1
|
Samandar F, Mohsenpour A, Rastin F, Doustmohammadi-Salmani S, Saberi MR, Chamani J. Evaluating binding behavior of quercetin to human serum albumin and calf thymus DNA: Insights from molecular dynamics, spectroscopy, and apoptotic pathway regulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125638. [PMID: 39733709 DOI: 10.1016/j.saa.2024.125638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024]
Abstract
In this work, we sought to apprehend quercetin binding affinity and its interaction behavior in complex with human serum albumin (HSA) and calf thymus DNA (ctDNA) through multi spectroscopy and molecular dynamics and also evaluated its effects on colorectal cancer. The binding constants of ctDNA-quercetin and HSA-quercetin complexes at 298 K, which were calculated to be (2.67 ± 0.04) × 103 M-1 and (4.77 ± 0.05) × 104 M-1 respectively, denoted the strong binding of quercetin with ctDNA and HSA. The Ksv and Kb values decrease with increasing temperature, indicating that the quenching of HSA and ctDNA in the presence of quercetin is caused by the combined dynamic and static effects. The obtained thermodynamic parameters for the ctDNA-quercetin interaction represented the existence of electrostatic forces (ΔH0 < 0 and ΔS0 > 0), and the thermodynamic parameters of HSA-quercetin complex disclose the dominance of hydrogen bonds and van der Waals interactions (ΔH0 < 0 and ΔS0 < 0). Moreover, the interactions were exothermic, as evidenced by the negative ΔH0 value for both interactions. According to molecular docking and MD simulation data, quercetin was capable of placing into the site 1 of HSA and forming stable interaction plus this ligand tended to unwind DNA's strands as an intercalator ligand, which was confirmed by experimental results. The fluorescence competition studies between the two intercalator probes of ethidium bromide (EB) and acridine orange (AO), as well as the effect of ionic strength, proposed the strong tendency of quercetin to exist between the two strands of ctDNA as a sign of its intercalative property. Consequently, quercetin can be assumed as an efficient intercalator ligand carried by HSA with an anticancer property. We also conducted cell viability experiments on HT-29 and SW620 cell lines to validate the anticancer ability of quercetin, and observed its decreasing impact on the cell viability of these two cell lines. Additionally, the outcomes of Real-time qPCR proved its capability to reduce the CXCR4 expression and increase the NKD2 expression in Wnt signaling pathway. Therefore, these facts confirm the inhibiting ability of quercetin towards colorectal cancer growth via the prevention of Wnt pathway and approve its functionality as a potential anticancer agent for this cancer.
Collapse
Affiliation(s)
- Farzaneh Samandar
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Aida Mohsenpour
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farangis Rastin
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
2
|
Motzwickler-Németh A, Party P, Simon P, Sorrenti M, Ambrus R, Csóka I. Preparation of Ibuprofen-Loaded Inhalable γCD-MOFs by Freeze-Drying Using the QbD Approach. Pharmaceutics 2024; 16:1361. [PMID: 39598485 PMCID: PMC11597434 DOI: 10.3390/pharmaceutics16111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Research on cyclodextrin-based metal-organic frameworks (CD-MOFs) is still in its infancy, but their potential for use in drug delivery-expressly in the lung-seems promising. We aimed to use the freeze-drying method to create a novel approach for preparing CD-MOFs. MOFs consisting of γ-cyclodextrin (γCD) and potassium cations (K+) were employed to encapsulate the poorly water-soluble model drug Ibuprofen (IBU) for the treatment of cystic fibrosis (CF). METHODS Using the LeanQbD® software (v2022), we designed the experiments based on the Quality by Design (QbD) concept. According to QbD, we identified the three most critical factors, which were the molar ratio of the IBU to the γCD, incubation time, and the percentage of the organic solvent. light-, scanning electron microscope (SEM) and laser diffraction were utilized to observe the morphology and particle size of the samples. In addition, the products were characterized by Differential Scanning Calorimetry (DSC), X-ray Powder Diffraction (XRPD), Fourier Transform Infrared Spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR). RESULTS Based on characterizations, we concluded that a γCD-MOF/IBU complex was also formed using the freeze-drying method. Using formulations with optimal aerodynamic properties, we achieved 38.10 ± 5.06 and 47.18 ± 4.18 Fine Particle Fraction% (FPF%) based on the Andersen Cascade Impactor measurement. With these formulations, we achieved a fast dissolution profile and increased IBU solubility. CONCLUSIONS This research successfully demonstrates the innovative use of freeze-drying to produce γCD-MOFs for inhalable IBU delivery. The method enabled to modify the particle size, which was crucial for successful pulmonary intake, emphasizing the need for further investigation of these formulations as effective delivery systems.
Collapse
Affiliation(s)
- Anett Motzwickler-Németh
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (A.M.-N.); (P.P.); (I.C.)
| | - Petra Party
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (A.M.-N.); (P.P.); (I.C.)
| | - Péter Simon
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, University of Szeged, 6720 Szeged, Hungary;
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (A.M.-N.); (P.P.); (I.C.)
| | - Ildikó Csóka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (A.M.-N.); (P.P.); (I.C.)
| |
Collapse
|
3
|
Dehghan-Chenar S, Zare HR, Mohammadpour Z. Chitosan-ImH@γ-CD: a pH-sensitive smart bio-coating to enhance the corrosion resistance of magnesium alloys in bio-implants. RSC Adv 2024; 14:33301-33310. [PMID: 39434998 PMCID: PMC11492830 DOI: 10.1039/d4ra04744c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/12/2024] [Indexed: 10/23/2024] Open
Abstract
Magnesium alloys hold promise as bio-implants but are hindered by poor corrosion resistance. To overcome this, a pH-sensitive smart anti-corrosion bio-coating was developed using a layer-by-layer technique. The first layer consists of Imidazol@waterproofed γ-Cyclodextrin metal organic framework (ImH@waterproofed γ-CD MOF), which encapsulates ImH, a green inhibitor, in waterproofed γ-CD MOF. The second layer is composed of 1% w/v chitosan. ImH@waterproofed γ-CD MOF was characterized by SEM, FTIR, and XRD. The corrosion parameters of the smart bio-coating were investigated through potentiodynamic polarization (Tafel) plots and electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF). The results indicate that when the magnesium alloy coated with the chitosan-ImH@γ-CD composite is placed in the SBF solution, the pH near the corrosion site increases over time. This increase in pH leads to the release of imidazole as a corrosion inhibitor, effectively preventing surface corrosion by forming a protective layer on the alloy's surface. The chitosan-ImH@γ-CD composite exhibits an inhibition efficiency of 97.27% after 5 days of immersion in SBF. Additionally, the cell viability on the chitosan-ImH@γ-CD composite surface is significantly higher than on uncoated Mg alloy, promoting MC3T3-E1 cell proliferation. Alkaline phosphatase results also indicate improved differentiation of MC3T3-E1 cells with the chitosan-ImH@γ-CD composite.
Collapse
Affiliation(s)
| | - Hamid Reza Zare
- Department of Chemistry, Yazd University Yazd 89195-741 Iran
| | | |
Collapse
|
4
|
Zhao R, Chen T, Li Y, Chen L, Xu Y, Chi X, Yu S, Wang W, Liu D, Zhu B, Hu J. Biocompatible hydrophobic cross-linked cyclodextrin-based metal-organic framework as quercetin nanocarrier for enhancing stability and controlled release. Food Chem 2024; 448:139167. [PMID: 38574718 DOI: 10.1016/j.foodchem.2024.139167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Cyclodextrin-based metal-organic framework (CD-MOF) has been widely used in various delivery systems due to its excellent edibility and high drug loading capacity. However, its typically bulky size and high brittleness in aqueous solutions pose significant challenges for practical applications. Here, we proposed an ultrasonic-assisted method for rapid synthesis of uniformly-sized nanoscale CD-MOF, followed by its hydrophobic modification through ester bond cross-linking (Nano-CMOF). Proper ultrasound treatment effectively reduced particle size to nanoscale (393.14 nm). Notably, carbonate ester cross-linking method significantly improved water stability without altering its cubic shape and high porosity (1.3 cm3/g), resulting in a retention rate exceeding 90% in various media. Furthermore, the loading of quercetin did not disrupt cubic structure and showcased remarkable storage stability. Nano-CMOF achieved controlled release of quercetin in both aqueous environments and digestion. Additionally, Nano-CMOF demonstrated exceptional antioxidant (free radical scavenging 82.27%) and biocompatibility, indicating its significant potential as novel nutritional delivery systems in food and biomedical fields.
Collapse
Affiliation(s)
- Runan Zhao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Tao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfei Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Lihang Chen
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xuesong Chi
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Songfeng Yu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| | - Beiwei Zhu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Jiangning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Yang G, Kantapan J, Mazhar M, Hu Q, Bai X, Zou Y, Wang H, Yang S, Wang L, Dechsupa N. Pretreated MSCs with IronQ Transplantation Attenuate Microglia Neuroinflammation via the cGAS-STING Signaling Pathway. J Inflamm Res 2024; 17:1643-1658. [PMID: 38504697 PMCID: PMC10949311 DOI: 10.2147/jir.s449579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
Background Intracerebral hemorrhage (ICH), a devastating form of stroke, is characterized by elevated morbidity and mortality rates. Neuroinflammation is a common occurrence following ICH. Mesenchymal stem cells (MSCs) have exhibited potential in treating brain diseases due to their anti-inflammatory properties. However, the therapeutic efficacy of MSCs is limited by the intense inflammatory response at the transplantation site in ICH. Hence, enhancing the function of transplanted MSCs holds considerable promise as a therapeutic strategy for ICH. Notably, the iron-quercetin complex (IronQ), a metal-quercetin complex synthesized through coordination chemistry, has garnered significant attention for its biomedical applications. In our previous studies, we have observed that IronQ exerts stimulatory effects on cell growth, notably enhancing the survival and viability of peripheral blood mononuclear cells (PBMCs) and MSCs. This study aimed to evaluate the effects of pretreated MSCs with IronQ on neuroinflammation and elucidate its underlying mechanisms. Methods The ICH mice were induced by injecting the collagenase I solution into the right brain caudate nucleus. After 24 hours, the ICH mice were randomly divided into four subgroups, the model group (Model), quercetin group (Quercetin), MSCs group (MSCs), and pretreated MSCs with IronQ group (MSCs+IronQ). Neurological deficits were re-evaluated on day 3, and brain samples were collected for further analysis. TUNEL staining was performed to assess cell DNA damage, and the protein expression levels of inflammatory factors and the cGAS-STING signaling pathway were investigated and analyzed. Results Pretreated MSCs with IronQ effectively mitigate neurological deficits and reduce neuronal inflammation by modulating the microglial polarization. Moreover, the pretreated MSCs with IronQ suppress the protein expression levels of the cGAS-STING signaling pathway. Conclusion These findings suggest that pretreated MSCs with IronQ demonstrate a synergistic effect in alleviating neuroinflammation, thereby improving neurological function, which is achieved through the inhibition of the cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Guoqiang Yang
- Research Center for Integrated Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Acupuncture and Rehabilitation Department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - Qiongdan Hu
- Research Center for Integrated Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Xue Bai
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Neurology and National Traditional Chinese Medicine Clinical Research Base, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yuanxia Zou
- Research Center for Integrated Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Honglian Wang
- Research Center for Integrated Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Sun Q, Yuan T, Yang G, Guo D, Sha L, Yang R. Chitosan-graft-poly(lactic acid)/CD-MOFs degradable composite microspheres for sustained release of curcumin. Int J Biol Macromol 2023; 253:127519. [PMID: 37866573 DOI: 10.1016/j.ijbiomac.2023.127519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
The solubility of cyclodextrin metal-organic frameworks (CD-MOFs) in aqueous media making it not suitable as sustained-release drug carrier. Here, curcumin-loaded CD-MOFs (CD-MOFs-Cur) was embedded in chitosan-graft-poly(lactic acid) (CS-LA) via a solid-in-oil-in-oil (s/o/o) emulsifying solvent evaporation method forming the sustained-release composite microspheres. At CS-LA concentration of 20 mg/mL, the composite microspheres showed good sphericity. The average particle size of CS-LA/CD-MOFs-Cur (2:1), CS-LA/CD-MOFs-Cur (4:1) and CS-LA/CD-MOFs-Cur (6:1) composite microspheres was about 9.3, 12.3 and 13.5 μm, respectively. The above composite microspheres exhibited various degradation rates and curcumin release rates. Treating in HCl solution (pH 1.2) for 120 min, the average particle size of above microspheres reduced 28.19 %, 24.34 % and 6.19 %, and curcumin released 86.23 %, 78.37 % and 52.57 %, respectively. Treating in PBS (pH 7.4) for 12 h, the average particle size of above microspheres reduced 30.56 %, 26.56 % and 10.66 %, and curcumin released 68.54 %, 54.32 % and 31.25 %, respectively. Moreover, the composite microspheres had a favorable cytocompatibility, with cell viability of higher than 90 %. These composite microspheres open novel opportunity for sustained drug release of CD-MOFs.
Collapse
Affiliation(s)
- Qianyu Sun
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Tianzhong Yuan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Gang Yang
- Winbon Schoeller New Materials Co., Ltd., Quzhou 324400, China
| | - Daliang Guo
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Lizheng Sha
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Rendang Yang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
7
|
Puebla-Duarte AL, Santos-Sauceda I, Rodríguez-Félix F, Iturralde-García RD, Fernández-Quiroz D, Pérez-Cabral ID, Del-Toro-Sánchez CL. Active and Intelligent Packaging: A Review of the Possible Application of Cyclodextrins in Food Storage and Safety Indicators. Polymers (Basel) 2023; 15:4317. [PMID: 37959997 PMCID: PMC10648989 DOI: 10.3390/polym15214317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Natural cyclodextrins (CDs) can be formed by 6, 7, or 8 glucose molecules (α-, β-, and γ-, respectively) linked in a ring, creating a cone shape. Its interior has an affinity for hydrophobic molecules, while the exterior is hydrophilic and can interact with water molecules. This feature has been used to develop active packaging applied to food, interacting with the product or its environment to improve one or more aspects of its quality or safety. It also provides monitoring information when food is optimal for consumption, as intelligent packaging is essential for the consumer and the merchant. Therefore, this review will focus on discerning which packaging is most appropriate for each situation, solubility and toxicological considerations, characterization techniques, effect on the guest properties, and other aspects related to forming the inclusion complex with bioactive molecules applied to packaging.
Collapse
Affiliation(s)
- Andrés Leobardo Puebla-Duarte
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico; (A.L.P.-D.); (F.R.-F.); (R.D.I.-G.); (I.D.P.-C.)
| | - Irela Santos-Sauceda
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico;
| | - Francisco Rodríguez-Félix
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico; (A.L.P.-D.); (F.R.-F.); (R.D.I.-G.); (I.D.P.-C.)
| | - Rey David Iturralde-García
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico; (A.L.P.-D.); (F.R.-F.); (R.D.I.-G.); (I.D.P.-C.)
| | - Daniel Fernández-Quiroz
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico;
| | - Ingrid Daniela Pérez-Cabral
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico; (A.L.P.-D.); (F.R.-F.); (R.D.I.-G.); (I.D.P.-C.)
| | - Carmen Lizette Del-Toro-Sánchez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico; (A.L.P.-D.); (F.R.-F.); (R.D.I.-G.); (I.D.P.-C.)
| |
Collapse
|
8
|
Zhao RN, Zhu BW, Xu Y, Yu SF, Wang WJ, Liu DH, Hu JN. Cyclodextrin-based metal-organic framework materials: Classifications, synthesis strategies and applications in variegated delivery systems. Carbohydr Polym 2023; 319:121198. [PMID: 37567724 DOI: 10.1016/j.carbpol.2023.121198] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023]
Abstract
Metal-organic frameworks (MOFs) are coordination compounds that possess an adjustable structure and controllable function. Despite their wide applications in various industries, the use of MOFs in the fields of food and biomedicine is limited mainly due to their potential biological toxicity. Researchers have thus focused on developing biocompatible MOFs to address this issue. Among them, cyclodextrin-based metal-organic frameworks (CD-MOFs) have emerged as a promising alternative. CD-MOFs are novel MOFs synthesized using naturally carbohydrate cyclodextrin and alkali metal cations, and possess renewable, non-toxic, and edible characteristics. Due to their high specific surface area, controllable porosity, great biocompatibility, CD-MOFs have been widely used in various delivery systems, such as encapsulation of nutraceuticals, flavors, and antibacterial agents. Although the field of CD-MOF materials is still in its early stages, they provide a promising direction for the development of MOF materials in the delivery field. This review describes classification and structural characteristics, followed by an introduction to formation mechanism and commonly used synthetic methods for CD-MOFs. Additionally, we discuss the status of the application of various delivery systems based on CD-MOFs. Finally, we address the challenges and prospects of CD-MOF materials, with the aim of providing new insights and ideas for their future development.
Collapse
Affiliation(s)
- Ru-Nan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Bei-Wei Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Song-Feng Yu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Wen-Jun Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Dong-Hong Liu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Jiang-Ning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
9
|
Oh JX, Murray BS, Mackie AR, Ettelaie R, Sadeghpour A, Frison R. γ-Cyclodextrin Metal-Organic Frameworks: Do Solvents Make a Difference? Molecules 2023; 28:6876. [PMID: 37836719 PMCID: PMC10574491 DOI: 10.3390/molecules28196876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Conventionally, methanol is the solvent of choice in the synthesis of gamma-cyclodextrin metal-organic frameworks (γ-CD-MOFs), but using ethanol as a replacement could allow for a more food-grade synthesis condition. Therefore, the aim of the study was to compare the γ-CD-MOFs synthesised with both methanol and ethanol. The γ-CD-MOFs were characterised by scanning electron microscopy (SEM), surface area and pore measurement, Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (PXRD). The encapsulation efficiency (EE) and loading capacity (LC) of the γ-CD-MOFs were also determined for curcumin, using methanol, ethanol and a mixture of the two as encapsulation solvent. It was found that γ-CD-MOFs synthesised by methanol and ethanol do not differ greatly, the most significant difference being the larger crystal size of γ-CD-MOFs crystallised from ethanol. However, the change in solvent significantly influenced the EE and LC of the crystals. The higher solubility of curcumin in ethanol reduced interactions with the γ-CD-MOFs and resulted in lowered EE and LC. This suggests that different solvents should be used to deliberately manipulate the EE and LC of target compounds for better use of γ-CD-MOFs as their encapsulating and delivery agents.
Collapse
Affiliation(s)
- Jia X. Oh
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (J.X.O.); (A.R.M.); (R.E.); (A.S.)
| | - Brent S. Murray
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (J.X.O.); (A.R.M.); (R.E.); (A.S.)
| | - Alan R. Mackie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (J.X.O.); (A.R.M.); (R.E.); (A.S.)
| | - Rammile Ettelaie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (J.X.O.); (A.R.M.); (R.E.); (A.S.)
| | - Amin Sadeghpour
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (J.X.O.); (A.R.M.); (R.E.); (A.S.)
| | - Ruggero Frison
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland;
| |
Collapse
|
10
|
Zhang Y, Gong S, Liu L, Shen H, Liu E, Pan L, Gao N, Chen R, Huang Y. Cyclodextrin-Coordinated Liposome-in-Gel for Transcutaneous Quercetin Delivery for Psoriasis Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40228-40240. [PMID: 37584330 DOI: 10.1021/acsami.3c07582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease that is difficult to treat. Quercetin (QT) is a dietary flavonoid known for its anti-inflammatory effects and safe use in humans. However, the topical application of quercetin for psoriasis treatment presents a significant challenge due to its poor water solubility and low stability in semisolid preparations, where it tends to recrystallize. This work presents a novel liposome-in-gel formulation for the quercetin-based topical treatment of psoriasis. The quercetin-loading liposomes are stabilized by hydroxypropyl-β-cyclodextrin (HPCD), which interacts with phospholipids via hydrogen bonding to form a layer of an HPCD coating on the liposome interface, thus resulting in improved stability. Various analytical techniques, such as FTIR spectroscopy, Raman spectroscopy, and TEM, were used to characterize the molecular coordination patterns between cyclodextrin and liposomes. The results demonstrated that HPCD assisted the liposomes in interfacing with the matrix lipids and keratins of the stratum corneum, thereby enhancing skin permeability and promoting drug penetration and retention in the skin. The in vivo results showed that the topical QT HPCD-liposome-in-gel improved the treatment efficacy of psoriatic plaque compared to free QT. It alleviated the symptoms of skin thickening and downregulated proinflammatory cytokines, including TNF-α, IL-17A, and IL-1β. The results suggested that the HPCD-coordinated liposome-in-gel system could be a stable carrier for topical QT therapy with good potential in psoriasis treatment.
Collapse
Affiliation(s)
- Yuqin Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Shuqing Gong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Lin Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huan Shen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Li Pan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Nan Gao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Rongli Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yongzhuo Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
| |
Collapse
|
11
|
Zhang T, He H, Xu Q, Lv J, Wu C, Zhou Y, Wang Z. γ-Cyclodextrin-based metal-organic frameworks for lactonic sophorolipid application in enhanced oil recovery. Carbohydr Polym 2023; 314:120931. [PMID: 37173029 DOI: 10.1016/j.carbpol.2023.120931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023]
Abstract
Lactonic sophorolipid (LSL) exhibits numerous surfactant activities, such as emulsification, wetting action, dispersion effect, and oil-washing activities. Nevertheless, LSLs have poor water solubility, which restrains their application in the petroleum industry. In this research, a new compound, lactonic sophorolipid cyclodextrin metal-organic framework (LSL-CD-MOFs), was obtained by loading LSL into γ-cyclodextrin metal-organic frameworks (γ-CD-MOFs). The LSL-CD-MOFs were characterized by N2 adsorption analysis, X-ray powder diffraction analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Loading LSL into γ-CD-MOFs significantly increased the apparent water solubility of LSL. However, the critical micelle concentration of LSL-CD-MOFs was similar to that of LSL. Furthermore, LSL-CD-MOFs effectively reduced the viscosities and improved the emulsification indices of oil-water mixtures. Oil-washing tests, which were conducted using oil sands, revealed that the LSL-CD-MOFs yielded an oil-washing efficiency of 85.82 % ± 2.04 %. Overall, γ-CD-MOFs are promising carriers for LSL, and LSL-CD-MOFs are a potential, low-cost, new, green surfactant for enhanced oil recovery.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; School of College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Hao He
- Petrochemical Research Institute of Petrochina Co. Ltd., Beijing 102206, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Jiasheng Lv
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chaoyi Wu
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yefei Zhou
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Zhenjiong Wang
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
12
|
Zhai X, Chen K, Wei X, Zhang H, Yang H, Jiao K, Liu C, Fan Z, Wu J, Zhou T, Wang H, Li J, Li M, Bai Y, Li B. Microneedle/CD-MOF-mediated transdural controlled release of methylprednisolone sodium succinate after spinal cord injury. J Control Release 2023; 360:236-248. [PMID: 37355211 DOI: 10.1016/j.jconrel.2023.06.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
A new method of transdural delivering drugs to the spinal cord has been developed, involving the use of microneedles (MNs) and a β-cyclodextrin metal-organic framework (CD-MOF). This epidural microneedle array, dubbed MNs@CD-MOF@MPSS, can be utilized to deliver methylprednisolone sodium succinate (MPSS) to the site of spinal cord injury (SCI) in a controlled manner. MNs allows to generate micropores in the dura for direct drug delivery to the spinal cord, overcoming tissue barriers and targeting damaged regions. Additionally, the CD-MOF provides a secondary extended release after separating from the MNs. In in vitro study, inward MNs increased cellular absorption of MPSS and then reduced LPS-induced M1 polarization of microglia. And animal studies have shown that this method of drug delivery results in improved BMS scores and a reduction in M1 phenotype microphage and glial scar formation. Furthermore, the downregulation of the NLRP3-positive inflammasome and related pro-inflammatory cytokines was observed. In conclusion, this new drug platform has potential for clinical application in spinal cord diseases and is a valuable composite for minimally transdural controlled drug delivery. STATEMENT OF SIGNIFICANCE: This research presents a new epidural microneedle patch made up of microneedles (MNs) and a β-cyclodextrin metal-organic framework (CD-MOF). The epidural microneedle patch boasts high drug loading capacity, the ability to penetrate the dura, and controlled release. When loaded with methylprednisolone sodium succinate (MPSS), it effectively reduces inflammation and improves neurological function after spinal cord injury. Therefore, it is a novel and promising drug platform for the treatment of spinal cord diseases in a clinical setting.
Collapse
Affiliation(s)
- Xiao Zhai
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Kai Chen
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xianzhao Wei
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hailing Zhang
- Department of Neurology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Huan Yang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Kun Jiao
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Chen Liu
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zhiguo Fan
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Ji Wu
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Tianjunke Zhou
- Basic Medicine College, Naval Medical University, Shanghai 200433, China
| | - Haojue Wang
- Basic Medicine College, Naval Medical University, Shanghai 200433, China
| | - Jingfeng Li
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Ming Li
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Yushu Bai
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Bo Li
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
13
|
Alizadeh SR, Savadkouhi N, Ebrahimzadeh MA. Drug design strategies that aim to improve the low solubility and poor bioavailability conundrum in quercetin derivatives. Expert Opin Drug Discov 2023; 18:1117-1132. [PMID: 37515777 DOI: 10.1080/17460441.2023.2241366] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
INTRODUCTION Scientists are especially interested in polyphenols, particularly flavonoids. Quercetin, a flavonoid, has demonstrated various therapeutic properties, such as antioxidant, anti-diabetic, anti-hypertensive, and anti-carcinogenic activities. Different plant sources contain varying quantities and types of quercetin. However, quercetin's bioavailability is frequently low due to its low water solubility, molecular stability, and absorption characteristics. AREAS COVERED The primary goals of this review are related to the approaches for overcoming quercetin's limitations. Hence, the main tactics for structural modifications (addition of charged and polar groups, removing C2, C3 double bond or reducing aromaticity, disrupting intramolecular H-bond, and reducing crystal lattice stability) and drug delivery systems (cyclodextrin complexes, emulsions, nanoparticles, liposomes, etc.) were discussed to improve water solubility and bioavailability of quercetin. EXPERT OPINION From a tactical perspective, enhancing the solubility of compounds can be simplified through decreasing hydrophobic properties or crystalline stability. In addition, an essential field of study focuses on creating appropriate molecular carriers for substances with low water solubility. However, pharmacokinetics, potency, and toxicology are all impacted by the structural factors and physical characteristics that regulate solubility. Poor water solubility is still a major problem in drug discovery, and new methods are always in demand to overcome it.
Collapse
Affiliation(s)
- Seyedeh Roya Alizadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Niloofar Savadkouhi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
14
|
Kumari L, Choudhari Y, Patel P, Gupta GD, Singh D, Rosenholm JM, Bansal KK, Kurmi BD. Advancement in Solubilization Approaches: A Step towards Bioavailability Enhancement of Poorly Soluble Drugs. Life (Basel) 2023; 13:life13051099. [PMID: 37240744 DOI: 10.3390/life13051099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
A drug's aqueous solubility is defined as the ability to dissolve in a particular solvent, and it is currently a major hurdle in bringing new drug molecules to the market. According to some estimates, up to 40% of commercialized products and 70-90% of drug candidates in the development stage are poorly soluble, which results in low bioavailability, diminished therapeutic effects, and dosage escalation. Because of this, solubility must be taken into consideration when developing and fabricating pharmaceutical products. To date, a number of approaches have been investigated to address the problem of poor solubility. This review article attempts to summarize several conventional methods utilized to increase the solubility of poorly soluble drugs. These methods include the principles of physical and chemical approaches such as particle size reduction, solid dispersion, supercritical fluid technology, cryogenic technology, inclusion complex formation techniques, and floating granules. It includes structural modification (i.e., prodrug, salt formation, co-crystallization, use of co-solvents, hydrotrophy, polymorphs, amorphous solid dispersions, and pH variation). Various nanotechnological approaches such as liposomes, nanoparticles, dendrimers, micelles, metal organic frameworks, nanogels, nanoemulsions, nanosuspension, carbon nanotubes, and so forth have also been widely investigated for solubility enhancement. All these approaches have brought forward the enhancement of the bioavailability of orally administered drugs by improving the solubility of poorly water-soluble drugs. However, the solubility issues have not been completely resolved, owing to several challenges associated with current approaches, such as reproducibility in large scale production. Considering that there is no universal approach for solving solubility issues, more research is needed to simplify the existing technologies, which could increase the number of commercially available products employing these techniques.
Collapse
Affiliation(s)
- Lakshmi Kumari
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Yash Choudhari
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Kuldeep Kumar Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| |
Collapse
|
15
|
Rajamohan R, Raorane CJ, Kim SC, Krishnan MM, Lee YR. Supramolecular β-Cyclodextrin-Quercetin Based Metal-Organic Frameworks as an Efficient Antibiofilm and Antifungal Agent. Molecules 2023; 28:molecules28093667. [PMID: 37175077 PMCID: PMC10179912 DOI: 10.3390/molecules28093667] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The loading of drugs or medicinally active compounds has recently been performed using metal-organic frameworks (MOFs), which are thought to be a new type of porous material in which organic ligands and metal ions can self-assemble to form a network structure. The quercetin (QRC) loading and biofilm application on a cyclodextrin-based metal-organic framework via a solvent diffusion approach is successfully accomplished in the current study. The antibacterial plant flavonoid QRC is loaded onto β-CD-K MOFs to create the composite containing inclusion complexes (ICs) and denoted as QRC:β-CD-K MOFs. The shifting in the chemical shift values of QRC in the MOFs may be the reason for the interaction of QRC with the β-CD-K MOFs. The binding energies and relative contents of MOFs are considerably changed after the formation of QRC:β-CD-K MOFs, suggesting that the interactions took place during the loading of QRC. Confocal laser scanning microscopy (CLSM) showed a reduction in the formation of biofilm. The results of the cell aggregation and hyphal growth are consistent with the antibiofilm activity that is found in the treatment group. Therefore, QRC:β-CD-K MOFs had no effect on the growth of planktonic cells while inhibiting the development of hyphae and biofilm in C. albicans DAY185. This study creates new opportunities for supramolecular β-CD-based MOF development for use in biological research and pharmaceutical production.
Collapse
Affiliation(s)
- Rajaram Rajamohan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mani Murali Krishnan
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638401, India
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|