18:100743. [PMID: 37397213 PMCID: PMC10314213 DOI: 10.1016/j.fochx.2023.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
This study analyzed the effects of thermal processing on volatiles and fatty acids in sweet corn. There were 27 volatiles measured in fresh samples, and 33, 21, and 19 volatiles identified in the steaming, blanching, and roasting groups, respectively. Relative odor activity values (ROAVs) showed that characteristic aroma-active volatiles of sweet corn after thermal treatments included: (E)-2-nonenal, 1-octen-3-ol, beta-myrcene, dimethyl trisulfide, 1-(4,5-dihydro-2-thiazolyl)-ethanone, and d-limonene. Thermal treatments significantly increased the unsaturated fatty acids (oleic acid and linolenic acid) of sweet corn by 110 to 183% compared to fresh samples. Meanwhile, many characteristic volatiles were found that derived from the oxidative cleavage of fatty acids. The sweet corn aroma obtained by steaming for 5 min was considered the closest to fresh corn. Our research provided insight into aroma composition of different thermally processed sweet corn and laid the foundation for further exploring the sources of aroma compounds in thermally processed sweet corn.
Collapse
Affiliation(s)
- Bing Zhang
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangzhou 510640, China
| | - Kun Li
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Crops Genetics Improvement of Guangdong Province, Guangzhou 510640, China
| | - Hao Cheng
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangzhou 510640, China
| | - Jianguang Hu
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Crops Genetics Improvement of Guangdong Province, Guangzhou 510640, China
| | - Xitao Qi
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Crops Genetics Improvement of Guangdong Province, Guangzhou 510640, China
| | - XinBo Guo
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangzhou 510640, China
| |
Collapse
|
5
|
Yu Z, Ye L, He Y, Lu X, Chen L, Dong S, Xiang X. Study on the formation pathways of characteristic volatiles in preserved egg yolk caused by lipid species during pickling. Food Chem 2023; 424:136310. [PMID: 37229895 DOI: 10.1016/j.foodchem.2023.136310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
The formation of volatiles in high-fat foods is strongly influenced by the composition and structure of lipids. The relationship between key variable lipid species and characteristic volatiles were performed by lipidomics and flavoromics to resolve the pathways of volatiles in preserved egg yolk (PEY) during pickling. The results showed that the formation of nonanal and benzaldehyde at early stage possibly derived from oleic acid sited at Sn-1 in TG(18:1_18:2_20:4), Sn-2 in PE(22:6_18:1), and linoleic acid bonded at Sn-2 in TG(18:1_18:2_20:4), respectively. 1-octen-3-ol may be formed from linoleic acid located at Sn-2 in TG(18:1_18:2_20:4) and arachidonic acid sited at Sn-3 in TG(18:1_18:2_20:4). Indole was formed through TGs(16:0_16:1_20:1;16:1_18:1_22:1;23:0_18:1_18:1) at the later stage, and acetophenone through TGs(14:0_20:0_20:4;14:0_15:0_18:1; 16:0_16:0_22:6), PCs(24:0_18:1;O-18:1_18:2), PEs(P-18:1_20:4;P-18:1_22:6) and SPH(d18:0) during whole process of pickling. Our study provides a deep and precise insight for the formation pathways of characteristic volatiles in PEY through lipids degradation during pickling at the molecular level.
Collapse
Affiliation(s)
- Zhuosi Yu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Lin Ye
- College of Food Science and Engineering, Tarim University, Alar, Xinjiang, China
| | - Yating He
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Xinhong Lu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Le Chen
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Shiqin Dong
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Xiaole Xiang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China.
| |
Collapse
|
6
|
Tadesse D, Retta N, Girma M, Ndiwa N, Dessie T, Hanotte O, Getachew P, Dannenberger D, Maak S. Yolk Fatty Acid Content, Lipid Health Indices, and Oxidative Stability in Eggs of Slow-Growing Sasso Chickens Fed on Flaxseed Supplemented with Plant Polyphenol Extracts. Foods 2023; 12:1819. [PMID: 37174357 PMCID: PMC10178081 DOI: 10.3390/foods12091819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Previous attempts to increase the level of flaxseed in hens' diet for the production of n-3 polyunsaturated fatty acids (n-3 PUFAs)-enriched eggs have been commonly associated with undesirable effects on production efficiency, lipid health indices, and oxidative stability of eggs, requiring adequate research attention. This study investigated the effects of feeding a moderate level of flaxseed (FS) and plant polyphenol extracts (PPEs) on fatty acid content, oxidative stability, and lipid health indices in eggs of slow-growing Sasso T451A laying hens. One hundred and five hens were assigned to five groups (seven replicates of three) and fed on FS (75 g flaxseed and no antioxidants), VE8 (75 g flaxseed and 800 mg vitamin E), TS8 (75 g flaxseed and 800 mg Thymus schimperi), DA8 (75 g flaxseed and 800 mg Dodonaea angustifolia), and CD8 (75 g flaxseed and 800 mg Curcuma domestica) extract per kg diets. The egg yolk content of eicosapentaenoic acid (EPA, C20:5 n-3) in the DA8, TS8, and CD8 diets and docosahexaenoic acid (DHA, C22:6 n-3) in TS8 and CD8 diets significantly (p < 0.05) increased compared with the FS diet. The FS diet significantly increased the malondialdehyde (MDA) content in egg yolks, whereas the TS8 diet decreased it by 67% (p < 0.05). Little difference was observed in yolk fatty acid content between cooked and raw eggs. Production of n-3 PUFA-enriched eggs with favorable lipid health indices was possible through inclusion of PPEs extracted from local plant species grown in Ethiopia and a moderate dose of flaxseed in the diet of laying hens.
Collapse
Affiliation(s)
- Desalew Tadesse
- Department of Animal Production and Welfare, Mekelle University, Mekelle 231, Ethiopia;
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa 1176, Ethiopia;
- LiveGene, International Livestock Research Institute (ILRI), Addis Ababa 5689, Ethiopia; (M.G.); (T.D.)
| | - Negussie Retta
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa 1176, Ethiopia;
| | - Mekonnen Girma
- LiveGene, International Livestock Research Institute (ILRI), Addis Ababa 5689, Ethiopia; (M.G.); (T.D.)
| | - Nicholas Ndiwa
- Research Methods Group, International Livestock Research Institute (ILRI), Nairobi 30709, Kenya;
| | - Tadelle Dessie
- LiveGene, International Livestock Research Institute (ILRI), Addis Ababa 5689, Ethiopia; (M.G.); (T.D.)
| | - Olivier Hanotte
- LiveGene, International Livestock Research Institute (ILRI), Addis Ababa 5689, Ethiopia; (M.G.); (T.D.)
- Center for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, Edinburgh EH25 9RG, UK
- School of Life Sciences, University of Nottingham, Nottingham NG72UH, UK
| | - Paulos Getachew
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa 1176, Ethiopia;
| | - Dirk Dannenberger
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.D.); (S.M.)
| | - Steffen Maak
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.D.); (S.M.)
| |
Collapse
|